NASA/TM-20220007246

Total Ionizing Dose Test Report for the AD581 Precision Voltage Reference

Dakai Chen

James D. Forney

Stephen R. Cox

NASA STI Program Report Series

The NASA STI Program collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at <u>http://www.sti.nasa.gov</u>
- Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/ and select the "General" help request type.

NASA/TM-20220007246

Total Ionizing Dose Test Report for the AD581 Precision Voltage Reference

Dakai Chen Goddard Space Flight Center, Greenbelt, MD

James D. Forney MEI Technologies, Inc., Seabrook MD

Stephen R. Cox Goddard Space Flight Center, Greenbelt, MD

Report Date: 11/30/2012

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, MD 20771

June 2022

Acknowledgments (optional)

This work was sponsored by the NASA GSFC Radiation Effects and Analysis Group and supported by the Joint Polar Satellite System (JPSS) Program.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program Mail Stop 148 NASA's Langley Research Center Hampton, VA 23681-2199 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 703-605-6000

ı nıs report is available in electronic form at https://radhome.gsfc.nasa.gov/

I. Introduction

The purpose of this test was to determine the low dose rate total ionizing dose susceptibility of the AD581 precision voltage reference, for the Joint Polar Satellite System (JPSS) Program.

II. Device Description

The AD581 is a temperature compensated, monolithic, band gap voltage reference manufactured by Analog Devices, Inc. The part provides a 10 V output from an unregulated input ranging from 12 to 30 V. Table I shows the part and test information. Detailed device parameters can be found in the datasheet [1]. Figure 1 shows schematic diagrams of the package outline and pin configuration.

Manufacturer Part Number	AD581TH/883	
SMD Part Number	5962-8688202XA	
Manufacturer	Analog Devices, Inc.	
Lot Date Code (LDC)	0020B	
REAG ID Number	12-074	
Quantity tested	20	
Part Function	Precision voltage reference	
Package Style	TO-5 metal can	
Test Equipment	Keithley 2430 1kW pulse meter, Keithley 2425	
	100W source meter, oscilloscope, power supply	
Dose Levels	2.5, 4.5, 9, 13.5, 18, and 27 krad(Si)	
Dose Rate	0.010 rad(Si)/s	

Table I. Test and part information

Figure 1. Package Outline and pin configuration.

III. Test Method

The test procedures, including the radiation dosimetry details, were in accordance with the latest version of MIL-STD-883 Method 1019 [2].

A. Parametric characterization

The electrical parameters of interest for this test are shown in Table II. The table also shows the desired measurement conditions and measurement precision levels.

The electrical performance measurements were arranged so that the lowest power dissipation in the device occurs in the earliest measurements, and the highest power dissipation occurs in the latest measurements, to avoid influences from device heating effects.

The devices were characterized in the following sequence: first the control sample, then the test samples, and finally the control sample again. The devices were tested in the same order throughout testing. The measurements were in accordance with the manufacturer's datasheet.

Parameter	Measurement Conditions [†]	Measurement Resolution
Quiescent Current (ICC1)	VIN = +15V	\leq 0.01mA
Quiescent Current (ICC2)	VIN = +13.1V	\leq 0.01mA
Output Voltage (VOUT)	VIN = +15V	$\leq 0.1 \text{mV}$
Line Regulation (VRLINE)	$13V \le V_{IN} \le 15V$	$\leq 0.01 \text{mV}$
Load Regulation (VRLOAD1)	$VIN = +15V 0 \le I_{OUT} \le 5$	$\leq 5\mu V/mA$
	mA	
Load Regulation (VRLOAD2)	VIN = +13.1V	$\leq 5\mu V/mA$
	$0 \le I_{OUT} \le 5 \text{ mA}$	

Table II. Electrical parameters

[†]All measurements at $T = +25^{\circ}C$.

B. Irradiation bias configuration

Ten (10) devices were irradiated under bias. The bias configuration is shown in Figure 2. Ten (10) devices were irradiated unbiased (all pins grounded).

Figure 2. Bias configuration during irradiation.

C. Irradiation procedures

The devices were irradiated with 1.1 MeV gamma rays in air at room temperature. The devices were placed inside Al/Pb shielding boxes to minimize dose enhancement effects. The dose rate was 0.010 rad(Si)/s. The dose rate was within $\pm 10\%$ for each irradiation interval.

