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This paper presents an automated information extraction and inference technique using 
natural language processing for extracting flight operational procedures and constraints 
embedded in heritage air traffic management documents. The extracted flight constraints can 
be digitized and fit into existing airspace information exchange models such as the 
Aeronautical Information Exchange Model (AIXM). This approach offers a digitized solution 
to disseminate airspace operating conditions to diverse air users and stakeholders in the 
National Airspace System (NAS). Furthermore, the digitized flight procedures can provide 
operational flexibility for emerging advanced air mobility providers and reduce traffic 
controller workload while maintaining current safety standards. To demonstrate this process, 
1,972 Letters of Agreement (LOAs) have been selected for processing, named entity 
extraction, constraint identification and extraction. This dataset is derived from a subset of 
documents related to Air Route Traffic Control Centers (ARTCC) operations. We 
experimented with various traditional information extraction techniques, state-of-the-art 
machine learning and deep learning models to perform named entity recognition and pattern 
recognition on our dataset. We present the results from our experiments and demonstrate 
99.0% F-1 score for named entity recognition, and a 96.6% accuracy for our entire workflow 
up to named entity recognition. We also discuss constraint definitions using generic patterned 
templates and extensions to this work in applying entity linking to digitally extracting relevant 
constraints.  

I. Introduction 
 The primary focus of this paper is to identify, define, and extract structured flight constraints contained within the 
procedures section of Letters of Agreement (LOAs), and fit them into a standardized exchange model (XM) format 
e.g., AIXM for distribution to stakeholders in the National Airspace System (NAS). Flight constraints can be defined 
as a restriction to flights that constrain parameters of flight such as altitude, speed, position, trajectory, heading, and 
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arrival time. A restriction is a defined rule that limits the freedom of flights with specific characteristics. We are 
interested in digitizing flight constraints and presenting them in a standard format such as the Aeronautical Information 
Exchange Model (AIXM). AIXM is jointly developed and maintained by the FAA and EUROCONTROL, to provide 
a globally applicable standard model of aeronautical data and an exchange format to support Aeronautical Information 
Services (AIS) [1]. Information captured within AIXM include airspace structures, procedures, routes, and flying 
restrictions. In the current version of AIXM (version 5.1.1), digital Notices to Airmen (NOTAMs) are captured using 
AIXM and used in select airports throughout the United States. Although AIXM contains definitions for flight 
constraints and restrictions, there are quite a few types of constraints (in LOAs) that are not defined in the current 
version of AIXM. We anticipate a future version of AIXM or similar XM model would contain the definitions for all 
flight constraints of interest to the community. 
 
 According to the FAA, LOAs are negotiated “if the air traffic manager deems it necessary to clarify 
responsibilities of other persons/facilities/organizations when specific operational/procedural needs require their 
cooperation and concurrence.” [2] These agreements are made between different facilities including Air Route Traffic 
Control Centers (ARTCCs), Air Traffic Control Towers (ATCTs), Flight Service Stations (FSS), approach control 
facilities, other government agencies, airport managers, aircraft operators, and even commercial space operators [2]. 
The challenge in extracting information from these documents is interpreting the information from their semi-
structured natural language form. Luckily, due to recent advances of information extraction in Natural Language 
Understanding (NLU) [3], relevant tools are becoming increasingly available to tackle this problem. This paper 
presents the results and progress made in the first ever successful attempt in solving this problem using modern NLU 
techniques.  
 
 Constraints found in LOAs can be defined as required procedures, operations or restrictions imposed on flights, 
operators, other persons, facilities, and stakeholders in the NAS. Flight constraints in LOAs pertain to information 
on procedures or restrictions related to aircraft and flight operations. Some examples of flight constraints include local 
instrument flight procedures, establishing aircraft call signs and description of airspace areas with special operations 
[2]. Finding and extracting flight constraints into a digitized form involves a sequence of processes i.e., 1) 
preprocessing the data, 2) using named entity recognition (NER) to tag the LOA data, 3) identifying and extracting 
constraint patterns. One of the biggest challenges in this overall process is the natural language data format the flight 
constraints are written in. These flight constraints are written in different ways, and they need to be generalized into a 
set of defined classes. Each defined class represents a type of flight constraint, whether it is a local instrument flight 
procedure or an altitude restriction. A more specific example of this class is provided in section VI. 
 
To achieve the goal of extracting generalized flight constraints, we propose and implement the following steps: 

 First, we extract the text and key sections of the document using PDF2Text.  
 Second, we use traditional gazetteers7 and syntactic lexical pattern matching to extract named entities.  
 Machine learning is used to assist in flight constraint identification by performing pattern recognition.  
 Lastly, pattern templates are generated from the data samples to be fit and extracted from the text.  

