
ODIN-fire

Open Data Integration Framework for Wildland Fire Management

website: https://nasarace.github.io/race or local
repository: https://github.com/nasarace/race

Peter.C.Mehlitz@nasa.gov
NASA Ames Research Center

next slide: enter,spc,pgDown
prev slide: sh+enter,pgUp
goto slide: [ctrl-digit] digit

toggle timer: t
fullscreen: f

1 / 13 00:00

https://nasarace.github.io/race
file:///Users/pmehlitz/projects/race/race/target/doc/index.html
https://github.com/nasarace/race

1 / 13 00:00

Slides
1. ODIN-fire
2. Slides
3. Historical Roots of ODIN?
4. ODIN Foundation: Actor Programming Model
5. ODIN Implementation: Actor System
6. ODIN Application Design
7. Example: Data Diversity and Volumne
8. Wildland Fire Management Application - Current
9. Wildland Fire Management Application - Vision

10. Why Open Source?
11. Example - Multi-Sensor Data Integration
12. Sentinel Sensor
13. Tracking

1 / 13 00:00

Historical Roots of ODIN?

started as a distributed LVC simulation framework in 2015

.

NAS simulators

LVC airspace simulation

existing systems

remote facility

SWIM

server
client

evolved into a general framework for event driven concurrent/distributed applications:
can import/export from/to external systems - connectivity
can process high event rate and data volume - scalability
supports distributed and massively concurrent operation
has batteries included (except Java runtime, SBT build system)

1 / 13 00:00

ODIN Foundation: Actor Programming Model

well known concurrency programming model since 1973 (Hewitt et al)
Actors are objects that communicate only through async messages ⟹ no shared
state
objects process messages one-at-a-time ⟹ sequential code

actorRef
...
y
x

def receive {
˙ case msg: X => ...
˙ case msg: Y => ...
˙ ...
}

Actor

mailbox

Akka
actorRef ! x

- message delivery/queueing
- actor scheduling

1 / 13 00:00

ODIN Implementation: Actor System

runs on JVM, programmed in Scala using Akka actor library
ODIN node = set of communicating actors
ODIN messages are sent through (logical) publish/subscribe channels
ODIN actors/channels are runtime configured (JSON), not hardwired

actor-A

actor-B

actor-Cchannel-X

channel-Y

RACE

config

actors = [
 { name: “actor-A”
 write-to: “channel-X” …},

 { name: “actor-B”
 read-from: “channel-X”
 write-to: “channel-Y” …},

 { name: “actor-C”
 read-from: [“channel-X”,”channel-Y”]
 …}
]

> ./race myApplication.conf

mailbox

message

HOCON / JSON

Akka actor library
Java runtime

msg
handler

1 / 13 00:00

ODIN Application Design

uniform design - everything is an actor
toplevel actors are deterministically created, initialized and terminated by Master actor
actors communicate through (configured) bus channels

Config

Race
Actors

Master

RaceActorSystem

External Systems

Clock

Race Driver (main)

Bus

RACE

remote RACE

1 / 13 00:00

Example: Data Diversity and Volumne

live NAS visualization plus local sensors
imports SWIM messages (SFDPS,TFM-DATA,TAIS,ASDE-X,ITWS) and local ADS-B
up to 1000 msg/sec, 4500 simultaneous flights
RaceViewerActor uses embedded NASA WorldWind for geospatial display

nasf2fpossfdpsImporter

tfmImporter

itwsImporter

tfm2track

dispatcher

itws2Precip

asdexImporter asdex2airport

sbsImporter sbs2fpos

sfdpsFlights

tfmFlights

precip<Prod>

airportTracks

adsbFlights

testAircraft simFlights

viewerSync

raceViewer
portMapper

gateway

SWIM
server

ADS-B
receiver

SSH

remoteViewerX

/swim/sfdps /flights/sfdps

/swim/tfm /flights/tfm

/swim/itws /precip/<prod>

/swim/asdex /airport/tracks

/sbs /flights/adsb

/flights/sim

/sync/X

/flights/sim

X-Plane flight
simulator

xplane

RACE
configs/swim-sbs-xp-ww-sync.conf

fposdropper

flightInfoStore

/flightinfo/<cs>

channel

on-demand
channel

actor

remote actor

1: ./race --vault ../conf config/air/swim-all-sbs-ww.conf
1: ./race -Darchive=../data/all-080717-1744 config/air/swim-all-sbs-replay-ww.conf

