A Deployable 40 kWe Lunar Fission Surface Power Concept

Steven Oleson
Compass Team Lead, NASA Glenn Research Center
<table>
<thead>
<tr>
<th>Team Roster</th>
<th>Fission Surface Power Project</th>
<th>Compass Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Todd Tofil</td>
<td></td>
</tr>
<tr>
<td>Study Lead (test driver)</td>
<td>Bill Taylor</td>
<td>Steve Oleson</td>
</tr>
<tr>
<td>System Integration</td>
<td>Bill Taylor, Michael Pepen</td>
<td>Betsy Turnbull, Christy Schmid</td>
</tr>
<tr>
<td>Chassis/mobility</td>
<td></td>
<td>Jim Fittje</td>
</tr>
<tr>
<td>Mechanical Systems</td>
<td>Vicente Suarez/Jeff Larko</td>
<td>John Gyekenyesi, Jim Fittje</td>
</tr>
<tr>
<td>Thermal Control Module</td>
<td>Tony Colozza</td>
<td>Tony Colozza</td>
</tr>
<tr>
<td>Power:</td>
<td></td>
<td>Paul Schmitz, Brandon Klefman, Lucia Tian</td>
</tr>
<tr>
<td>Reactor/Shielding Module</td>
<td>DV Rao</td>
<td>Paul Schmitz</td>
</tr>
<tr>
<td>Power Conversion Module</td>
<td>Scott Wilson/Marc Gibson/ Chris Barth</td>
<td>Paul Schmitz</td>
</tr>
<tr>
<td>PMAD/Power Node</td>
<td>David Pike</td>
<td>Paul Schmitz, Brandon Klefman, Lucia Tian</td>
</tr>
<tr>
<td>C&DH/Software</td>
<td></td>
<td>Nick Lantz</td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td>Bushara Dosa</td>
</tr>
<tr>
<td>Configuration</td>
<td>Tom Godfroy</td>
<td>Tom Packard</td>
</tr>
<tr>
<td>ATLO</td>
<td>Bill Taylor/Tim Schuler</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Tom Parkey</td>
<td>Natalie Weckesser, Cassandra Chang, Marissa Conway,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jon Drexler</td>
</tr>
<tr>
<td>Schedule</td>
<td>Erin Wood</td>
<td></td>
</tr>
<tr>
<td>SMA</td>
<td>Marc Gibson</td>
<td></td>
</tr>
</tbody>
</table>
40 kWe FSP Deployability Concept

• Purpose: Develop a concept for a 40 kWe Fission Surface Power (FSP) system that is deployable
 - Trade: South pole (baseline) vs Equatorial (quick one-off)
 - Trade: Stirling and (Brayton design- pushed as later work due to dissimilarity)
 - Trade: Where is the power delivered – assumed one user point

• Approach: The reactor will be deployed by a chassis common with the pressurized habitat which also needs delivered and off-loaded from the lander (this approach avoids integrating the reactor into a specific lander as well as avoids how the chassis is off-loaded)
 - Comment on impact of leaving on the system on the lander deck

• Starting Point: 6 wheel Pressurized Rover chassis
 - Mass capability ~ 8-9t – but can be exceeded for this study if necessary
 - Volume: stay in the same volume as the Pressurized Rover
 ▪ Fallback – On-lander habitat
Top Level Requirements/Design Goals

✓ 40 kWe for 10 years on Lunar South Pole

✓ Low Enriched Uranium (LEU) reactor includes shielding to keep radiation to 5 Rem/year at 1 km

✓ Stow in 4 m Diameter cylinder x 6 m length
 • Maximum 6000 kg
 ✓ (design showed a ~10,000 kg landed mass required – excluding mobility system)

✓ Commanded and autonomous on/off

✓ Up to 100% shunting of power

✓ Single fault tolerant with a minimum provided power of 5 kWe
 • Operable from
 - lander deck OR
 ✓ be removed and transported by a separate mobile system (focus of study)

✓ Assumed minimal crew interaction
Top Level Schematic
Launch and Parking Orbit(s) up to 5 months

Landing at south pole and unloading from TBD lander (<2 days, 2 kW supplied by lander) in sunlight

Off-load all three elements, (2 days)

Rover loads controller and cable elements and transports (8 hours) (trip #2)

