SDC Virtual Community Meeting

Friday, May 13, 2022 – 11 AM EDT to 1:00 PM EDT

- This meeting will be **recorded**, and the recording will be available later the SDC website.
- The first hour or so please input your questions into the WebEx chat panel. We have moderators
 monitoring them and the SDC team will ask selected questions at the end of the various sections.
 During the last 45 minutes, moderators will work to unmute those that have questions to ask and
 have a dialogue with the SDC Team.

💿 Record 😅 … 🗙 👍 Participad	Chat
🖲 Raise hand	
Send reaction	To: Everyone
Recognize hand gesture	tr ★ Participants ● Chat

EARTH SYSTEM OBSERVATORY

INTERCONNECTED CORE MISSIONS

 ${\bf O}$

SB

SURFACE BIOLOGY AND GEOLOGY

Earth Surface and Ecosystems

SURFACE DEFORMATION AND CHANGE

Earth Surface Dynamics

CCP

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

THRIVING ON OUR CHANGING PLANET

A Decadal Strategy for Earth Observation from Space

CLOUDS, CONVECTION AND PRECIPITATION

V

Water and Energy in the Atmosphere

AEROSOLS

Particles in the Atmosphere

MASS CHANGE

Large-scale Mass Redistribution

Surface Deformation and Change – SDC Mission Architecture Study

ESO will being with NISAR as a "trailblazer" for the ESO with SDC to follow.

SDC will consider the entire "program of record", which includes data beyond its own system, but any SAR data that that is likewise free and openly available to the public. Such examples include:

- International SAR Constellations
- Commercial Data Purchased for Public Release

It is anticipated that partnerships will be needed to fully realize the vision described in the Decadal Survey.

EARTH SYSTEM OBSERVATORY

THRIVING ON OUR CHANGING PLANET A Decadal Strategy for Earth Observation from Space

Surface Deformation and Change

Architecture Study Objectives

Determine cost-effective SAR-based architecture to implement the Decadal Survey's Surface Deformation and Change Observable SAR phase

Evaluate other Science and Applications that SAR can enable in the trade space SAR backscatter

Engage emerging best and new practices in industry to maximize engagement and exploitation of commercial sector capabilities and interests, including smallsat constellations

Explore international partnerships to leverage capability and reduce cost.

EARTH SYSTEM OBSERVATORY

Surface Deformation and Change (SDC) Designated Observable Study Plan 2017 Earth Science Decadal Survey

Diane Evans JPL Director for Earth Science and Technolog

ASA GSEC Dire

Day Jedloved ASA MSFC

Where are we today?

- Original SDC Study Timeline
- ESO: Lessons learned from NISAR will guide the SDC architecture development and selection

NISAR Commissioning + 3 yrs science ops

Where are we today?

- Original SDC Study Timeline
- ESO: Lessons learned from NISAR will guide the SDC architecture development and selection
- Final SDC selection will likely be mid-2025

NISAR

Commissioning + 3 yrs science ops

- The SDC Study Team just completed the initial downselect
- Today's Town Hall will review the SDC downselect approach and architectures that will be studied in detail

Review of Architecture Creation

Architectures Identified by Capability

Several classes of architectures under evaluation, each with a variety of implementations Each class offers advantages in different *capability* areas:

- **Continuity:** Likelihood of extending the current program of record beyond NISAR with overlap
- Global Repeat Time: Improving the time between interferometric repeat intervals globally
- Local Repeat Time: Improving the time between interferometric repeat intervals in targeted areas
- Atmospheric Error Reduction: Reducing measurement uncertainty via estimates of tropospheric delay
- Look Diversity: Improving deformation estimation in all 3 spatial dimensions to enable new science
- **STV Synergy:** Architectures providing synergy with the Surface Topography and Vegetation observable
- **Radiometry**: The ability to produce useful radiometric data in addition to interferometric products
- Spatial Coverage: The portion of the globe covered by the instrument in its repeat cycle

Flagship Fleet Architectures

- Characterized by individual spacecraft each with global coverage capability
- Adding spacecraft to the constellation increases the global temporal sampling rate
- Works well as a basis for multi-national collaboration or spec-based acquisition plan
- Requires firm commitment to the measurement because costs for a flagship architecture are high.
- ROSE-L is an example of this architecture paradigm.

Capability	Ranking
Continuity	
Global Repeat Time	
Local Repeat Time	
Atmospheric Error Reduction	
Look Diversity	
STV Synergy	

Distributed Repeat-Track Architectures

N equally distributed smaller satellites that cover 1/N of the adjacent ground track swath

- Gets complete global coverage based on the orbital repeat period
- For urgent response needs, all satellites mechanically steered to the same look angle
- Decreases interferometric repeats by a factor of N over the desired sub-swath

Capability	Ranking
Continuity	
Global Repeat Time	
Local Repeat Time	
Atmospheric Error Reduction	
Look Diversity	
STV Synergy	