1 / 13 00:00

Wildland Fire Management Application - Current

fragmented: "..have to hop between 14 different websites to create morning briefing.."
no single view across stakeholder-specific external (edge) services and own tracking /
sensors

fsapps.nwcg.gov

fire danger

wfas.net

rapidrefresh.noaa.gov

weather

inciweb.nwcg.gov

incident

wfdss.usgs.gov

planning

air/ground
???

fire detection/tracking

firms.modaps.eosdis.nasa.gov

Service User

maps, infrastructure

? osmbuildings.org

inter-agency/local
???

- IC
- planner
- training
- researcher

maps /
overlays

data +
visualization

“..too much
 and not enough
information..”

“..have to go to
 14 different websites before
I can do morning briefing..”

no integration

IC

multitude of separate services without integration
lack of realtime data

1 / 13 00:00

Wildland Fire Management Application - Vision

ODIN node = data integration hub as field deployable server
provides task-specific view across various input sources (layers)

Http Server
import

archive/
replay

com

ODIN
node

kml, GeoJSON,..

tracking data:
 - hand crews
 - engines
 - aircraft
 - UAV
 . . .

open data integration
component library

runtime
framework

proxy

local (field deployable) server
for:
- incident command
- planning agency
- research lab

user interface with
heterogeneous end-user devices

1 - 100

internet services :
- weather
- fuels/fire danger
- fire detection
- fire behavior
. . .

(RACE)

grib2,..

telemetry

ODIN-Node

ODIN
node

sensor streams
monitor

in-time
 - sensor data fusing
 - confidence assessment
 - safety margin monitoring
 - modeling
 …

- training
- record keeping
…

1: ./race --vault ../conf config/cesium/cesium-app.conf

http://localhost:9000/app

1 / 13 00:00

http://localhost:9000/app

Why Open Source?

community is larger than fire agencies (>600)
provide common ground with low barrier of entry for stakeholders, vendors and
research orgs

stakeholder
org

vendor

research
org

ODIN
maintainer

“ODIN as a library”

- open/closed source repo
- binary artifacts

- open source repo (github)
- binary artifacts (Maven Central)

application
configs

- framework
- generic

- specific components
 (service interface,

Open Source Utilization

1 / 13 00:00

Example - Multi-Sensor Data Integration

collaboration with Delphire to integrate their Sentinel fire sensors
provides visual, infrared and gas sensor readings along power lines
good to correlate with other inputs such as satellite based IR (VIIRS)

power line
fire sensor

(video)

satellite
hotspot
(VIIRS)

sentinel
import

VIIRS
import

fire
monitor

web
server

ODIN-Node

autonomous
assessment function

(correlate input sources) false positive
(incinerator)

1 / 13 00:00

Sentinel Sensor

import of Sentinel Sensor Records (JSON) from Delphire's edge server
archive/replay with standard RACE infrastructure
visualization through SentinelRoute (HttpServer actor)

Delphire
server

ODIN Node

import
actor

archive
actor

replay
actor

HttpServer actor

route

archive

HTTP GET
<server>/records-all?filter=…

sensor readings
since last query

sentinel
objects

changed
sentinels

JSON

JSON + scripts

1 / 13 00:00

Tracking

device
server

- GpsLogger Android
- TAK ?
…

ODIN

device
server

DMZ ICP LAN

GPS
devices

device/app specific
non-vetted

track messages

canonical
vetted

track messagesRFID
assets

GPS Tracking Dataflow

- TCP/UDP
- uni-/multi-
cast

1 / 13 00:00