Rover deploys 1 km cable (2 days)

Rover (delivered by separate lander)

Rover loads and delivers the Power Generation Pallet (reactor) to operations site (1 day)

Rover with Reactor element loaded (trip #1)

Controller plugged in, deployed 50m (2 hours), Reactor/controller radiators deployed and reactor started (8 hours)

Rover deploys 1 km cable (2 days)

Empty Rover returns to lander

Deployed FSP controller package (direct Ka-Band comms to Gateway)

Rover plugs in convertor/cable to user, deploys pallet, returns to other duties

1km
Rover and FSP Envelope

Pressurized Rover (PR): Volume and Orientation

Design Constraints / Parameters
- Length: 6.23 m
- Width: 3.55 m
- Height: 3.29 m

From: HUMAN Class Cargo LUnar Lander (HCCLL) SYstem to Cargo Interface Requirements Document (IRD)
FSP 40 kW Transportability Concept
Within the Lander Envelope

3.55 m
3.29 m
6.23 m
FSP 40 kW Transportability Concept
Reactor System Deployment

Deployable Legs (Screw Drive)

Double-Sided 133.4 sq-m Reactor Radiator Deployed

Outriggers Deployed
FSP 40 kW Transportability Concept
Reactor System External Components

- Reactor Radiator (Double-Sided, 133.4 sq-m)
- Coolant Pumps
- Stirling Convertor (4 Pairs)
- Outrigger (Identical Outrigger on Opposite Side)
- Reactor and Shielding
- Cold Heat Exchanger
- Hot Heat Exchanger
- Cold Heat Exchanger
‘SPYDER’ Design: HALEU Fueled YH Moderated Heat Pipe Reactor

Fuel: UN pellets
Enrichment: 19.75%
Monolith: Graphite
Heat Pipes: Na-Mo
Moderator: $\text{YH}_{1.8}$

Nuclear Features
K_{eff} (BOL): 1.06
Burnup: 250 kWt for 10-yr
Shielding Requirements

1. Stirling Components (1 m) n: 5×10^{14} n/cm2 (>100 keV) and Gamma: 25 MRad (Rad Si)
2. Electronics @10 m n: 5×10^{11} n/cm2 and Gamma: 25 kRad
3. Humans @ 1 km Total 5 rem/yr (gamma+neutron); 100% occupancy; 1 km wide

Power: 250 kWth
Lifetime: 10 EFPY
8 Convertor Case, 4 Strings: Dual-opposed pairs, no balancers, no single fault tolerance

8 Convertors:
- Synchronized pairs
- Not single fault tolerant
- High reliability: able to meet minimum power requirement >5 kWₑ after 3 of 4 string failures
Sky Temperature: 4 K
View Factor Assumed to be 0.5

Sunlit Surface ~ 220 K
View Factor Assumed to be 0.5

Heat Transported by the Pump Coolant Loop to the Radiator

Radiator Temperature:
- Max Sun: 395 K
- Min Shadow: 375 K

Radiating Surface Area: 133.4 m²

Solar Radiation: 1360 W/m²
FSP 40 kW Transportability Concept
Control Systems Deployment

Deployable Legs (Screw Drive)

Double-Sided 15.3 sq-m Reactor Radiator Deployed
Power System Design – Control Systems

- Stirling Cables (50m) to Stirling Controllers x 16
- 240 VAC to 400 VDC
- DC-DC Converters
- DC-DC Converters (Aux) x2
- Li-Ion Battery
- 120 VDC to Power Distr. Units
- Power Distr. Units to 400 VDC
- DC-DC Converters
- 400 VDC to 1 km ±2800 VDC Cable
- Auxiliary Loads (1000W)

To

1 km ±2800 VDC Cable
Power Transfer Spool Downconverter and Cable Design

- HabiaCable high voltage cables for electric aircraft/aeronautics
 - Design specification per Fission Surface Power (FSP) project

- Cable Design Assumptions:
 - Cable Length: 1 km
 - Cable Output Power: 43.5 kW
 - Cable Efficiency: >95% (2.2 W/m max losses)

- Selected Aluminum Bipolar Pair cable design
 - Operating voltage: +/-2800 VDC
 - Total cable mass: 73 kg
 - Cable outer diameter: 6.5 mm
 - Conductor area: 1.9 mm²

- Reference “Lunar Cables for Fission Surface Power Project (FSP)”. Adapted for 40 kW, 1 km by Christopher Barth (GRC/LET).

