RSC

IKOS: Sound Static Program Analysis

Guillaume Brat

” Aimes Research Center

Acknowledgement

System-Wide Safety

This research was funded
by the System-Wide Safety Project
in the Airspace Operations & Safety Program
under the Aeronautics Research Mission Directorate at NASA

Relative cost to fix error

200.00 -

175.00 -

150.00

125.00

100.00

75.00 -

50.00 ~

Motivation: V&V Cost Analysis

Requirements

REeq‘f"em,e”tJ ~ 80-90% of faults
ngmee”r"\g introduced in
4 these phases

System/SW
Design

Software
Development

Design

Code

~ 96% of faults

found in
these phases

’

Acceptance
Testing

Integration
Testing

Unit
Testing

Development

Test

Acceptance
Test

Operation

Phase in which error was detected and corrected

2. Cocosim

Safety requirement
verification on Simulink

1. Fret

Safety requirements
specification

models
Requirement
Engineering
\\‘
System/SW
Design

IKOS

Software

Development

<
S

\\
4 e

Code

Integration
Testing

Unit
Testing

4

4"

Acceptance
Testing

’

3. IKOS
Static code analyzer
for C/C++ with low
false positive rate

int tab[10];

for (int i = 0; i < 10; i++) {
tab[i] = 1 * i;

}

IKOS

A\ 4

C/C++ code

List of (possible) runtime errors:

* Buffer Overflows

* Null pointers

* Division by Zero

* Uninitialized Variables
* Assertion Prover

* Etc.

Vv

IKOS is NOT a code style checker
IKOS is NOT a compiler: It can detect errors that compilers cannot catch

IKOS Design
/

Liveness

Pointer
Analysis

Analysis

Fixpoint Engine

Interval Gauge
Domain Domain

Polyhedra
Domain

. IKOS

Verification
Report

Verification Report

: The instruction is proven free of runtime errors

* Error: The instruction always produces a runtime error

* The instruction can produce an error depending on the input

* The instruction is safe but IKOS could not prove it (also called false
positive)

Example

int tab[10];
for (int 1 = 0; i < 10; i++) {

tab[i] = i * 1;

}

* The analysis discovers program properties:0<1i <9

Example

int tab[10];

for (int 1 = 0; i < 10; i++) {
tab[i] = 1 * 1i;

}

Access within bounds?

* The analysis discovers program properties:0<1i <9

* The verification uses the properties discovered:
* Array-bound compliance
* Check that array tab has at least 10 elements

KOS Checks

*Buffer overflow

*Division by zero

*Null pointer dereference

* Assertion prover

*Unaligned pointer

* Uninitialized variable

*Integer overflow (signed, unsigned)
*|Invalid bit shift

*Invalid pointer comparison
*Invalid function pointer call
*Dead code

*Double free and Invalid lifetime

IKOS Abstract Domains

Domain |conswamts _|complexiy

Interval X € [a, b] n
Congruence X € aZ+b n

Gauge X € [a*i+b*k+...,a’*i+ b *k +...] K*n
Difference Bound Matrices X-Vy € [a, b] n3

APRON Octagon Xty € [a,b] n3

APRON Polka Polyhedra a*x+b*y+..+c<=0 Exponential
APRON PPL Polyhedra a*x+b*y+..+c<=0 Exponential

Variable Packing of ... n

Live demo

IKOS Installation

e Supported platforms:

* Mac OS

* Linux

* Windows (using MinGW)
 Dependencies can be installed with a package manager (brew, apt-get, yum, ..)
* Installation instructions for each platform available in: doc/install/

* Bootstrap script for non-admin installations: downloads and compiles all missing
dependencies (slow)

IKOS Usage

* Analyze a single file: ikos file.c
* Runs the analysis
* Prints the results
* Generates an output database containing the analysis results: output.db

* Analyze a whole project:

e jkos-scan make

* ikos program.bc
* Generate a report from an output database: ikos-report output.db

* Examine the results in a graphical interface: ikos-view output.db

IKOS-SCAN

Analyze a whole project with: ikos-scan <command>

It compiles all executables to LLVM bitcode: program.bc
It runs IKOS on the LLVM bitcode: ikos program.bc
Works with most build systems: Make, CMake, Autoconf, etc...