Multi-Squint Formation Architectures

- Forward and backward squinted satellites, surrounding a zero-Doppler satellite
- Multiple real-time look angles enable accurate removal of tropospheric delay
- Look diversity enables good estimation of all 3 spatial components
- Enables new science at the expense of coverage density
- Concept presented by Mark Simons at Living Planet Symposium 2019

Capability	Ranking
Continuity	
Global Repeat Time	
Local Repeat Time	
Atmospheric Error Reduction	
Look Diversity	
STV Synergy	

11

EARTH

OBSERVATORY

Lowered Inclination Architectures

- Lower the orbital inclination of the constellation to improve mid-latitude look diversity
- Would open larger holes over the poles
- Would provide faster non-interferometric revisit times
- Would likely need to be in conjunction with other open measurements in a sun-sync orbit
- First architecture shown that would depend on other instruments and programs to meet the full needs of SDC

Capability	Ranking
Continuity	
Global Repeat Time	
Local Repeat Time	
Atmospheric Error Reduction	
Look Diversity	
STV Synergy	

EARTH SYSTEM OBSERVATORY

LOS uncertainty Summer Solid Earth

Helical Orbit Formation Architectures

- Operate multiple spacecraft in close proximity using a helical orbit (similar to TanDEM-X)
- Enables a variety of baselines for more than repeat-pass interferometry
- With enough spacecraft (>5), enables radar tomography for vegetation structure
- Modified zero-Doppler steering algorithms would lay down adjacent tracks for global coverage
- S/C diversity in this architecture does not lend itself as easily to atmospheric error correction or 3D deformation

Capability	Ranking
Continuity	
Global Repeat Time	
Local Repeat Time	
Atmospheric Error Reduction	
Look Diversity	
STV Synergy	

Alternate Water Vapor Techniques

EARTH SYSTEM OBSERVATORY

- Alternatives to multi-squint geometries for removing water vapor:
 - Differential Absorption Radar at millimeter wave frequencies
 - Scanning active phased array antennas squinting forward and back
- A passive microwave instrument flying in formation with another SAR instrument
- Provides tropospheric delay estimation without adding to the SAR coverage rate

Capability	Ranking
Continuity	
Global Repeat Time	
Local Repeat Time	
Atmospheric Error Reduction	
Look Diversity	
STV Synergy	

*A.R. Nehrir, et. al, "Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles", Surveys in Geophysics, 2017.

Down Selection Process Explanation

SDC Downselect Process (Phase II.a)

EARTH SYSTEM OBSERVATORY

Phase II.a Assessment Science: Performance tool + heuristics Applications: Feasibility + Mapping Cost: High-level parametric/analogs Risk: Initial mapping from survey Programmatic Factors: Expert Opinion

Phase II.b Assessment

Science: Performance tool (+ heuristics), refined methodology Applications: Refined methodology Cost: Refined parametric/analogs, independent cost estimate Risk: Risk matrix, technology readiness assessments Programmatic Factors: Expert Opinion

Potential Options (40)

- Large number of options with varying capabilities
- Identify key architecture elements/building blocks
- Identify drivers and trade-offs
- High-level metrics used to consolidate and refine architecture set
- Point of departure for deep dive assessments

June 2021

HQ Sync Point

Decision structuring: Identifying what is different relative to previous downselects **Assessment approach**: Designing and implementing decision-making structure **Facilitation**: Supporting assessments, analysis, and documentation of decision

Phase I

Value in the SDC Study

A STANDARD STANDARD

EARTH SYSTEM OBSERVATORY

LIMATE VARIABILITY A	ND CHANGE PANEL						
CIENCE			MEASUREMENT				
ocietal or Science Question	Earth Science/Application Objective	Sci/App Importance	Geophysical Observable	Measurement Parameters	Example Measurement Approach(s Method) POR	New
DUESTION C-I. How much C-fc. Determine the changes in trotal ice sheet mass balance to trotal ice sheet mass balance to trotal ice sheet mass balance and glacier ice discharge in surface mass balance and glacier ice discharge with the same is sheets, continuously, for decades to come DS e	Most Important	Ice sheet mass	Horizontal resolution/range: 100 km / Global; Temporal sampling: Monthly; Precision: 1 cm water equivalent on scale of 200 km	Gravity (e.g., GRACE FO), NISAR/Landsat, [re-analysis], Operation IceBridge.	POR-30		
	DS example from the Cryosphere	Ice sheet velocity	Horizontal resolution/range: 100 m / pole to pole; Temporal sampling: weekly to daily; Precision: 1 m'yr in fast flow areas, 1 cm/yr near ice divides	SAR (e.g., NISAR), Landsat	POR-12	TO-19	
	Ice sheet elevation	Ice sheet elevation	Vertical resolution/range: 10-20 cm; Horizontal resolution/range: 100 m/ pole to pole; Temporal sampling: weekly to daily; Precision: 10-20 cm	Operation IceBridge, ICESat-2, {WorldView satellites}, GLISTIN	POR-14	TO-20	
		Ice sheet thickness, ice shelf thickness	Vertical resolution/range: 10 m pole to pole; Horizontal resolution/range: 100 m/ pole to pole; Temporal sampling: yearly; Precision: 10 m	Operation IceBridge, ICESat-2 (ice shelf), {WorldView satellites}	POR-14	TO-20	
		Ice sheet bed elevation, ice shelf cavity shape	Vertical resolution/range: 30 m; Horizontal resolution/range: 100 m/ pole to pole; Temporal sampling: one time; Precision: 30 m	Operation IceBridge, EVS-2 OMG, new EVS Antarctica		TO-20	
			Ice sheet surface mass balance	Vertical resolution/range: 1 mm/yr; Horizontal resolution/range: 5 km/ pole to pole; Temporal sampling: monthly; Precision: 1 mm/yr	Gravity (e.g., GRACE FO), ICESat- 2, Operation IceBridge, [re-analysis data]	POR-14, 30	TO-20

