Europa Luminescence Microscope

Richard C. Quinn¹, Antonio J. Ricco¹, Nathan Bramall², Joshua Forgione¹, Travis Boone¹, Kathryn Bywaters³, Matthew Chin¹, Jonathan Diver⁴, Arturo Escajeda⁴, Christian Espinoza¹, Alden Falcon², Amanda Giacobbe⁴, Björn Harink², Trinh Hoac¹, Isabel King³, Sarah MacGregor³, Brian Meier², Connor Nelson¹, Abraham Rademacher¹, Leslie Ann Radosevich¹, Jared Shimada¹, Justin Spring³, Ming Tan⁴, Linda Timucin¹, Huyen Tran⁴, Jonathan Lu Wang¹, Kris Zacny³

¹NASA Ames Research Center, Moffett Field CA ²Leiden Measurement Technology LLC, Sunnyvale CA ³Honeybee Robotics, Altadena, CA ⁴Wainamics Inc, Pleasanton CA

Richard.C.Quinn@nasa.gov

Science Goals and Objectives

Goals:

- > Search for evidence of life
- Assess the habitability

Objectives:

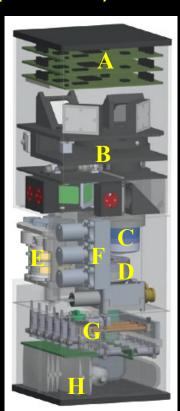
- 1) Identify and characterize morphological, textural, indicators or life
 Sub-micron bright field imaging; Spatial Fluorescence
- 2) Detect and characterize inorganic indicators of life
 Native Fluorescence mineralogy
- 3) Detect and characterize any organic indicators of life
 Proteins, polypeptides (i.e. amine-containing compounds), Lipids in organized structures (e.g. membranes), Nucleic Acids
- 4) Determine the presence of environmental factors essential for life (habitability)
 Embedded sensors (pH, Eh, Conductivity)

ELM: Europa Luminescence Microscope



(Micro)fluidics-based fluorescence and bright field imaging microscope with sub-micron resolution

- 3 Operational Modes:
- 1) Bright field imaging for visual characterization and context.
- 2) Using DUV and visible light-emitting diodes (LEDs) for the excitation of native luminescence in the samples; mineralogical and biological.
- 3) Utilizing fluorescence stains specific to key structural biomarkers, i.e., typical membrane constituents such as fatty acids, phospholipid bilayers, and membrane proteins.


ELM Subsystems and ICEE-2 Development

Lineage: FLAIR Prototype (CubeSat) & LIfE Prototype (COLDTech)

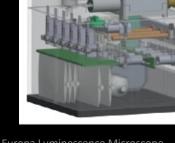
Subsystems:

- A) Camera Board/Electronics
- B) Optics (Microscope)
- C) Microscope Objective
- D) Sample Filter Stage
- E) Sample Transfer Dock
- F) Hermetic Valve Block
- G) Fluidics Manifold
- H) Fluid Storage/Waste

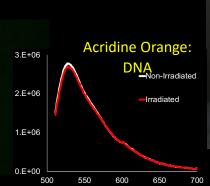
ICEE-2 Focus:


- Environmental
- Packaging
- Performance
- ➤ COTS Custom
- 1) Sample Transfer
- 2) Sample Filter Stage
- 3) Objective and Piezo Stage
- 4) Rad-Tolerant Camera
- 5) ConOps & Data Processing

Sample Transfer Subsystem



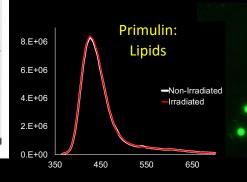
- Designed for compatibility with the CADMES (Collaborative Acceptance and Distribution for Measuring Europan Samples) system (C. Malespin, PI GSFC)
- 5 cc sample cup w/mesh bottom; sealing mechanism for reversible docking and undocking; thermal control to melt ice sample; piezo-agitator for particle transfer, coupled with fluidic manifold transfer line
- Honeybee Robotics breadboard complete.
- Brassboard including environmental testing in progress.



Fluidics Subsystem (Sample Processor)

Key Features

- 8 cm x 9 cm Monolithic Fluidic Manifold
- Space Biology Lineage:
 Requirement for Perfect Sterility
- pH, ORP and Pressure Measurements for feedback control
- Fluorescent Stains: Porous Polymer Stabilization and Storage
- Radiation Tested to > 300 krad; including fluorescent stains

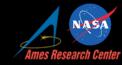


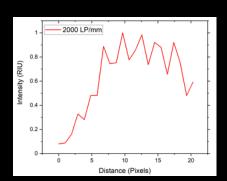

"Top"

"Bottom"

Fluidics Subsystem (Particle Filter Stage)

Key Features


- Custom silicon nitride membrane particle filters on Si wafer
- 7-sets of three inline filters
- Three stage filtering 10 μm; 1 μm; 0.22 μm
- Etched calibration targets on Si wafer
- Filter geometry optimized for microscope field of view
- Optical positioning sensor on rotary stage


Optics Subsystem (Microscope)

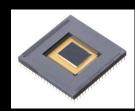
Key Features:

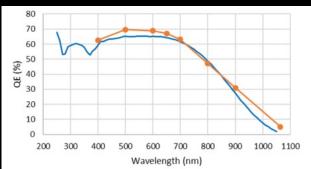
- Custom 40x objective
- Field-of-View 300x263 μm
- Spatial Resolution < 0.5 μm</p>
- Depth-of-Field 2 μm
- Custom piezo focusing stage
- Z-motion up to 400 μm
- Z-positioning accuracy 1 nm
- LED Excitation Wavelengths (4):275, 375, 470, & 525 nm
 - Emission Filters (4):334, 470, 529, & 579

Optical components have passed radiation testing to 300 krad, including:

Bandpass filters (single- and multi-band); LED modules; Lenses and Lens Materials.

Electronics Subsystem (& Microscope Camera)




Key Features:

- COTS Camera replaced with custom board using e2V CIS115 image sensor
 (JUICE mission heritage)
- Back thinned UV sensitive
- Sample maps to 0.18 μm/pixel
- Image processing software ported to rad-hard microcontroller
- Autonomous Image Processing: incorporates z-stacking, data interpretation, data compression and decisional data generation

Acknowledgements

NASA Instrument Concepts for Europa Exploration