Works by overriding environment variables: cc, cxx, LD

IKOS-SCAN

Live demo

Analyzing a library

* The analysis needs an entry point (i.e, main)
 Workaround: create a small program that uses the library
e Extract the LLVM bitcode from an object file: ikos-scan-extract file.o

* Analyze a program with a specific entry point: ikos file.bc —e=MyMain

IKOS-VIEW

* Graphical interface to examine the analysis results

e Starts a web server in the terminal, opens the default browser

e ikos-view output.db

IKOS-VIEW

Live demo

IKOS Abstract Domains Guidelines

Start with fast but imprecise domain
Go towards slow but precise domain
Stop when the analysis is too slow for your use case
Recommended order:
* Interval: -d=interval
* Gauge + Interval + Congruence: -d=gauge-interval-congruence
* Variable Packing DBM: -d=var-pack-dbm
* Variable Packing Polyhedra: -d=var-pack-apron-ppl-polyhedra

IKOS Assumptions

* The source code is compiled with Clang for the host architecture
e Clang defines:
* The data model (size of types)

* The memory layout (alignments)

The endianness

The semantic of floating points
* Etc...

IKOS Assumptions

* The program is single-threaded
* The program does not receive signals or interrupts
* Unknown extern functions:
* Do not update global variables
* Can write on their pointer arguments
* Do not call user-defined functions (no callbacks)
* Assembly code is treated as a call to an unknown extern function

* Recursive functions can update any value in memory

False positives

* False positive: invalid warning
* Objective: low rate of false positives

« Common source of false positives:
* Unknown library functions
* “Bad” code patterns

* Imprecision of the analysis

Modeling library functions

The analyzer does not require the libraries used by your program

Unknown library functions will trigger a warning ("ignored call side effect” in
ikos-view)

Modeling library functions can reduce the number of warnings

Write “stubs”: fake implementations of library functions

Modeling library functions

#include <ikos/analyzer/intrinsic.h>

char* fgets(char* restrict str,
int size,
FILE* restrict stream) {
__1kos assert(size >= 0);
~_ikos forget mem(stream, sizeof(FILE));
~_i1kos abstract mem(str, size);
errno = _ ikos nondet int();
return ikos nondet int() ? str : NULL;

IKOS Annotations

* Annotating your source code can reduce the number of warnings

* List of intrinsic functions: analyzer/include/ikos/analyzer/intrinsic.h

* ikos assert(condition)

* ikos assume(condition)

e ikos nondet int()

* ikos check mem access(ptr, size)
* ikos assume mem size(ptr, size)

__i1kos forget mem(ptr, size)

__1kos abstract mem(ptr, size)

* ikos print values(description, var)

IKOS Annotations

ret = talg->parse algoid params(buf, param len, param);

IKOS Annotations

ret = talg->parse algoid params(buf, param len, param);

A 4

int (*fun) (const u8*, ul6, alg param*) =
talg->parse algoid params;

__ikos assume(fun == parse algoid params generic ||
fun == parse algoid params ecdsa with ||
fun == parse algoid params ecPublicKey ||
fun == parse algoid params rsa);

ret = fun(buf, param len, param);

Bad code pattern (1)

CommandResult = XXX();

if (CommandResult == TRUE) {
FilenameState = YYY();
if (FilenameState == FM NAME IS INVALID) {

CommandResult = FALSE;

}

}

if (CommandResult == TRUE) {
CommandResult = ZZZ();

}

if (CommandResult == TRUE) {
//

}

return CommandResult;

Bad code pattern (1)

* Bad readability
* Prone to errors
* Hard for static analyzers

* Please use “early return on errors”

Bad code pattern (1)

CommandResult = XXX();
i1f (!CommandResult) ({
return FALSE;

}

CommandResult = YYY();

i1f (CommandResult == FM NAME IS INVALID) ({
return FALSE;

}

CommandResult = ZZZ();
i1f (!CommandResult) ({
return FALSE;

return TRUE;

Bad code pattern (2)

* Single global variable containing everything

AppData t gj;

typedef struct {
PipeId t CmdPipeId;
uintlé usCmdPipeDepth;
char cCmdPipeName[OS MAX API NAME];
int32 ulfd;
uint32 uiRunStatus;

uint8 lastCmdBchErrorStatus;
} AppData t;

Bad code pattern (2)

* Makes the buffer overflow analysis harder

* Please split it into different global variables

Bad code pattern (3)

* Small integers for loop counters

void f(uintl6 t n) {
for (uintlée t i = 0; i < n; i++) {

}

Bad code pattern (3)

* Small integers for loop counters

void f(uintl6 t n) {
for (uintlée t i = 0; i < n; i++) {

}
}

* Integer promaotion rules of C

void f(uintl6 t n) {
for (uintlé t 1 = 0;
(unsigned int)i < (unsigned int)n;
1 = (uintl6é t)((unsigned int)i + 1)) {

Bad code pattern (3)

* Creates temporary variables in the LLVM bitcode
* Leads to imprecision of the analysis

* Please use size t (or int) for loop indexes

lmprecision

* Initialization functions returning an error code

int Init(void) {

int status = Register();
1f (status != SUCCESS) {
return status;

}
status = InitEvent();
1f (status != SUCCESS) {

return status;

}

lmprecision
* Imprecision due to the abstract union in the analysis

 Temporary workaround: add exit(0) for each failure branch (ugly!)