At HQ request, expanded scope of science beyond Decadal Survey, including addition of Ecosystems Focus Area
Leveraged Focus Groups to define and refine SDC SATM

Societal or Science	Earth Science /	Sci/App Geophysical Observal		vable	Measurement Parameters
Question / Goal	Application Objective	Importance	Most Important Very Important Important		Latency = 3 months for all observables
QUESTION C-1. How much will sea level rise, globally and regionally, over the next decade and beyond, and what will be the role of ice C-1c. Determine the changes in total ice sheet mass balance to within 15 Gton/yr over the course Most Important	Most Important		Fast flowing outlet glaciers, grounded and floating (>50 m/yr)	Daily (targeted) to weekly (all), 1-5 m/yr horizontal precision, 100 m horizontal resolution	
		ice sheet vetocity	Slow flowing ice-sheet interiors (<50 m/yr)	Once yearly, 0.1 m/yr horizontal accuracy, 1 km horizontal resolution	
sheets and ocean heat storage?	ets and ocean heat of a decade and the changes in surface mass		Large mountain glaciers	Biweekly, 1-5 m/yr horizontal precision, 50 m horizontal resolution	
glacier ice discharge with the same		Shear margins strain rates		Daily to weekly, 1-5 m/yr horizontal precision, 10-25 m horizontal resolution	
	accuracy over the entire ice sheets, continuously, for		Fracture and calving strain rates		Daily to weekly, 1-5 m/yr horizontal precision, 10-25 m horizontal resolution

	Revisit Time	Accuracy	Coverage	Spatial Resolution
SATM Targets	6	100	0.7	200
Architecture A	12	200	0.7	75
Architecture B	12	400	0.7	75
Component of Feasibility for A	0.125	0.125	0.25	0.25
Component of Feasibility for B	0.125	0.0625	0.25	0.25

Total Feasibility for A	0.75
Total Feasibility for B	0.6875

EARTH SYSTEM OBSERVATORY

 $B_i = F_i R_i$

N	$I_i I_i$
$\sum_{k=1}^{n_j}$	$N_k I_k$

B_i	Benefit of Geophysical Observable <i>i</i>
F_i	Feasibility for Geophysical Observable <i>i</i>
R_i	Relevance of Geophysical Observable i
N_i	Necessity of Geophysical Observable i
I_i	Importance of Geophysical Observable <i>i</i>
n _j	Number of Geophysical Observables for Decadal Survey Goal j

 R_i

Value Framework Products and Tools Structure Traceable Assessments

EARTH SYSTEM OBSERVATORY

Relative Science Benefit scores compared to averages

	Cor	mpariso	on amo	ng all a	irchitec	tures b	y each	dimens	ion		0.05 0 -0.05 -0.1	0.05 0 -0.05 -0.1	0.05 0 -0.05 -0.1	0.05 0 -0.05 -0.1
				Cryo	sphere Ber	nefit					0.1	0.1	0.1	0.1
0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	-0.05	-0.05	-0.05	-0.05 -0.1
L4A L2A L2B S2A L1B L1A L1C S2B S1A L12B L1A L1C S2B S1A L12B L5A S6B C4A L6B L5A L5A L5A L5A L5A L5A L5A L5A L5A L5B L5A L5B L5A L5B L5A L5A L5B L5C L6E L6A L6E L6A L12C L12B L12C L18B L18B L18B L18B L18B L6F L4C								Groups ngle S/C ual S/C ub-divided Swath lulti-squint ther cored	Benefi 0.5 < Ban ♥ L-band ♥ C-band Highl L4A 0.7 FOC Cryosphe	t Line 0 > nds light v 8 CUS re v	SIA 01 05 01 01 01 01 01 01 01 01 01 01	standic Face on antic Face on	s2A on S2A o	s (Architect mitgation fc
L12A											Schedule F Continuity	lexibility		
											Programm	atic Risk (no	t techincal	or cost risk)