Throughout these steps, we conduct continuous manual validation (using SMEs) of the intermediate results and 
refinement of the model development process. Fig. 1 gives an overview of the above methodology and workflow, 
whereas Fig. 2 an example of data flow throughout this process. 
 

The rest of the paper is organized as follows. Section II contains relevant background to NLU and introduces some 
methods we explored such as named entity recognition, pattern finding using clustering, and information 
representation models. Section III describes the processing of the LOA data through cleaning, preprocessing, and data 
segmentation. Section IV discusses our custom NER approach using gazetteers and syntactic lexical patterns. Section 
V discusses the manual validation effort performed, and results from the preprocessing and NER sections. In section 
VI, we provide some initial findings of constraint pattern recognition and close with some concluding remarks in 
section VII. 
 

 
7A gazetteer is simply a collection of common entity names typically organized by their entity type.  
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Fig. 1 Development Approach 

 
 

 

Fig. 2 LOA Information Extraction Process Overview 
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II. NLU Background 
 NLU and NLP (Natural Language Processing) have been a hot research topic in recent years, especially due to the 
explosion in the development and application of data-driven deep learning technologies. As a side benefit, many new 
methods and techniques have been introduced to tackle domain-specific problems that contain less data but are 
constrained to information provided in the domain. In 2021, it was estimated that about 80% of all corporate data was 
contained in unstructured text [4]. This trend is particularly true in the aviation domain, which is why NLU has been 
employed in interpreting and digitizing legacy text documents. Specific use cases include document anomaly 
detection, aviation safety report analysis, and sentiment analysis on customer service interactions [4]. This paper looks 
to expand the list of use cases to heritage ATM documents such as LOAs. Since much of the natural language data in 
LOAs is human-readable, deploying methods to automate the information extraction and digitization is a key step 
towards adoption of digital services onboard the aircraft. Therefore, the process we lay out is a key enabler for the 
FAA’s Next Generation Air Transportation System (NextGen) modernization efforts [5]. However, given the rigorous 
standards set by the FAA, it is imperative that the extracted constraint information accurately represents the written 
text without any room for misinterpretation. In this work, our FAA partners specified the acceptable performance 
metrics for the NLP task. They also helped improve our results via a continuous validation (using SMEs) and model 
development process (shown in Fig. 1). 

A. Information Extraction 
 Information extraction (IE) is the task of converting unstructured data, in our case ATM related text, into structured 
data that can be easily digestible by machines through search, querying, and data mining [3]. Most of the existing 
research on IE has been done on domain-specific documents [3]. Therefore, which approach will yield the best 
performance is highly dependent on the nature of the data source. Some common automated methods cited in the 
literature for the aviation domain include named entity recognition (NER) [6], pattern finding using clustering [7], and 
template expression matching [8].  

NER classifies unlabeled text according to pre-defined categories by using NLP to automatically tag named 
entities. These classified categories are typically nouns, or numbers and phrases that represent nouns. There are 
different models and workflows used today ranging from traditional (rule-based, unsupervised learning, and feature-
based supervised learning) systems to more modern deep learning techniques [9]. [8], [10] uses rule-based gazetteers 
to match tokens in the text with named entities, whereas [6] uses a machine learning approach. Both extraction 
methods resulted in high-accuracy extraction of named entities. We firmly believe that due to the precise and 
consistent language unique to aviation literature, rule-based entity extraction is much more promising in contrast to 
other domains that contain naturalistic prose like clinical notes [11]. This sentiment of domain-specific rule-based 
matching is also shared in the discussion of  [10]. The precise language used in ATM documents is due in part to FAA 
Order 1000.36 – FAA Writing Standards, a document that highlights the use of short and concise language throughout 
all FAA documents. There is also a great number of standard abbreviations and acronyms used in these texts ranging 
from facility names to weather patterns.  
 Clustering has become an increasingly popular NLP technique to uncover hidden patterns and build initial classes 
to categorize the information within the text. It can be used in tandem with template matching to identify and generate 
templates before moving onto the extraction process. In [7], clustering was used to identify potential hidden aviation 
safety anomalies that were previously not classified. Data-driven approaches like clustering can be incredibly useful 
in understanding unstructured text and can be applied towards identifying flight constraints within LOAs.  
 Both NER and clustering can be useful in identifying specific classes of text information contained within a 
document. After identifying common patterns and clusters, logical classes need to be defined which generalize the 
information found in the data samples and represent the mentioned flight constraint. This step is vital because it is 
unlikely that techniques like unsupervised clustering will guarantee perfect classes for our use case. Instead, clustering 
will be used as a tool to assist in the creation of flight constraint classes. When defining the classes, this can be done 
in different ways including using templates [8], building a knowledge graph [12] or fitting the classes to existing 
information exchange models like AIXM. A knowledge graph would be a good representation of the flight constraints, 
but it requires both named entities and entity relationships to be well-defined within the data. An alternative would be 
fitting the data into an existing information exchange model, but LOAs contain constraints beyond the scope of current 
operational models like AIXM. Templates appear to have the lowest barrier to entry since they only require named 
entities to be generalized instead of entities and relationships. Therefore, for this initial pass of defining information 
contained within the LOAs, we use templates. In future iterations of this work, we may look to create an extension of 
AIXM that would represent the constraints in a more refined way than templates. 
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III. Data Cleaning and Preparation 
  