The irradiation steps were 2.5, 4.5, 9, 13.5, 18, and 27 krad(Si). Ball Aerospace has performed radiation transport analysis, and determined that the worst case $1 \times$ total ionizing dose level for this part is approximately 4.5 krad(Si). The dose levels specified in this test satisfies the JPSS program radiation design margin requirements.

The down time during each irradiation step were kept to a minimum, and did not exceed 72 hours. No annealing characterization was required due to the low dose rate nature of the test.

IV. Results

The parts showed parametric degradation from total dose irradiation. All parts were functional through the completion of the test, with an accumulated dose of 27 krad(Si). The parts irradiated with pins grounded showed higher degradation levels relative to the parts irradiated with biased configuration, for all measured electrical parameters.

The output voltage was the most radiation sensitive parameter. One part irradiated with pins grounded exceeded specification following 8.8 krad(Si). The remaining 9 parts irradiated with pins grounded exceeded specification following 13.5 krad(Si). All 10 parts irradiated with biased configuration exceeded specifications after 18 krad(Si). Figures 3 and 4 show the output voltage as a function of total dose, with output at 0 mA and 5 mA, respectively.

The parts also exhibited parametric failure to the line regulation following 13.5 krad(Si). Figure 5 shows the line regulation as a function of total dose. The load regulation remained within specification limits until 27 krad(Si), where 4 parts irradiated with pins grounded exhibited parametric failure. Figures 6 and 7 show the load regulation as a function total dose, with input voltage at 13 and 15 V, respectively. The quiescent current did not degrade throughout the irradiation, and remained within specification up to 27 krad(Si).

We note that following the 8.5 krad(Si) step, a power outage at the facility from Hurricane Sandy resulted in 80 hours of down time. During that time the parts remained biased in their respective configurations, without radiation. We took another measurement immediately following the interruption at 8.8 krad(Si). The measurements at 8.8 krad(Si), which includes the 80 hours of biased annealing, revealed slight parametric drifts. However, the effects are insignificant relative to the magnitude of the radiation-induced parametric degradation for each dose step.

Figure 3. Output voltage vs. TID, with $I_{out} = 0$ mA, for parts irradiated at 0.01 rad(Si)/s with biased configuration and with all pins grounded. The error bars indicate standard deviation from part-to-part variability. The red dotted line indicates maximum specification limit.

Figure 4. Output voltage vs. TID, with $I_{out} = 5$ mA, for parts irradiated at 0.01 rad(Si)/s with biased configuration and with all pins grounded. The error bars indicate standard deviation from part-to-part variability. The red dotted line indicates maximum specification limit.

Figure 5. Line regulation vs. TID, with $V_{in} = 13$ to 15 V, for parts irradiated at 0.01 rad(Si)/s with biased configuration and with all pins grounded. The error bars indicate standard deviation from part-to-part variability. The red dotted line indicates maximum specification limit.

Figure 6. Load regulation vs. TID, with $V_{in} = 13$ V, for parts irradiated at 0.01 rad(Si)/s with biased configuration and with all pins grounded. The error bars indicate standard deviation from part-to-part variability. The red dotted line indicates maximum specification limit.

Figure 7. Load regulation vs. TID, with $V_{in} = 15$ V, for parts irradiated at 0.01 rad(Si)/s with biased configuration and with all pins grounded. The error bars indicate standard deviation from part-to-part variability. The red dotted line indicates maximum specification limit.

V. Conclusion

The AD581 voltage reference is susceptible to TID-induced parametric degradation. We observed that the parts irradiated with pins grounded showed higher degradation levels relative to the parts irradiated with the application bias configuration. We also observed that the output voltage was the most radiation sensitive parameter, where initial parametric failure occurred following 8.8 krad(Si) for parts irradiated with pins grounded.

The parts do not meet the JPSS total dose requirement of 9 krad(Si) ($2 \times$ radiation design margin). However, since the parametric degradation is monotonic and predictable, the parts may still be acceptable for the specific application, given that the degradation levels are within the application limits.

VI. Reference

[2] MIL-STD-883, Test Method 1019 Condition D, Ionizing Radiation (Total Dose) Test Procedure.

^[1] Manufacturer's datasheet for the AD581 available on-line, see

https://www.analog.com/media/en/technical-documentation/data-sheets/AD581.pdf