

A Reynolds-Averaged Navier-Stokes Perspective for the High Lift Common Research Model Using the LAVA Framework

Jared C. Duensing, Jeffrey A. Housman, Luis M. Fernandes, Leonardo M. Machado, Cetin C. Kiris

NASA Ames Research Center

AIAA Aviation, June 29th, 2022 Special Session: HLPW-4/GMGW-3: Workshop Results V

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

Outline

Workshop Task Overview

Computational Methodology

- Numerical methods and turbulence modeling
- Structured overset mesh generation

➢ Results

- Grid convergence study
- ➤ Flap deflection study (see paper)
- $> c_{Lmax}$ investigation
 - Turbulence modeling
 - > Alternative solution methods (see paper)
 - Wind tunnel modeling

Summary

- Use Reynolds-Averaged Navier-Stokes (RANS) methods to characterize aerodynamic performance for the High Lift- Common Research Model (HL-CRM)
- Utilize workshop-provided test cases to determine RANS capability in accurately predicting complex highlift configuration flows
- Determine best-practice modeling techniques using various studies to maximize RANS predictive capability
 - Grid sensitivity study

- Turbulence model sensitivity study
- Wind tunnel modeling study

Quantity	Value
Mach	0.2
Re _{MAC}	5.49 M
$T_{s,\infty}$	521 °R
Ē	275.8 in
S _{ref}	297,360 in ²

Methodology: Numerical Approach and Convergence

- Flow solver: structured curvilinear solver within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework
- All simulations solve the Reynolds-Averaged Navier-Stokes (RANS)
 - Modified Roe convective flux discretization
 - Numerous turbulence models
- Steady-state convergence criteria
 - > Standard deviation of c_D in nonlinear iteration space is within 1e-5 and all loads are statistically stationary
 - All cases achieve 4-5 orders of mean flow
 - equation residual convergence 4

Workshop Task	Turbulence model
Grid Convergence Study	SA, SA-RC-QCR2000
Flap Deflection Study	SA, SA-RC-QCR2000
c_{Lmax} Study	SA, SA-RC, SA-QCR2000, SA-RC-QCR2000, SA-LRe, k- ω BSL
Wind Tunnel Simulations	SA

Methodology: Grid Generation

- \geq Very minor updates to the underlying geometry were necessary to allow structured overset mesh generation
- \geq Mesh generation completed using Pointwise and Chimera Grid Tools (CGT)
- Meshing strategy based on provided Geometry and Mesh Generation Workshop (GMGW-3) guidelines
- Computational grids would serve as the official committee- \geq provided structured overset mesh family

Mesh Level	Total Solve Points (M)	
Α	20.15	
В	64.71	C D
С	223.5	
D	550.2	
5	F	ree-air nominal configuration grid systems
AMERICA	N INSTITUTE OF AE	RONAUTICS AND ASTRONAUTICS AIAA.ORG

Wind tunnel modeling study grid system

Flap deflection study grid systems

Grid Convergence Study

Pitching Moment Lift Drag Sensitivity of solution to mesh resolution 1.8 0.188 assessed using two variants of the SA -0.324 1.78 0.186 turbulence model at $\alpha = 7.05^{\circ}$ -0.328 1.76 0.184 പ് പ °₫ 0.182 -0.332 1.74 Differences in quantities between finest 0.18 1.72 resolutions (C and D) within 0.9% 0.178 -0.340 0.176 5E-06 N^{-2/3} 5E-06 NI-2/3 5E-06 N-2/3 Baseline SA demonstrates best $c_{L,exp} = 1.77\overline{86}$ = 0.18671-0.37031 $C_{My,exp}$ $C_{D,exp}$ agreement with experiment **Baseline SA** Mesh % Diff. % Diff. C_L C_L Level (SA) from (SA-RCfrom experiment experiment QCR2000) Mesh D Mesh A Mesh B Mesh C 1.7604 1.03 1.7436 1.97 SA-RC-QCR2000 1.7517 1.52 1.7357 2.42 1.7514 1.53 1.7402 2.16 1.7554 1.31 1.7365 2.37 Mesh A Mesh B Mesh C Mesh D Shaping the Future of Aerospace