1 1							L4B a1 05 0 a1 1 1 1 05 0 0 0 0 0 0 0 0 0 0 0 0 0	L4C 0.1 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0	L5A 01 05 0 0 0 0 0 0 0 0 0 0 0 0 0	L6A 0.1 0.5 0 0 0 - 0.55 0 0 0 - 0.55 0 0 0 0 0.55 0 0 0 0 0 0 0 0 0 0 0 0 0	Cryosphere Ecosystems Hydrology Solid Earth Geohazards
Program	matic Ea	FOCUS	sed co	mparis	sons of	SUDS				•	S2A ▼
Leveraging	Internation	al Particina	tion				1	2	L	2A 1	2 2
Supporting	US Agencie	s					3	3		3	3
Leveraging	US Agencie	s					1	1		3	3
Commercia	al Data Buy S	Science Leve	eraging Opp	ortunities			1	1		1	1
Other POR	/ESO/ESTO	Missions/D	evelopment	s Benefits t	o SDC		5	4		5	4
Architectural / Technology Innovation							1	3		1	1
Enhance science return capability							1	1		2	2
Programmatic on-ramps/off-ramps (Architecture design flexibility/agility)							3	2		5 1	1
Science Return Elevibility							3	3		3	3
Programm	atic redunda	ancy as risk i	mitgation fo	or on-orbit fa	ailures		1	1		2	2
Schedule F	lexibility	•	-				3	3		1	1

Initial Architecture Down-selection Results

Contributors: Ala Khazendar (JPL) *Batu Osmanoglu (GFSC) Christopher Jones (LaRC) Katia Tymofyeyeva (JPL) Shadi Oveisgharan (JPL) Stephen Horst (JPL)

Selected Architectures

EARTH	
SYSTEM	
OBSERVATOR	Y

Architecture	Characteristic	Orbital Phasing Groups	Pol.	Repeat Period (Days)	Per Satellite Swath (km)	Relative Cost
L1C	NISAR w/PWV inst.	1	Quad	12	240.0	2.9
L4A	2x NISAR w/Rose-L	4	Quad	3	240.0	3.6
L5A	NISAR via 5 Small Sats.	5	Dual	2/8	60.0	1.6
L6C	Rose-L Active Multi-Squint Co- fliers	2	Single	6	80.0*	1.0
L6E	Rose-L Passive Multi-Squint Co- fliers	2	Dual	6	80.0*	2.0
L8A	Sub-Daily Repeat	1	Dual	0.25/12	30.0	2.1
L9A	NISAR via Multi- Squint Co-fliers	3	Dual	4/12	80.0	2.4
L12B	Multi-Baseline Helical Orbit	2	Dual	6	40.0	2.3
L12C	Fast Revisit Low Cost per Sat.	12	Single	1/4	60.0	1.8
L18A	Multi-Squint Low Cost per Sat.	6	Single	2/8	60.0	2.2

*Reported swath is for the co-fliers, not Rose-L.

Revisit Time vs. Number of Satellites

EARTH SYSTEM OBSERVATORY

Revisit time (days)

Revisit Time vs. Swath Width

Look Diversity vs. Coverage

EARTH SYSTEM OBSERVATORY

Look Diversity FOM = 2*Number of S/C in formation* 0.75 if lowered inclination

Top overall. Geohazards is average to	L4A	Т	op per	former in Cryosphere, Solid Earth, Ecosystems and Hydrology. Average in Geohazards.
poor.	L2A	S2A T	op per	former in Cryosphere, Solid Earth, Ecosystems and Hydrology. Below average in Geohazards.
Flagships. Quad pol.				
Top in Hydrology / Ecosystems; good	L2B	S2B	L1B	1B Missions are expected to achieve similar accuracies. L2B has above average performances in Solid Earth;
in Cryosphere; poor in Geohazards.				L1B is below average.
NISAR-Lite; same temporal sampling.	L1C	L1A	S1A	The high accuracy requirements of Solid Earth and Geohazards can be better met by L1C than L1A/S1A
Quad pol.				given its atmospheric instrument (PWV).
Top in Geohazards.	L120	S12C	Low S	B scores in Ecosystems, Cryosphere and Solid Earth are mostly due to these constellations using low
Fast revisit, low cost/satellite.			radio	metric accuracy and low orbital duty cycle to lower the cost. Low duty cycle does not imply gaps in coverage,
			but le	ss observations of points on the surface which would reduce accuracy.
	L6A	S6A	Disas	ter observation can be 6x NISAR. Top performers in Geohazards. Poor in Solid Earth. Average in the other FAs.
	L5A	S5A	Disas	ter observation can be 6x NISAR. Does relatively well in Geohazards, and average in the other FAs.
Average across FAs, with exceptions.	L6B	S6B	Disas	ter observation can be 2x NISAR. Above average in Cryosphere.
NISAR via multi-squint co-fliers.	L9A	S9A	Disas	ter observation can be 3x NISAR. Dual pol. Average across all FAs.
	L6C	L6E	Targe	ts both 3D deformation and atmospheric removal. Disaster observation can be 2x NISAR. Above average in
			Cryos	phere. Poor in Geohazards. Average in the other FAs.
	C6C		Abov	e average in Ecosystems. Poor in Geohazards.
Average across FAs, with exceptions.	C4A			3x NISAR's temporal sampling.
	L128	S12B	S S6D	L6D Alternate modes would perform STV and cross-along-track interferometry objectives. L12B: Good in Solid
				Earth. Above average in Ecosystems and Cryosphere.
	L4B	S4B		Mechanical steering can provide 4x NISAR's disaster sampling. Above average in Geohazards.
	L3A	53A		Disaster observation can be 3x NISAR. S3A: Above average in Geonazards.
Poor in Cryosphere, Solid Earth and	L4C	54C	LOF	S6F Low SB scores, particularly in Cryosphere and Solid Earth, are mostly due to the lowered inclination orbit.
Geonazard. Above average in				Cryosphere needs to be covered through X-band commercial data purchases, if feasible. L6F and L4C:
Hydrology and Ecosystems.				Good to above average in Hydrology and Ecosystems.
Lowered inclination orbits. Dual pol.	1404	C10	A 140	C100 Low CD secures in Essentiations. Churcheling and Calid Earth and meeths due to these security lists
Below average to poor across all FAS.	LISA	518/	A L18	SIBB Low SB scores in Ecosystems, Cryosphere and Solid Earth are mostly due to these constellations using low radiometric accuracy and low orbital duty cycle to lower the cost. Doer performance in Ecosystems
accuracy and duty cyclo. Single not				is also due to single pol
low cost (satollito				is also uue to single pol.