The LOA dataset provided by the FAA contained 1,972 documents pertaining to ARTCC operations stored in a 
portable document format (pdf). Starting with this data, several steps are followed to convert the raw pdf files into 
data units that can be manipulated by NLP. This process starts with converting the files into raw text, organized by 
sections and headings. Then, the document is broken up into data units which are defined as the smallest contiguous 
text (of information) that contains a flight constraint. Fig. 3 shows a template LOA that would be used for a Center 
Facility or FSS. Most LOAs follow a similar format, but there is a large variety of different information and 
organization found among the documents. LOAs typically have multiple sections such as Purpose, Scope, 
Responsibilities, and Procedures. However, not all documents contain these section titles and ordering. Also, flight 
constraints are not contained in every section of an LOA. Therefore, it is necessary to down select the documents based 
on sections that contain flight constraints. These sections generally fall under the Procedures section, but have many 
names such as: Procedures, Arrival Procedures, Departure Procedures, General, General Procedures, etc. For 
simplicity, all these titles will be referred to as procedures sections. 

 

 

Fig. 3 Snippet of LOA for Center Facility/FSS. For a complete LOA, see [2] 

 

B. Document Cleaning 
Of the entire dataset, not all 1,972 documents contained relevant information or are able to be parsed into the 

pipeline. Some of the documents retrieved are not LOAs, but rather FAA facility notices. Some documents do not 
contain procedures sections, which means they do not contain flight constraints and are removed from the analysis. 
Lastly, some pdf documents contain multiple LOA documents within one file which requires manual processing to 
conform with the rest of the data. After these preliminary steps to generate a consistent dataset, 1,237 LOA documents 
are selected for analysis. 

C. PDF Document to Section Text 
 After the document cleaning, the selected LOAs undergo document preprocessing to extract section texts. The 

document preprocessing consists of PDF to text conversion and section extraction. To convert pdf documents to text, 
Amazon’s Textract, a cloud-based API service involving optical character recognition, or OCR, is used. This service 
takes the pdf documents as inputs and returns a json file which contains the extracted text lines from the document. 
The text lines are then fed to a customized parser, based on the LOA template format shown in Fig. 4, to extract the 
content in headings and sections. 
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{ 
    "DOCUMENT": "loa_template", 
    "PROCEDURES": { 
        "subline": "", 
        "a.": "Local Special VFR operations. The (name) FSS must not authorize more than one aircraft 
to operate simultaneously in the surface\narea unless pilots agree that they will maintain visual 
separation with other aircraft operating in the surface area.", 
        "b.": { 
            "subline": "IFR Arrivals and Departures. Special VFR operations must be controlled by the 
(name) Center/Approach Control during the fol-\nlowing periods:", 
            "(1)": "From 10 minutes prior to the estimated time of arrival of an IFR aircraft over the   
approach fix until it is on the ground\n(IFR arrivals must not be cleared for an approach until the FSS 
confirms that there are no Special VFR operations in\nprogress.)", 
            "(2)": "From 10 minutes prior to the estimated time of departure of an IFR aircraft until                  
it departs the surface area." 
} 
 

Fig. 4: PDF Document to Section Text Input versus Output8 

 
After this process is complete, 1,332 procedures sections are extracted from the documents and are ready for 

further analysis. Note that the 1,332 procedures sections extracted are greater in number than the original 1,237 
documents because some documents contain more than one procedure section. 