- Downconverter to return power to 120VDC
Power System Block Diagram

1) - Stirling Controller
- 8 controllers (redundant)
- 92.6% efficiency [1]
- (no balancer motor load req. due to synchronization)

2) - 2x line frequency energy buffering capacitors

3) - DC-DC Converter (redundant)
- 96.1% efficiency [1]

4) Power Transfer Cable
- 95% efficiency [2]
- 5,600 VDC L-L

5) - DC-DC Converter (redundant)
- 96.1% efficiency [1]

6) - Charging and Regulation
- Aux system includes redundancy
- 61.0% efficiency to aux loads [1]

7) - Power Distribution
- Li-Ion Battery
- 120 VDC

8) - PDU (redundant)
- 120 VDC

98.4% efficiency [1]

End-to-end efficiency between Stirling terminals and load is ~78%

[1] Metcalf design models
[2] Designed efficiency
Lessons Learned

- **Increasing to a 40 kWe (from a 10 kWe) power system:**
 - Almost breaks the 12t limit for planned cargo landers
 - Cannot be landed with the mobility system (it will need to be landed with other equipment)
 - Does fit the volume limit

- **Using the pressurized rover chassis to deploy the 40 kWe system should still be possible BUT**
 - It now must be deployed as three separate pieces due to volume and mass constraints of the rover
 - A new, dedicated rover could be developed but at added cost
 - The three separate pieces add complexity, mass, and an additional trip to/from the lander

- **By laying down the reactor and placing the control electronics 50m away** directional shielding can be optimized to provide the 5 rem/year for the crew and eliminate added shielding for the control electronics.

- In the current configuration, adding distance/over the horizon between the reactor and the crew will not reduce shield mass

- **High, DC voltage found more mass efficient** (even with conversion mass/losses) for delivering power to users 1 km away

- **Modifying the design for equatorial use** requires ~60% more radiator area and different radiator configurations for all elements

- **On-Lander option:** Assuming the lander could be placed >1 km from the crew the current reactor pallet could be kept on the lander – **just the controller/cable pallet unloaded and deployed**
 - Further work to assess radiation and any interactions with the TBD lander
Lunar 40 kWe Fission Power System Demonstrator: Smart Buyer Executive Summary

- **Purpose:** Develop a deployable 40 kWe Lunar Fission Surface Power System Concept
- **Users:** Human lander, Night-time survival, Science, ISRU, communications
- **Total FSP Mass ~ 10,000 kg (~2t rover not included)**
- **Power:** 40 kWe reactor 1km cable to users
 - Eight, 6 kWe Stirlings ensure ~ 5kWe at 10 years
 - Radiation tolerance set to 100 krad in controller
 - Radiation at Stirlings set to 25 Mrad
 - <5 mrem/hr at >1 km from habitat
 - Utilize same rover to deploy 1km, +/- 2800VDC cable
- **Lander:**
 - Provides transit and delivery to lunar surface (up to 12,000 kg capability)
 - Provides structure for mounting FSP and carrier rover
 - Deploys FPS/Rover to surface in the same was as the PR
- **Rover:** based on Pressurized rover (PR) (up to ~8 t carrying capability) and skid based off-loadable cargo concepts. Landed separately.
- **Comms:** Reactor Package: shielded Ka-Band link to 70,000 km Gateway (almost continuous commlink)
- **C&DH:** Reactor Package: Shielded controllers for reactor and Stirlings, interface to Gateway
- **Thermal:**
 - Deployable Reactor Package: 133 m² radiator for Stirlings, sized for polar operations
 - Use at equator adds 60% radiator area
- **Mechanical:**
 - Deployable jacks to lift FSP pallets off of rover
 - Deployable radiators
 - 50m 240VAC (@50Hz) and 1 km 3000 VDC cable/spools
 - Stability legs for reactor element

40 kWe FSP system packaged in lander envelope

Deployed FSP controller package

Deployed FSP cable/convertor package

Deployed 40 kWe FSP system packaged in lander envelope

Rover with controller and cable elements loaded (trip #2)