Architecture Science Benefit scores per Focus Area

				Solid	Geo
Arch.	Cryo.	Eco.	Hydro.	Earth	Haz.
L1A	0.74	0.82	0.57	0.70	0.56
L1B	0.74	0.82	0.57	0.70	0.56
L1C	0.73	0.82	0.57	0.75	0.57
L2A	0.76	0.84	0.59	0.79	0.59
L2B	0.74	0.82	0.57	0.77	0.57
L3A	0.69	0.76	0.55	0.73	0.62
L4A	0.78	0.85	0.60	0.80	0.63
L4B	0.69	0.74	0.54	0.73	0.65
L4C	0.26	0.77	0.56	0.61	0.56
L5A	0.71	0.78	0.57	0.78	0.72
L6A	0.69	0.76	0.54	0.69	0.70
L6B	0.69	0.76	0.55	0.76	0.60
L6C	0.69	0.74	0.54	0.76	0.56
L6D	0.69	0.79	0.53	0.69	0.56
L6F	0.26	0.79	0.57	0.67	0.60
L6E	0.69	0.74	0.54	0.76	0.56
L9A	0.69	0.74	0.54	0.76	0.62
L12B	0.71	0.80	0.54	0.78	0.59
L12C	0.63	0.50	0.51	0.75	0.79
L18A	0.62	0.50	0.50	0.74	0.58
L18B	0.62	0.50	0.50	0.74	0.58

A CAR	No.	the state of the state	and the Hoster	Solid	Geo
Arch.	Cryo.	Eco.	Hydro.	Earth	Haz.
S1A	0.72	0.79	0.56	0.70	0.56
S1B	0.72	0.79	0.56	0.70	0.56
S2A	0.74	0.81	0.57	0.78	0.59
S2B	0.72	0.79	0.56	0.77	0.58
S3A	0.67	0.74	0.54	0.73	0.65
S4B	0.67	0.72	0.52	0.73	0.65
S4C	0.24	0.74	0.54	0.61	0.56
S6A	0.62	0.72	0.51	0.70	0.69
S6B	0.70	0.78	0.55	0.76	0.62
S5A	0.69	0.75	0.55	0.78	0.72
S6D	0.69	0.79	0.53	0.69	0.56
S9A	0.67	0.72	0.52	0.75	0.62
S12B	0.67	0.72	0.52	0.75	0.62
S6F	0.24	0.76	0.55	0.67	0.60
S12C	0.61	0.47	0.49	0.75	0.79
S18A	0.60	0.47	0.49	0.74	0.58
S18B	0.60	0.47	0.49	0.74	0.58
C6C	0.66	0.80	0.51	0.75	0.58
C4A	0.70	0.78	0.55	0.73	0.59

Architecture Science Benefit scores per Focus Area

				Solid	Geo
Arch.	Cryo.	Eco.	Hydro.	Earth	Haz.
L1A	0.74	0.82	0.57	0.70	0.56
L1B	0.74		0.57		0.56
L1C	0.73	0.82	0.57	0.75	0.57
L2A	0.76		0.59		0.59
L2B	0.74		0.57		0.57
L3A	0.69		0.55		
L4A	0.78	0.85	0.60	0.80	0.63
L4B	0.69		0.54		
L4C	0.26		0.56		0.56
L5A	0.71	0.78	0.57	0.78	0.72
L6A	0.69		0.54		
L6B	0.69		0.55		
L6C	0.69	0.74	0.54	0.76	0.56
L6D	0.69		0.53		0.56
L6F	0.26		0.57		
L6E	0.69	0.74	0.54	0.76	0.56
L9A	0.69	0.74	0.54	0.76	0.62
L12B	0.71	0.80	0.54	0.78	0.59
L12C	0.63	0.50	0.51	0.75	0.79
L18A	0.62	0.50	0.50	0.74	0.58
L18B	0.62	0.50	0.50		0.58