D. Unit of Analysis 
Now that sectioned text is available, a data unit size must be determined to facilitate identification of flight 

constraints. A LOA procedure section typically contains multiple constraint statements. Instead of attempting to 
recognize multiple constraints simultaneously from a whole section text, we break down the section text to smaller 
pieces with the assumption that a constraint is specified in an independent piece of text, or text unit of analysis. Then 
the question is: what unit of analysis would allow us to build a dataset with its data samples (or unit of analysis) 
having the best chance of holding a single or no constraint? In other words, data samples that do not contain multiple 
constraints. There are four choices to consider as shown below. 
 

Entire Procedure Section 
The largest unit that can be considered is the entire document. This would include all procedures sections and 
subsections in one data sample. This size is too big since each data unit would contain multiple constraints 
without a good way to distinguish between different flight constraints. 

 
Sub Section Level 

 
8 Note that LOAs are complex documents with different text formats and visual charts. For simplicity, graphic charts 
and figures are ignored, and table cell relations are not retained in the generated output 
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This data size would include all sub-sections of each procedures section. Although this narrows down the 
amount of flight constraints contained within each data unit, there would still be multiple constraints. Another 
problem with this size is the fact that not all LOAs follow the same formatting. The content of a sub-section in 
one document may be similarly captured in the section level of another document. 
 
Line Level 
Line level is defined as the deepest sub-section within a document. These data units typically contain at most 
one to two sentences. The benefit of this over the sub-section level, is that we can consistently define the 
deepest sub-section of a document. 
 
Sentence Level 
LOA lines typically consist of one or more sentences and thus could be split further. However, this unit of 
analysis likely has dependencies with other sentences within the line. Also, the sentence length depends on the 
author of the LOA and may contain different amounts of information than what is shown in the template. 

 
 After a thorough analysis and review with SMEs, we selected the line level option. Through a manual validation 
process (detailed in Section V), we confirmed that almost all line levels contained either one or zero constraints. 
Additionally, some further augmentation is done to the line level data units depending on what application or NLP 
task is being performed. Most notably, for manual validation of the data, parent lines are pre-pended to each line level 
to give context to the user reading the line. Table 1 shows an example of how both types of line units appear. Although 
the line without pre-pending does not show a complete constraint, it has proven useful in certain NLP tasks like 
clustering. It is believed that the pre-pending caused problems when clustering because the pre-pended words became 
a source of similarity between multiple data samples that appeared in the same document, since most of the samples 
would have the same starting text. Alternatively, with other tasks, the pre-pending has the benefit of giving context to 
all line levels which means each constraint can be treated independently. As for pre-pending, one could look at the 
second line in the ‘Lines with Pre-pending’ column in Table 1 and understand the context such as which ARTCC is 
responsible, and the type of aircraft (arrivals)without having to read the first line. 
 

Original Procedure Text Lines with Pre-pending Lines without Pre-pending 

5. Arrival Procedures: 
 a. The ARTCC must route arrivals: 
  i. Requesting at or above 12,000 ft 
MSL via NAVAID unless otherwise 
coordinated 
  ii. Requesting below 12,000 ft MSL 
via STAR unless otherwise coordinated 

The ARTCC must route 
arrivals:  Requesting at or 
above 12,000 ft MSL via 
NAVAID unless otherwise 
coordinated 

Requesting at or above 12,000 ft 
MSL via NAVAID unless 
otherwise coordinated 

The ARTCC must route 
arrivals: Requesting below 
12,000 ft MSL via STAR 
unless otherwise coordinated 

Requesting below 12,000 ft 
MSL via STAR unless otherwise 
coordinated 

Table 1: Line Augmentation Example 

 
Given the 1,332 procedures sections and data unit selection, the final dataset includes 23,911 lines. Now, the 

generated dataset is ready for extracting entities and identifying constraints.  

IV. Constraint Entity Labeling 
To begin the process of identifying and extracting flight constraints within the LOA data, a method is needed to filter 
and search the dataset for important, domain-specific keywords. The most appropriate NLP technique to solve this 
problem is NER. NER is typically used for identifying and extracting domain-specific keywords, or entities, from a 
body of text and classifying them into specific categories [9]. First, a list of entity labels must be identified for 
extraction. Based on interactions with SMEs, we compiled the following list of entity labels to be used in our work. 