* Proper fix in the next update — using partitioning

Success Story: BioSentinel

* Space biology mission
* CubeSat spacecraft

* Developed at NASA Ames, in collaboration
with JPL, JSC, MSFC

* Flight software built on top of CFS

Success Story: BioSentinel

The CFS architecture creates a NASA wide
Flight Software “App Store”.

Success Story: BioSentinel

* Each application was analyzed with IKOS
* The CFE framework was modeled to improve the analysis (~ 1200 LOC)
* Low rate of warnings: 1.31% in average

* Found ~ 17 real bugs

adio
brdio
Ci
comio
epsio
letio
ms
saio
sensio
spe
thrio
to
xactio

Success Story: BioSentinel

var-pack-dbm
var-pack-dbm
var-pack-dbm
var-pack-dbm
var-pack-dbm
var-pack-dbm

interval
var-pack-dbm
var-pack-dbm

interval
var-pack-dbm
var-pack-dbm
var-pack-dbm

1 min 6.92 sec
8.02 sec
19.98 sec

1 min 4.83 sec
30.64 sec
24.33 secC
0.16 sec
22.35 sec
4.67 sec

0.16 sec
19.33 sec

2 min 18.32 sec
22.18 sec

O O O O O O O O O O o o o

~l —
A O © 00 ©O 00O 01 A OO 0O =

W
o W

0.07%
0.97%
0.65%
0.26%
0.42%
1.64%

0%
0.64%
9.56%

0%
0.38%
1.98%
0.51%

Application | Abstract Domain| _________ Time | Errors | Warnings | Warnings% | Checks_

1334
818
923

1494

1181

1095
444

1246
826
445

1043

1666

1165

BioSentinel Bug Example

warning: Possible buffer overflow, pointer '&cmd[n + 2]' accesses 1 bytes at
offset between 8 and 16 bytes of local variable 'cmd' of size 16 bytes

uint8 t cmd[16];
uint8 t nj;

switch(cmd request) {
case CMD OPEN:
n = CMD OUT + CMD OPEN; // 6 + 8 = 14
break;

}

cmd[n + 2] = 0; // 14 + 2 16

Troupel example

* Troupel is another cFS application for a swarm of export LLVM_COMPILER PATH=/usr/local/ikos/llvm-9.0.0/bin/
RoverS. export LLVM COMPILER=clang
* The build being a bit complicated, running IKOS is export CC=/usr/local/bin/wllvm

done as fO”OWS: export CXX=/usr/local/bin/wllvm++

* Use wllvm in the build to create .bc files in a make SIMULATION=native O=build-ikos prep
build tree customized for IKOS e
make O=build-ikos
* Use llvm-link to link these .bc files into one be_files=$(find . -name "*.bc" | grep "/apps/" | grep
.bc flle 'cam.dir\|SLAM APP\|locio_app\|sch.dir"')
* Call IKOS on that file with all the apps “main” curdir=$ (pwd)
as entry pOlntS analysis name=ikos_analysis
* Produce areport in SARIF format so that it llvm-link ${bc_files} -o ${curdir}/${analysis_name}.bc

can be viewed in VisualStudio

object file=${curdir}/${analysis_name}.bc

* Th,ese StepS were bundled intO d _Script that'S entry point="CAM AppMain,slam AppMain,LOCIO_ AppMain, SCH_Ap
being called by the Bamboo continuous pMain”
Integratlon bOX at every bUIld ikos "${object file}" -e="${entry point}" -d=var-pack-dbm
-f text --partitioning=ret
* Note: one app (Ardurover) had to be moved ex partitioning=return
to a regular weekly schedule because it’s ikos-report -f sarif -o ${analysis_name}.sarif output.db

analysis by IKOS is taking over 1 hour.

Guidelines

* Use a lightweight static analyzer first: cppcheck, clang-tidy, pvs-studio, etc.
e Use ikos-scan to generate the llvm bitcode (.bc): ikos-scan make
* Use ikos on the llvm bitcode (.bc): 1ikos program.bc

* Try different abstract domains: ikos —d=var-pack-dbm
program.bc

* Use ikos-view to examine the results: ikos-view output.db
* (Optional) Model key library functions

* (Optional) Annotate the code

* (Optional) Avoid “bad” patterns

e (Optional) Add ikos in your continuous build system?

IKOS at a glance

 |[KOS is a static analyzer for C/C++ targeting safety critical software
 IKOS is open source: https://github.com/NASA-SW-VnV/ikos

e Contact: ikos@lists.nasa.gov

Thank you.

Questions?