Rover with Reactor element loaded (trip #1)

MEL Summary: 40kW_Case 2_FSPS Deployability CD-2021-187

<table>
<thead>
<tr>
<th>Main Subsystems</th>
<th>Fission Surface Power System</th>
<th>Control Systems</th>
<th>Cable and Spool</th>
<th>TOTAL to be carried by Lander</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Mass (kg)</td>
<td>Basic Mass (kg)</td>
<td>Basic Mass (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fission Power System</td>
<td>3089</td>
<td>0.0</td>
<td>0.0</td>
<td>3089.1</td>
</tr>
<tr>
<td>Command & Data Handling</td>
<td>0.0</td>
<td>46.4</td>
<td>0.0</td>
<td>46.4</td>
</tr>
<tr>
<td>Communications and Tracking</td>
<td>0.0</td>
<td>26.6</td>
<td>0.0</td>
<td>26.6</td>
</tr>
<tr>
<td>Electrical Power Subsystem</td>
<td>0.0</td>
<td>733.4</td>
<td>357.0</td>
<td>1090.3</td>
</tr>
<tr>
<td>Thermal Control (Non-Propellant)</td>
<td>1100.6</td>
<td>183.8</td>
<td>68.1</td>
<td>1352.6</td>
</tr>
<tr>
<td>Structures and Mechanisms</td>
<td>522.5</td>
<td>268.7</td>
<td>172.3</td>
<td>963.5</td>
</tr>
<tr>
<td>Element Total</td>
<td>5950.2</td>
<td>1257.9</td>
<td>597.4</td>
<td>7445.5</td>
</tr>
<tr>
<td>Element Dry Mass (no prop,conam)</td>
<td>5590.2</td>
<td>1257.9</td>
<td>597.4</td>
<td>7445.5</td>
</tr>
<tr>
<td>Element Mass Growth Allowance (Aggregate)</td>
<td>905.4</td>
<td>401.1</td>
<td>176.9</td>
<td>1483.4</td>
</tr>
<tr>
<td>MGA Percentage</td>
<td>11%</td>
<td>32%</td>
<td>30%</td>
<td>20%</td>
</tr>
<tr>
<td>Predicted Mass (Basic + MGA)</td>
<td>6495.6</td>
<td>1659.1</td>
<td>774.3</td>
<td>8928.9</td>
</tr>
<tr>
<td>System Level Mass Margin</td>
<td>838.5</td>
<td>188.7</td>
<td>89.6</td>
<td>1116.8</td>
</tr>
<tr>
<td>System Level Growth Percentage</td>
<td>12%</td>
<td>17%</td>
<td>15%</td>
<td>24%</td>
</tr>
<tr>
<td>Element Dry Mass (Basic+MGA+Margin)</td>
<td>7334.1</td>
<td>1847.8</td>
<td>863.9</td>
<td>10046.8</td>
</tr>
<tr>
<td>Element Inert Mass (Basic+MGA+Margin)</td>
<td>7334.1</td>
<td>1847.8</td>
<td>863.9</td>
<td>10046.8</td>
</tr>
<tr>
<td>Total Wet Mass (Allowable Mass)</td>
<td>7334.1</td>
<td>1947.8</td>
<td>863.9</td>
<td>10046.8</td>
</tr>
</tbody>
</table>

System Level Mass Margin

- Approximately 1 week to deploy and commission reactor and provide user power.

System Level Growth Percentage

- Mobility System Trip 1
- Mobility System Trip 2

- Rover with controller package
- Deployed FSP cable/convertor package
- Deployed 40 kWe FSP system packaged in lander envelope

- Mobility System Trip 1
- Mobility System Trip 2

- 1km
- 50m

- Deployed 40 kWe FSP system packaged in lander envelope

- Deployable Reactor Package: 133 m² radiator for Stirlings, sized for polar operations
- Use at equator adds 60% radiator area

- Deployable jacks to lift FSP pallets off of rover
- Deployable radiators
- 50m 240VAC (@50Hz) and 1 km 3000 VDC cable/spools
- Stability legs for reactor element

- Rover: based on Pressurized rover (PR) (up to ~8 t carrying capability) and skid based off-loadable cargo concepts. Landed separately.