• Aerodrome 
• Altitude 
• ARTCC 
• Block Altitude 

• Contact 
• Datetime 
• Distance 
• Document 

• Equipment 
• Heading 
• Rule 
• Position 
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• Sector 
• Separation 

• Speed 
• Tower 

• TRACON9 
• Turn 

 
Methods for the extraction part of NER range from traditional approaches such as rule-based and unsupervised 

machine learning, to more complex and recent methods that use deep learning [9]. Although future work may include 
comparisons of different NER methods, the method adopted in this work uses gazetteers and rule-based matching. 
Gazetteers are domain-specific dictionaries which contain long lists of a specific entity [9]. The aviation domain is a 
great use case for gazetteers since many facility names like Airports, ARTCCs, TRACONs and other facility names are 
well documented and publicly available. Rule-based matching using syntactic-lexical patterns is also an effective 
method of entity extraction [9] in this domain since labels like Altitude, Datetime, Distance, etc. follow a consistent 
pattern throughout the documents. All the entity labels listed fall into at least one of these extraction methods, while 
both methods are used in combination for specific cases which contain both common names and patterns. For example, 
there are commonly known documents of interest referenced within the LOA text such as “Standard Operating 
Procedures,” (which can be added to a gazetteer) but also documents that follow a syntactic-lexical pattern such as 
“FAA Order JO 7210.3,” where “7210.3” could be replaced by other numbers.  

A. Gazetteers 
 In our work, to date, gazetteers have been generated for the labels Aerodrome, ARTCC, ATCT, Document, 
Equipment, Fix, Heading, Rule, and TRACON. Each individual gazetteer/entity is split into two types: cased and 
uncased formatting. Naturally, items that appear as cased will be tagged as an entity only if the string matches the 
proper casing, while those that are uncased will be tagged regardless of case. Airport codes like ‘SAN’ (San Diego 
International Airport) should only be tagged as [AERODROME] if they are completely in upper case, otherwise ‘San 
Francisco’ would be mistakenly tagged as [AERODROME] Francisco. A limitation to this method is its inability to 
intelligently handle typos within the document since exact string matches are being identified. 

B. Syntactic-Lexical Patterns 
Along with specifically defined entities stored inside of the gazetteers, specific string patterns are also developed 

to match more general patterns. One of the most common patterns are altitudes, as demonstrated in Fig. 5. This pattern 
is made up of two primary sections, a numeric value and unit of measurement. These patterns have been crafted to 
handle multiple different notations such as ‘feet,’ or ‘ft,’ as well as different measurement units like ‘mean sea level’ 
(MSL) and ‘above ground level’ (AGL). Another closely related pattern are distances, which have a nearly identical 
pattern, but the unit of measurement includes keywords like ‘nautical mile.’ 

 

 

Fig. 5: Altitude Pattern 

 Although very sparse, certain errors have been found within the labelled dataset that revolve around numeric values 
without properly labelled units such as in the statement “Aircraft arriving at 12,000.” Although a subject matter expert 
will recognize that the ‘12,000’ refers to an altitude, the rule-based pattern matching does not have the ability to 
understand the statement as containing an altitude without proper context (in this case units). 

C. Tagging 
Given the created gazetteers and syntactic-lexical patterns, the LOA dataset is ready to be tagged. Both gazetteers 

and syntactic-lexical pattern algorithms are first independently evaluated. Entities in the gazetteers and stored string 

 
9 TRACON: Terminal Radar 
Approach Control Facility 
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patterns are searched for throughout each line level and tagged. After both are evaluated, a union function is used to 
combine the results and handle any overlapping entities between the two methods. This handling function will take 
the entities that contain the largest number of tokens. Take the reference in Fig. 5 as an example. The first algorithm, 
using a gazetteer would label the text as “12,000 feet [AERODROME]” because MSL is an acronym for Northwest 
Alabama Regional Airport. When the second algorithm (syntactic lexical pattern) tags the text, the output would just 
be [ALTITUDE]. Finally, a union function would determine that since the second algorithm covers more words than 
the first, the second algorithm’s tag will be chosen as the final output. In the next section, we lay out the validation 
process and then analyze the results obtained after applying the chosen NER method to the dataset. 
 

V. Validation and Results 
After completing the data pre-processing and analysis steps in the previous section, we deployed a manual 

validation method which involves checking to see if:  
1. The PDF2Text and line splitting are returning correct data samples. These correct data samples follow the 

definition of ‘line level’ described earlier.   
2. The NER method is properly extracting entities, highlighting defined entities while not highlighting tokens 

which are not considered in the label definitions.  
3. If our assumption is valid that the line levels contain at most one flight constraint. 