		and and and	and the Hostin	Solid	Geo
Arch.	Cryo.	Eco.	Hydro.	Earth	Haz.
S1A	0.72		0.56		0.56
S1B	0.72	0.79	0.56	0.70	0.56
S2A	0.74		0.57		0.59
S2B	0.72		0.56		0.58
S3A	0.67		0.54		
S4B	0.67		0.52		
S4C	0.24		0.54		0.56
S6A	0.62		0.51		
S6B	0.70		0.55		
S5A	0.69	0.75	0.55	0.78	0.72
S6D	0.69		0.53		0.56
S9A	0.67	0.72	0.52	0.75	0.62
S12B	0.67		0.52		
S6F	0.24		0.55		
S12C	0.61	0.47	0.49	0.75	0.79
S18A	0.60	0.47	0.49		0.58
S18B	0.60	0.47	0.49		0.58
C6C	0.66		0.51		0.58
C4A	0.70		0.55		0.59

Selected Architectures - Deformation Science Perspective

Architecture	Characteristic	Continuity	Improved accuracy	Rapid repeat sampling	Level of Improvement
L1C	NISAR w/PWV inst.				Large
L4A	2x NISAR w/ROSE-L				
L5A	NISAR via 5 Small Sats.				Medium
L6C	ROSE-L Active Multi-Squint Co-fliers				No.
L6E	ROSE-L Passive Multi-Squint Co-fliers				Small
L8A	Sub-Daily Repeat				
L9A	NISAR via Multi-Squint Co-fliers				NISAR-like
L12B	Multi-Baseline Helical Orbit				
L12C	Fast Revisit Low Cost per Sat.				
L18A	Multi-Squint Low Cost per Sat.				

Selected Architectures – Radiometric-based Science Perspective

Architecture	Characteristic	Continuity	Improved accuracy	Rapid repeat sampling	Level of Improvement
L1C	NISAR w/PWV inst.				Large
L4A	2x NISAR w/ROSE-L				Luige
L5A	NISAR via 5 Small Sats.				Medium
L6C	ROSE-L Active Multi-Squint Co-fliers				No. Carlo and
L6E	ROSE-L Passive Multi-Squint Co-fliers				Small
L8A	Sub-Daily Repeat				CONTRACTOR OF T
L9A	NISAR via Multi-Squint Co-fliers				NISAR-like
L12B	Multi-Baseline Helical Orbit				Constant days
L12C	Fast Revisit Low Cost per Sat.				No Polarimetry
L18A	Multi-Squint Low Cost per Sat.				

Relative cost vs. area collected

Focus area score vs. Area collected (coverage)

EARTH

Programmatic

EARTH SYSTEM OBSERVATORY

Leveraging Int'l Participation

Leveraging US Agencies

Opportunities for Leveraging Commercial Data

Continuity with Program of Record Enhanced Science Return

Community Conversation

Please provide a question in the chat box or raise your hand to be unmuted if you have a question or feedback for the SDC team.

	→ Chat C ×
🕲 Raise hand	
Send reaction Send reaction	To: Everyone ~
Recognize hand gestures	···· 🗙 🛃 Participants 🗩 Chat ···

Keep Engaging with our SDC Study!

- Visit our SDC Study Team Webpage:
 - https://science.nasa.gov/earth-science/decadal-sdc
- Join the SDC email list for updates
 - Send an email to SDC-Community-join@lists.nasa.gov
 - You do not have to put anything in the subject line or the body.
 - Follow the instructions in the email to confirm.
- Keep updated on our 2022 activities, which include:
 - NISAR Community Workshop: https://sites.google.com/view/nisarscience2022/
 - PECORA
 - https://pecora22.org/
 - AGU Fall Meeting 2022 SDC Town Hall https://www.agu.org/Fall-Meeting

SATM

Back-Up Slides

EARTH SYSTEM OBSERVATORY

List of Plots

Table of Selected Architectures

Revisit vs # of sats and swath width

Look diversity vs repeat time (from AGU)