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS AIAA.ORG

Α

В

С

D

c_{Lmax} Study: Turbulence Model Sensitivity

- Six turbulence models were assessed using mesh level C (5 SA variants and k-ω BSL)
- Simulations demonstrate unique characteristics at high-α conditions
- Corrections to SA model generally lead to mispredictions in these regions
- Pressure distributions analyzed for perceived "best" and "worst" performing models with respect to c_{Lmax} prediction

7

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

*c*_{*Lmax*} Study: Turbulence Model Sensitivity

- > Six turbulence models were assessed using mesh level C (5 SA variants and k- ω BSL)
- Simulations demonstrate unique characteristics at high- α conditions, driven by flow topology predictions on the outboard wing and inboard corner flow regions
- > Corrections to SA model generally lead to mispredictions in these regions

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

$c_{\textit{Lmax}}$ Study: Comparison with Scale-Resolving Methods

- RANS solutions compared with results from scale-resolving simulations in LAVA
 - Hybrid RANS/LES (HRLES)¹
 - Wall-Modeled LES (WMLES)²

9

- Scale-resolving simulations also struggle to predict accurate pitch break in free air
- Validity of RANS methods in free air should not be solely based on inboard separation-induced pitch break

 $\alpha = 21.47^{\circ}$

¹Browne, O. M., Housman, J. A., Kenway, G., Ghate, A. S., and Kiris, C. C., "A Hybrid RANS-LES Perspective for the High Lift Common Research Model Using LAVA," AIAA Aviation Paper to appear, 2022.

²Ghate, A. S., Stich, G.-D., Kenway, G., Housman, J. A., and Kiris, C. C., "A Wall-Modeled LES Perspective for the High Lift Common Research Model Using LAVA," AIAA Aviation Paper to appear, 2022.

c_{Lmax} Study: Wind Tunnel Modeling

- QinetiQ tunnel wall interference effects studied by incorporating HL-CRM test article into test section
- Inviscid (slip) wall and viscous (no-slip) wall treatments tested
- Total conditions prescribed at tunnel inflow and static pressure prescribed at outflow to set test section Mach number

Stagnation Inflow

10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

> α = 17.98°/19.57°: All methods exhibit qualitatively similar flow topologies

 \geq

- > α = 18.97°/20.55°: No-slip tunnel case exhibits premature inboard separation, free-air exhibits spurious outboard separation
- > α = 19.98°/21.47°: Both tunnel treatments experience inboard and outboard separation, inboard section in free air still attached

Summary of LAVA RANS Contributions to Workshop

- Hundreds of RANS simulations conducted in pursuit of identifying RANS prediction capabilities and shortcomings for high-lift configurations
- Preliminary simulations used to reduce modeling errors where possible and determine best-practices (grid resolution, numerical methods, etc.) for additional workshop studies
- > Six turbulence models (SA variants and k- ω BSL) were used in c_{Lmax} study in free air
 - > SA corrections generally lack accuracy in c_{Lmax} prediction, but do exhibit varying degrees of pitching moment break
 - > Baseline SA exhibits excellent c_{Lmax} prediction, but spurious outboard separation present in post- c_{Lmax} conditions
 - k-ω BSL provides best agreement with experiment, but is very computationally expensive using current simulation methods and convergence criteria
- Wind tunnel modeling improves various shortcomings of the baseline SA model in free air, with other erroneous features persisting
- > While all experimental flow phenomena could be predicted qualitatively using at least one method, no one RANS methodology can capture all flow topologies across entire α -range with exceptional accuracy

Acknowledgements

- All funding was provided by the Transformational Tools and Technologies (T³) project under NASA's Aeronautics Research Mission Directorate (ARMD)
- Computational resources provided by the NASA Advanced Supercomputing (NAS) facility at NASA Ames Research Center
- > The authors would also like to acknowledge the following individuals:
 - Elisha Makarevich of Science and Technology Corp. (STC) for grid generation support
 - Christopher Rumsey, Anthony Sclafani, Niloufar Mahmoudnejad, Eric Laurendeau, and many other HLPW-4 committee organizers and participants
 - Aditya Ghate, Oliver Browne, Gaetan Kenway, Gerrit-Daniel Stich, William Chan, Jacob Wagner and many other LAVA team members for invaluable technical insight