While this manual effort was underway, it was beneficial to also get an understanding of the distribution of flight 
constraints versus other (non-flight) constraints, such as procedure constraints for filing flight schedules, within the 
dataset. Given these conditions, a collaborative workflow, shown in Fig. 6, was set up between researchers developing 
the method and subject matter experts reviewing the methodology and results. This process was set up to be iterative 
in nature. Each round of validation would first give an overview of how the developed algorithms are performing, as 
well as provide feedback to update and refine those algorithms. The process will be repeated until the accuracy of the 
algorithms hit a specific benchmark. After discussion with FAA collaborators, this benchmark was set at 90% average 
accuracy for the NLP tasks (preprocessing and NER). As will be discussed in the following sections, this goal was 
achieved after two rounds of the process. 
 

 

Fig. 6 Validation Workflow 

A. Validation Annotation Setup 
Table 2 shows all the information gathered during the validation step. It is split into two categories: NLP Error, 

and Constraint Type. NLP errors account for any type of processing error throughout the workflow, from PDF2Text 
(validation code 1) down to NER errors. A single sample will be tagged with a NER error (validation code 2) if there 
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is one or more mistakes from the NER algorithm. Also, there is a validation code 3 to combine both line creation and 
NER errors so that there is no need to assign more than one code per sample.  

The constraint types are created to capture the assumption regarding one constraint per data sample, as well as 
give a distribution of constraint types within the data. Desired flight constraints are considered nominal (validation 
code 0). Non-flight constraints (validation code 4) are defined as constraints that do not pertain to pilots or aircraft. 
These are typically constraints put on controller-to-controller procedures between facilities. Validation code 5 is used 
to identify any samples that contain more than one constraint to ensure that our previously mentioned assumptions 
hold about the data unit size. Lastly, error code 7 was introduced in the second round to identify data samples that 
contain no relevant or meaningful information. A common example of these is “Facility must:” or “Arrival 
Procedures:” which appear as a parent line within the Procedures sections.   

Validation code 6 is used when an annotator is unsure of which code to label the sample as for others to review. 
This could be for either an NLP error, or constraint type.  
 

Validation Code NLP Error Definition Constraint Type Definition 

0 No NLP error Flight Constraint (nominal) 

1 Line Creation Error - 

2 NER Error - 

3 NLP Errors 1+2 - 

4 - Non-flight Constraint 

5 - Multiple Constraints 

6 Unknown Unknown 

7 - No constraint information10 

Table 2: Validation Code Definitions 

Along with giving insights to the processes described, this validation effort also led to improvements in the NLP 
workflow. Recall that a baseline of 90% NLP accuracy was set as the target goal. This NLP accuracy is an average of 
both line splitting accuracy and NER accuracy. To improve the accuracy between validation rounds, notes are taken 
when there is an NLP error, compiled, and used to fix any errors throughout the pipeline. This includes adding or 
removing entities from the gazetteers or modifying the syntactic-lexical patterns to capture more general forms of 
entities (illustrated in Feedback step of Fig. 6). This is an iterative process and helped improve the NLP methods 
accuracy towards the stated goal.  

B. Results 
 

This validation process begins with a small dataset of 20 samples that are tagged independently by every annotator 
(we employed six different annotators). The results are then compared, along with discussion to calibrate the 
annotators to the task to ensure a higher level of consistency across all annotators. After calibration, 1,000 randomly 
selected data samples are chosen for a first round. This number is chosen to get a diverse range of examples for 
algorithm updates if performance is low. The samples are tagged with the above defined validation codes and then 
totaled for review. Recall that the validation goal is to achieve at or above 90% accuracy for the NLP tasks. The first 
round, with a total of 88% of NLP accuracy, was very promising but still required a second round of validation to 
ensure that follow on NLP steps (mainly constraint extraction) is minimally affected by the error in previous steps. 
For the second round, only 500 samples (different samples from the data used in the first round) were chosen because 
we were confident that the 90% accuracy mark would be achieved with the algorithm updates gathered from the first 
round. This proved to be true, with the second round NLP accuracy being 96.6%. 

 

 
10 No constraint was evaluated only in the second round of validation 
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Table 3: NER Examples 

 Table 3 gives examples of how the NER process tags the data and has been updated between the two rounds of 
validation. In the top example, one could argue that the first round tagged the ALTITUDE labels correctly. However, 
given the initial label definitions, a BLOCKALT label fits the examples much better. The second example gives a 
common mistake, where a general acronym overlaps with a three-letter airport code. To fix this, the acronym ‘CIC’ 
was removed from the AERODROME dictionary since it is more likely to be ‘Controller in Charge’ than ‘Chico 
Municipal Airport.’ Finally, the bottom example shows a limitation of the rule-based approach. ‘11,000’ is not 
captured in either iteration of the models. It was not captured because the number was not followed by a specific unit 
of measurement even though most subject matter experts would easily identify it as an altitude from the context.   