R&A Tables of Scores

Color coded score table

Benefit scores vs architecture

Programmatic

Cost vs coverage area

Science VF

Programmatic VF Cost VF

Science benefit scores vs. Architecture

Science benefit scores vs. Selected Architecture

EARTH SYSTEM OBSERVATORY

All Architectures

Selected Architectures

Top overall. Geohazards is average to poor.	Top in Hydrology / Ecosystems; good in Cryosphere; poor in Geohazards.	Top in Geohazards.	Average across FAs, with exceptions.	Average across FAs, with exceptions.	Poor in Cryosphere, Solid Earth and Geohazard. Above average in Hydrology and Ecosystems.	Below average to poor across all FAs.
Quad pol. Flagships.	NISAR-Lite; same temporal sampling. Quad pol.	Fast revisit, low cost/satellite.	NISAR via multi-squint co- fliers.		Lowered inclination orbits. Dual pol.	Multi-squint, low radiometric accuracy and duty cycle. Single pol. Low cost/satellite.
L4A	L2B S2B L1B <mark>S1B</mark>	L12C S12C	L6B S6B	C4A	L4C S4C L6F S6F	L18A S18A L18B S18B
 2 NISAR-like instruments to complement the 2 ROSE-L satellites. 3x NISAR's temporal sampling (4x over Europe, perhaps including Greenland and other parts of the Arctic. Top performer in Cryosphere, Solid Earth, Ecosystems and Hydrology. Average in Geohazards. L2A S2A 2 NISAR-like instruments at opposite ends of the NISAR orbital plane. Roughly equivalent to the ROSE-L concept. 2x NISAR's temporal sampling. Top performer in Cryosphere, Solid Earth, Ecosystems and Hydrology. Below average in Geohazards. 	Missions are expected to achieve similar accuracies. L2B includes a co-flyer for atmospheric removal. L2B has above average performances in Solid Earth; L1B is below average. L1C L1A S1A L1C is NISAR with an atmospheric instrument (PWV), which can help meet the high accuracy requirements of Solid Earth and Geohazards. L1C performs better than L1A in those FAs.	Low radiometric accuracy and low orbital duty cycle. Disaster observation can be 12x NISAR. Single pol. Low SB scores in Ecosystems, Cryosphere and Solid Earth are mostly due to these constellations using low radiometric accuracy and low orbital duty cycle to lower the cost. Low duty cycle does not imply gaps in coverage, but less observations of points on the surface which would reduce accuracy. L6A S6A Six L-band or S-band satellites equally distributed around the NISAR orbital plane and covering 1/6 NISAR swath, resulting in the same temporal sampling as NISAR. Disaster observation can be 6x NISAR. Dual pol. Top performers in Geohazards. Poor in Solid Earth and average in the other FAs. L5A S5A Five L-band satellites equally distributed around a 10-day repeat orbital plane and covering 1/4 NISAR swath, resulting in 1.4x NISAR's temporal sampling. Disaster observation can be 6x NISAR. Dual pol. Does relatively well in Geohazards, and average in the other FAs	Multi-squint formations covering 1/2 NISAR swath in NISAR orbit, resulting in the same temporal sampling as NISAR. Disaster observation can be 2x NISAR. Dual pol. Above average in Cryosphere. L9A S9A Multi-squint formations covering 1/3 NISAR swath in NISAR orbit. Same temporal sampling as NISAR. Disaster observation can be 3x NISAR. Dual pol. Average across all FAs. L6C L6E Multi-squint co-flyers surrounding the ROSE-L. Co-flyers are active (L6C)/passive (L6E). Targets both 3D deformation and atmospheric removal. Disaster observation can be 2x NISAR. Quad pol. Above average in Cryosphere. Poor in Geohazards. Average in the other FAs. C6C Multi-squint co-flyers surrounding a C-band zero-doppler instrument such as Sentinel-1. Above average in Ecosystems. Poor in Geohazards.	 2 C-band instruments to augment the Sentinel-1. Would fly 90 deg out of phase with the current instruments in sentinel orbit. 3x NISAR's temporal sampling. L12B S12B S6D L6D Multi-baseline helical orbits operating in non-zero baseline (tomography mode) once every year for every point on the ground and shift to repeat pass interferometry rest of the time. Time ir tomography mode decrease the accuracy. Each satellite covers 1/6 NISAR swath steered to zero doppler with adjacent swaths. Alternate mode would perform STV and cross-along-track interferometry objectives. L12B: Good in Solid Earth. Above average in Ecosystems and Cryosphere. L4B S4B Four satellites equally distributed around the NISAR swath. Same temporal sampling as NISAR. Mechanical steering can provide 4x NISAR's disaster sampling. Dual pol. L3A S3A Subdivided swath architecture for 1/3 NISAR swath. Same temporal sampling. Dual pol. L3A S3A Subdivided swath architecture for 1/3 NISAR swath. Same temporal sampling. Dual pol. Above average in Geohazards. L3A S3A Subdivided swath architecture for 1/3 NISAR. Disaster observation can be 3x NISAR. Dual pol. Disaster observation can be 3x NISAR. Dual pol. S3A: Above average in Geohazards. 	Low SB scores, particularly in Cryosphere and Solid Earth, are mostly due to the lowered inclination orbit. Cryosphere needs to be covered through X-band commercial data purchases, if feasible. L6F and L4C: Good to above average in Hydrology and Ecosystems.	Low SB scores in Ecosystems, Cryosphere and Solid Earth are mostly due to these constellations using low radiometric accuracy and low orbital duty cycle to lower the cost. Low duty cycle does not imply gaps in coverage, but less observations of points on the surface which would reduce accuracy. Poor performance in Ecosystems is also due to single pol.

