

Hybrid Electric Turbofan Example Model

NPSS Consortium – Elements, Models, and Interfaces (EMI) monthly meeting

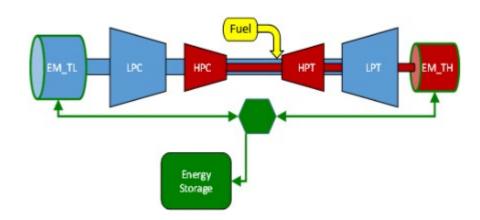
June 8th 2022

George Thomas

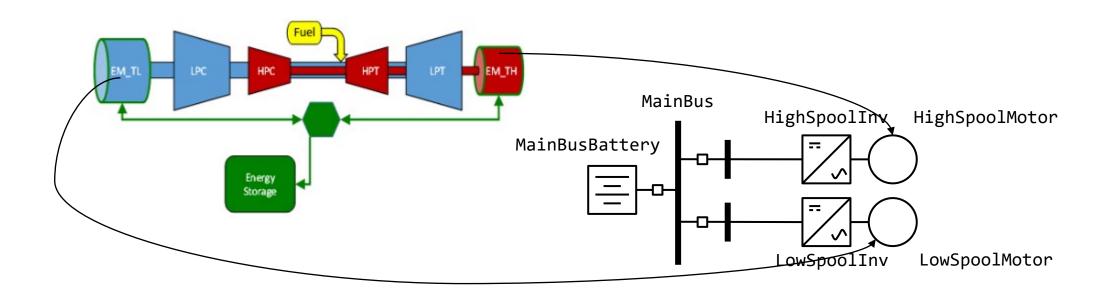
NASA Glenn Research Center

Outline

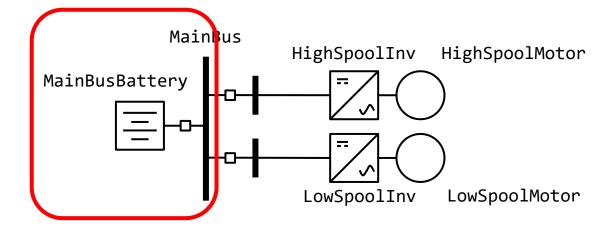
- Background
- Model
- TODOs/Questions
- Current State of Power Library


Background

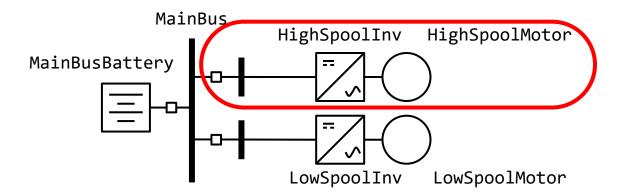
- Electrical Port to be released soon in NPSS
- NASA Power Systems Library available on GitHub
- No official, comprehensive electrified propulsion example model exists
 - Having one would help establish standard/best practices
- Propose a parallel hybrid electric turbofan model as this example
 - Hybrids include and integrate both turbine and electrical domains
 - Consider release in EMI/consortium examples package
 - Model currently on GitHub



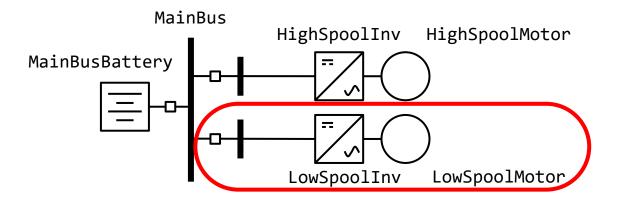
- Propose two spool parallel hybrid turbofan
 - 28 klbf thrust class
 - High technology turbomachinery assumptions
 - 1 MW low spool machine
 - Primarily motor but can run as generator/brake
 - 200 kW high spool machine
 - Primarily starter/generator but can add torque
 - 1.5 MW battery
 - Not sizing for energy at this time
 - Circuit protection consistent with IEEE red book
- Work in progress, built to demonstrate model construction



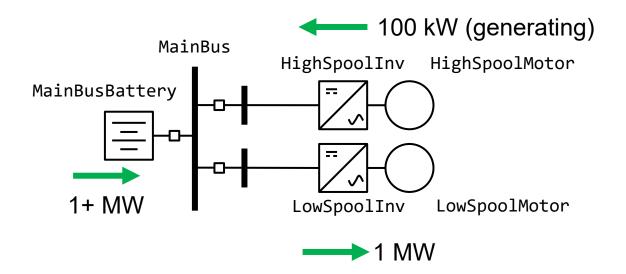
- Hybrid systems combine multiple engineering domains
 - Hybrid system diagrams may not follow domain standards, may omit details
 - Recommend developing accurate power diagrams along with high level system diagrams (e.g. one-line diagrams)
 - E.g., one line diagram for this concept's power system shown on right