 
These results are investigated in more detail in Fig. 7, which shows an overview of each NLP error type. It is 

noticed that the line splitting accuracy did not change between rounds one and two, yet there were small changes to 
the line-splitting algorithm. Although minimal increase was expected, no change still gives confidence that the 
splitting is done correctly on different data samples. It is likely that the change only affected samples present in the 
first validation round. Another observation is that the total NLP accuracies are less than the average of the two line-
splitting and NER accuracies. This is due to validation code 3 which gets counted as both a line splitting and a NER 
error. 

 
Fig. 8 gives specific detail on the NER algorithm in terms of recall, precision, and F1-Score which are common 

metrics to measure NER performance [9]. There appears to be a significant improvement in the NER model between 
both rounds, and the performance jumped from 94.8% F1-Score to 99.0% F1-Score in round two. This is comparable 
and slightly better total F1-score, to similar applications using open-domain data [10]. Also, while our method worked 
well for the targeted label set, it would likely have failed to target broader entities like ‘Person’ which cannot easily 
be defined in a dictionary or general pattern [10].  
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Fig. 7: Overall Validation Results 

 
 

 

Fig. 8: Validation NER Performance 
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Fig. 9: Validation Constraint Types 

 
 

 Fig. 9 shows the distribution of constraint types per data sample in both rounds of validation. To reiterate, 
constraint code 7, or ‘no constraint information,’ was not considered in round one which is why it does not appear in 
the round one results. It is seen that there are roughly 24-40% flight constraints contained within the given data. That 
means there are roughly between 5,738 and 9,564 relevant flight constraints for potential extraction. There are also in 
the order of 56-63% of non-flight constraints. These constraints may be targeted in future iterations of the research for 
identification and extraction. While 3% of samples contain multi-constraints in round one, very few (< 1%) of samples 
contain multi-constraints in the second round. This issue arises in round one mostly due to line-splitting errors, where 
multiple lines were mistakenly considered as one, in turn causing multiple constraints to be included in a single data 
sample. Now that we understand the data distribution better and having validated the NER method, the next step is to 
identify specific flight constraints given the extracted entity information. 

VI. Constraint Identification, Representation and Extraction 
 Recall that constraints in the context of LOAs can be defined as required procedures, operations or restrictions 
posed on pilots, operators, other persons, facilities, and stakeholders involved in a document. Starting from the tagged 
LOA data, the constraints of interest now need to be identified and extracted. Standard approaches to this problem 
involve techniques such as manual searching and unsupervised pattern finding. Also recall the challenges of working 
with natural language data. There are many ways to describe a flight constraint, and the goal is to generalize them into 
defined classes. 
 
 Another big challenge in creating these templates is determining the specificity of each individual template. If a 
template is too specific, it will only cover a very small percentage of the total data. If a template is too broad, it may 
not capture meaningful constraint information. Note that constraint identification is currently an ongoing process, so 
as more patterns around found, the specificity may change to cover more or less of the data.  

A. Manual Constraint Identification/Extraction 
Manual identification involves filtering and traversing the tagged LOA line level dataset in search for common 

constraint patterns. This dataset has features for the document name, document text, line key, tagged text, tokenized 
list of words, and list of entities. Therefore, there is easy querying of entity names or specific words looking to be 
found. For example, one could filter by the entity AERODROME and word ‘arrival’ to find lines regarding airport 
arrivals. These can then be filtered further depending on any patterns found. With prior knowledge and subject matter 
expertise, this process is much quicker and generalized patterns can be found. 

B. Unsupervised Pattern Finding Using Clustering 
 The objective of clustering is to find collections of samples in unlabeled data that are similar to other samples 
within the cluster, and dissimilar to samples in other clusters [13]. In the problem we are interested in, clusters should 
represent specific categories of LOA constraints. Note that since the objective is to capture flight constraints, each 
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cluster must be analyzed for relevant flight constraints. Since the constraint clusters are not initially known, a density-
based clustering method (e.g., HDBSCAN [14] algorithm) is used to identify the diverse set of potential patterns [13]. 
 The workflow for the clustering process is as follows:  

1. Replace entity-specific words with generalized named entity (“EWR” is replaced by  
“AERODROME”). 

2. Create token embeddings from last hidden-layer output of baseline and fine-tuned transformer model 
RoBERTa. 

3. Use Uniform Manifold Approximation & Projection (UMAP) [15] algorithm to reduce dimensionality of 
data. This is done because the generated RoBERTa embeddings contain 768 dimensions. 