Top overall. Geohazards is average to poor.	Quad pol. Flagships.	 L4A 2 NISAR-like instruments to complement the 2 ROSE-L satellites. 3x NISAR's temporal sampling (4x over Europe, perhaps including Greenland and other parts of the Arctic. Top performer in Cryosphere, Solid Earth, Ecosystems and Hydrology. Average in Geohazards. L2A S2A 2 NISAR-like instruments at opposite ends of the NISAR orbital plane. Roughly equivalent to the ROSE-L concept. 2x NISAR's temporal sampling. Top performer in Cryosphere, Solid Earth, Ecosystems and Hydrology. Below average in Geohazards.
Top in Hydrology / Ecosystems; good in Cryosphere; poor in Geohazards.	NISAR-Lite; same temporal sampling. Quad pol.	 L2B S2B L1B S1B Missions are expected to achieve similar accuracies. L2B includes a co-flyer for atmospheric removal. L2B has above average performances in Solid Earth; L1B is below average. L1C L1A S1A L1C is NISAR with an atmospheric instrument (PWV), which can help meet the high accuracy requirements of Solid Earth and Geohazards. L1C performs better than L1A in those FAs.
Top in Geohazards.	Fast revisit, low cost/satellite.	 L12C S12C Low radiometric accuracy and low orbital duty cycle. Disaster observation can be 12x NISAR. Single pol. Low SB scores in Ecosystems, Cryosphere and Solid Earth are mostly due to these constellations using low radiometric accuracy and low orbital duty cycle to lower the cost. Low duty cycle does not imply gaps in coverage, but less observations of points on the surface which would reduce accuracy. L6A S6A Six L-band or S-band satellites equally distributed around the NISAR orbital plane and covering 1/6 NISAR swath, resulting in the same temporal sampling as NISAR. Disaster observation can be 6x NISAR. Dual pol. Top performers in Geohazards. Poor in Solid Earth and average in the other FAs. L5A S5A Five L-band satellites equally distributed around a 10-day repeat orbital plane and covering 1/4 NISAR swath, resulting in 1.4x NISAR's temporal sampling. Disaster observation can be 6x NISAR. Dual pol. Does relatively well in Geohazards, and average in the other FAs.
Average across FAs, with exceptions.	NISAR via multi-squint co-fliers.	 L6B S6B Multi-squint formations covering 1/2 NISAR swath in NISAR orbit, resulting in the same temporal sampling as NISAR. Disaster observation can be 2x NISAR. Dual pol. Above average in Cryosphere. L9A S9A Multi-squint formations covering 1/3 NISAR swath in NISAR orbit. Same temporal sampling as NISAR. Disaster observation can be 3x NISAR. Dual pol. Average across all FAs. L6C L6E Multi-squint co-flyers surrounding the ROSE-L. Co-flyers are active (L6C)/passive (L6E). Targets both 3D deformation and atmospheric removal. Disaster observation can be 2x NISAR. Quad pol. Above average in Cryosphere. Poor in Geohazards. Average in the other FAs. C6C Multi-squint co-flyers surrounding a C-band zero-doppler instrument such as Sentinel-1. Above average in Ecosystems. Poor in Geohazards.
Average across FAs, with exceptions.		 C4A 2 C-band instruments to augment the Sentinel-1. Would fly 90 deg out of phase with the current instruments in sentinel orbit. 3x NISAR's temporal sampling. L12B S12B S6D L6D Multi-baseline helical orbits operating in non-zero baseline (tomography mode) once every year for every point on the ground and shift to repeat pass interferometry rest of the time. Time in tomography mode decrease the accuracy. Each satellite covers 1/6 NISAR swath steered to zero doppler with adjacent swaths. Alternate modes would perform STV and cross-along-track interferometry objectives. L12B and S12B: 1.8x NISAR's temporal sampling; S6D and L6D: 0.8x NISAR's sampling. Dual pol. L12B: Good in Solid Earth. Above average in Ecosystems and Cryosphere. L4B S4B Four satellites equally distributed around the NISAR orbital plane and covering 1/4 NISAR swath. Same temporal sampling as NISAR. Mechanical steering can provide 4x NISAR's disaster sampling. Dual pol. Above average in Geohazards. L3A S3A Subdivided swath architecture for 1/3 NISAR swath. Same temporal sampling as NISAR. Dual pol. S3A: Above average in Geohazards.
Poor in Cryosphere, Solid Earth and Geohazard. Above average in Hydrology and Ecosystems.	Lowered inclination orbits. Dual pol.	L4C S4C L6F S6F Low SB scores, particularly in Cryosphere and Solid Earth, are mostly due to the lowered inclination orbit. Cryosphere needs to be covered through X-band commercial data purchases, if feasible. L6F and L4C: Good to above average in Hydrology and Ecosystems.
Below average to poor across all FAs.	Multi-squint, low radiometric accuracy, and duty cycle. Single pol. Low cost/satellite	L18A S18A L18B S18B Low SB scores in Ecosystems, Cryosphere and Solid Earth are mostly due to these constellations using low radiometric accuracy and low orbital duty cycle to lower the cost. Low duty cycle does not imply gaps in coverage, but less observations of points on the surface which would reduce accuracy. Poor performance in Ecosystems is also due