Main bus


```
Element Battery MainBusBattery {
 // Cell performance data mapped to pack level within component
  #include <18650 cell.map>
  Vout des = 1000;
  Vout guess = 1000; // guess value [volts]
  SpecificEnergy = 2; // Wh/kg
Element Breaker MainBusBreaker {
 effDes=0.995;
 SpecificPower=250.0;
  Ireal = 1000;
  Iimag = 0;
Element Enode MainBus{
  ElectricInputPort EP I;
  ElectricOutputPort EP 0 LPS;
  ElectricOutputPort EP 0 HPS;
  ComplexNumber IaddionalLoad;
  VrealRMS = 990;
  VimagRMS = 0;
```



High spool bus


```
Element Breaker HighSpoolBusBreaker {
 effDes=0.95:
 SpecificPower=250.0;
 Ireal = -100;
 Iimag = 0;
Element Enode HighSpoolBus{
 ElectricInputPort EP_I;
 ElectricOutputPort EP 0;
 VrealRMS = 970;
 VimagRMS = 0;
Element AeroCable HighSpoolBusCable {
 length = 25;
 Ireal = -100;
 Iimag = 0;
Element Inverter HighSpoolInv {
 #include <modelInverterRectifier.map>
 effDes = .95;
 frequency = 400;
 Vreal = 670; // guess value [volts]
 Vimag = 0; // guess value [volts]
Element AeroCable HighSpoolMotorCable {
 length = 0.2;
 Ireal = -60;
 Iimag = 35;
Element Motor HighSpoolMotor {
 real Pout setpoint = -100; // kW
 #include <STARCABLmotorGenerator.map>
 effDes = 0.96;
  SpecificPower = 13;
 Vreal = 650; // guess value [volts]
  Vimag = 0; // guess value [volts]
  powerfactor = 0.99;
 Dependent dep_motor_power {
   eq lhs = "Pout";
   eq_rhs = "Pout_setpoint";
   autoSetup = TRUE;
```

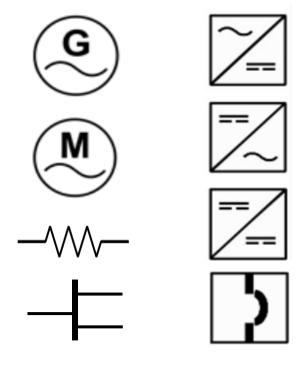


Low spool bus


```
Element Breaker LowSpoolBusBreaker {
 effDes=0.95;
 SpecificPower=250.0;
 Ireal = 1000;
 Iimag = 0;
Element Enode LowSpoolBus{
 ElectricInputPort EP I;
 ElectricOutputPort EP 0;
 VrealRMS = 970;
 VimagRMS = 0;
Element AeroCable LowSpoolBusCable {
 length = 25;
 Ireal = 1000;
 Iimag = 0;
Element Inverter LowSpoolInv {
 #include <modelInverterRectifier.map>
 effDes = .95;
 frequency = 400;
 Vreal = 670; // guess value [volts]
 Vimag = 0; // guess value [volts]
Element AeroCable LowSpoolMotorCable {
 length = 0.2;
 Ireal = 600;
 Iimag = -350;
Element Motor LowSpoolMotor {
 real Pout setpoint = 1000; // kW
 #include <STARCABLmotorGenerator.map>
 effDes = 0.96;
 SpecificPower = 13;
 Vreal = 650; // guess value [volts]
 Vimag = 0; // guess value [volts]
 powerfactor = 0.99;
 Dependent dep motor power {
   eq_lhs = "Pout";
   eq rhs = "Pout setpoint";
   autoSetup = TRUE;
```


Nominal power flow

- Model could run with power in other directions
 - Power could flow into high spool motor (i.e., for operability boost)
 - Power could flow back into battery for recharging

TODOs and Questions


- Variable/component naming not hammered out
 - Any suggestions?
- This model and others in NASA's NPSS Power Systems Library are set up for interpreted port
 - Need updated when electric port is officially released
- Do we want this model in EMI package (or in consortium models?)
 - How about any other models (esp those from NASA's power library)?
- Do we want power component models in EMI package?
 - Use NASA's?

Current State of Library

- Open source library of components, to be used with electric port
 - https://github.com/nasa/NPSS-Power-System-Library
- Interpreted version of electric port included
- Component list and capabilities

ELEMENT	MAP	DC	AC, 1-PHASE	AC, 3-PHASE
CABLE		X	X	X
MOTOR	Χ			X
GENERATOR	Χ			X
RECTIFIER	Χ	Χ		X
INVERTER	Χ	Χ		X
DC-DC CONVERTER	Χ	Χ		Χ
BATTERY	Χ	X		
BREAKER		Χ	X	X
LOAD		Χ	X	X
SOURCE		Χ	X	X
RESISTOR		Χ	X	
CAPACITOR		Χ	X	
INDUCTOR		Х	X	

Do we want to see these in EMI?