4. Use HDBSCAN algorithm to cluster embeddings. 
5. Perform another round of UMAP dimensionality reduction to two dimensions for visualization. 
6. Repeat the process to generate sub-clusters if applicable.  

 Within this process, there are a few hyperparameters to tune and adjust to achieve the best performance. One of 
these hyperparameters is the initial UMAP dimensionality reduction. This typically ranges between 10 and 50 for 
optimal clusters. This is chosen to be not too small, as to not lose too much information of the data, but not too big 
because HDBSCAN works poorly in very high dimensional data [15]. Other UMAP parameters include the number 
of neighbors, the minimum distance separation between close embedding points, and the number of training epochs 
[15]. Some parameters for HDBSCAN are the minimum cluster size, minimum sample size and cluster selection 
epsilon [14]. 

C. Extracted Template Example 
 The following is an example of an extracted and defined constraint pattern template. Words displayed in brackets 
represent named entities that would be placed in the template, extracted from the original text. Also note that the 
template does not follow the original text word-for-word. 

 
“Arrivals landing at [AERODROME] must use [FIX] STAR11” 

 
Here are two data samples that fall into this template from our dataset12: 

 
1. “… Arrivals to SFO, requesting at or above 10,000 feet MSL, must be routed via CEDES STAR.” 
2. “Arrivals to ATL departing RIC or airports north of RIC, requesting at or above 11,000 feet MSL 

must be routed via the appropriate STAR.” 
 
Given these examples, not all entities are captured within the template to make it more general. In example 1, arrivals 
are routed via the STAR, but only aircraft equipped with specific equipment. In example 2, only arrivals departing 
specific aerodromes and requesting a specific altitude are routed via the STAR. These additional restrictions can be 
thought of as optional fields to the current template and will be defined in later iterations of this research.  
 
To date, through manual pattern finding and clustering, we have classified close to 500 data samples into templates. 
Since there is estimated to be around 5000-9000 samples that contain flight constraints within our dataset (concluded 
from the validation effort), these patterns account for about 5.5% to 10% of the data. This is ongoing work, and we 
plan to significantly increase the amount of data represented by pattern templates. 

D. Future Work 
 Although we have made significant progress in understanding the distribution of constraints found within the data, 
there is still more work to be done. Each of the current patterns have covered roughly 70-100 data samples. Since 
these are the first patterns to be found, it is likely that the undiscovered patterns will represent less and less data 
samples. Through our initial clustering work, we see that the clusters typically contain a small number of samples 
compared to the size of the entire dataset (the largest clusters are estimated to cover less than 1% of the data), so a lot 
more effort is needed to define each cluster. We plan to continue the clustering process until we describe no less than 
50% of the flight constraints in the data using pattern templates.  

 
11 STAR: Standard Arrival Routes 
12 These are tailored examples which are representative of patterns found within the LOA documents, but are not 
effective constraints pertaining to the facilities involved.  
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 Along with pattern templates, we plan to investigate NLP tools like entity linking to generalize relationships 
between the named entities. Finally, the overarching goal will be adapting these constraints into an operational format 
like AIXM. This may require modifications or additions to AIXM data structures and allowed data formats. This will 
be a part of our ongoing collaboration with the AIXM development community and the FAA. 

VII. Conclusions 
 In this work, we have applied traditional natural language processing methods, proven on generic document text, 
to extract flight constraint information from Letters of Agreement, which are legacy air traffic management 
documents. We used AWS’s Textract to parse the pdf source documents with acceptable accuracy. An appropriate 
data unit selection was made such that it contains no more than one flight constraint. After cleaning up and proper 
preprocessing of the dataset, we used gazetteers and syntactic-lexical patterns to extract named entities pertaining to 
flight constraints with a validated F1-score of 99.0%. Most importantly, a preliminary set of constraints have been 
identified (the last step in the process towards representation in XM format) as generic entity patterns with the aid of 
deep-learning transformer models like RoBERTa. The analysis of the LOA dataset shows that the text contains many 
pre-defined and well-known entities. Therefore, traditional NER methods worked and resulted in remarkable accuracy 
better than what has been achieved on open domain data [10]. 

The work presented in this paper documents our initial findings on the challenging task of digitizing flight 
constraints embedded in legacy aviation documents. We plan to continue the work and additionally also transfer the 
methods developed to other heritage air traffic management documents like Standard Operating Procedures (SOPs).  
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