Capturing and
- Analyzing
Reguirements
with FRET

Anastasia Mavridou
KBR, NASA Ames Research Center

UOIINI3X3 pUE UOIHUIBP IS
2IN1I3UYIIY

s8nq uolleidaju| pue adepuaju|

uonewawnlop Suoim/3ulpes|siw
:Buijapoy/uonejuawajduwy
S10113
xejuAs :Fuljapoy/uonejuawajdu)

e1eq
s8nq uollezijelyul :JeIn}dNIS
sgnq Buissasoud :jeanjonns
s3

nq 2180 :|eIn3oNIIS

Type of bugs

douanbas pue |0o1u0d ijeInONNS
paie|al udisaqg
1281e3 Suinow :syuawalinbay

Aloyd1peljuod [syuawalinbay

poojsiapunsiw/snongique
:'sjuawaanbay

E—
—
I ——
 ——
 ———
———
—
T ——————————
——
e
e
Eo———
———
Com———
——
—
——
e —
e
|
—
e
——
E———
=
e
 —
-—
S 51 5\dwodul 'sjuawalinbay
.,

100%
80%
60%
40%
20%

0%

sjuapuodsal Jo %

(D)
O
@)
@)
O
c
qV)
D
)
e
@)
&
=
e
c
-
@)
gU—
(Vg
Q0
-
O
G—
@)
Vg
)
=
_l

Johann Schumann, Matt Knudsen, Teme Kahsai, Noble Nkwocha, Katerina Goseva-Popstojanova, Thomas Kyanko, "Report:

Survey on Model-Based Software Engineering and Auto-Generated Code”, NASA/TM-2016-219443, 2016.

how developers write requirements

10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in
control (not standby) and the system is supported without failures (not apfail).

N to STANDBY when the pilot is

* The autopilot shall change states from TRANSI
in control (standby).

every time these conditions hold or only when they become true?

* The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

* The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

Are the requirements consistent?

does my model/code satisfy the requirements?

what formal analysis tools understand

Lockheed Martin Cyber-Physical System Challenge, component FSM:

var autopilot: bool = (not standby) and supported and (not
apfail);

var pre_autopilot: bool = false -> pre autopilot;

var pre_limits: bool = = false -> pre limits;

guarantee "FSM-001v2" S((((((autopilot and pre_autopilot and
pre_limits) and (pre (not (autopilot and pre_autopilot and
pre_limits)))) or ((autopilot and pre_autopilot and
pre_limits) and FTP)) => (pullup)) and FTP), ((((autopilot
and pre_autopilot and pre_limits) and (pre (not (autopilot
and pre_autopilot and pre_limits)))) or ((autopilot and
pre_autopilot and pre_limits) and FTP)) => (pullup)));

FRET bridges the gap

e Captures requirements in a restricted natural language with
unambiguous semantics

e Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

e Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner

* Checks consistency of requirements and provides feedback
e Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v’ for runtime analysis of C programs with Copilot

= FRET Projects v

Total Projects Total Requirements Formalized Requirements System Components Requirement Size

= 19 356 80.34« 92 29378 vytes

Welcome to FRET

quidMixe j J—a 5 b= AT T o=

Liquid_mixer Undefined ProjectiD

TEST TEST-TCND-N

A0S when occurred(7,persisted(2,fault)) the sw shall

BIOSEN immediately satisfy ¢

TEST

when not in m mode when p the sw shall always satisfy r

LM_requirements TEST

LM_AUTOPILOT AP-003b

n rollhold mode RollHoldReference shall immediately

satisfy abs(rollangle)<6 => rollholdreference

TEST TEST-BNDD-RSPNSE

FOL_Rover if P the sw shall within 5 ticks satisfy R

DeepTaxi GPCA_with_modes TEST-ONLY-IN

Demo-FSM Ty oyt -
1ly in m, when p, shall the software satisfy p

Andreas Katis, Anastasia Mavridou, Tom Pressburger, Johann Schumann, Khanh Trinh

Milan Bhandari, David Bushnell, Tanja DelJong, Dimitra Giannakopoulou,
Kelly Ho, George Karamanolis, David Kooi, Jessica Phelan, Julian Rhein, Daniel Riley, Nija Shi

Welcome to FRET

<>

Total Projects Total Requirements

12 285

Hierarchical Cluster

CubETH TestRequirements

Demo-FSM

LM_requirements
InfusionManager GPCA_with_modes
LiquidMixer
TEST-REALIZABILITY

FOL_Rover

DeepTaxi

Formalized Requirements

90.53+

System Components Requirement Size

42 241 1 9 bytes

Recent Activity

FOL_Rover G005
when assumptions goalAgent shall eventually satisfy GoalSet =
goalsetWithChargePos

FOL_Rover G004
when assumptions goalAgent shall eventually satisfy (atGoal & s0 !=
chargePos) => GoalSet = GoalSetMinusSo

FOL_Rover G003
when assumptions goalAgent shall eventually satisfy lobstacle(g)

FOL_Rover G001
when assumptions goalAgent shall eventually satisfy (recharge => g
=chargePos) & (g =chargePos => recharge)

FOL_Rover G002
when assumptions goalAgent shall eventually satisfy (g !=
chargepos => g= hottest(H))

LiquidMixer LM-003
when liquid_level_1 the liquid_mixer shall until emergency_button
satisfy if ! liquid_level_2 then valve_1

TEST TEST-TCND-N
when occurred(7, persisted(2,fault)) the sw shall immediately satisfy
q

TEST
when not in m mode when p the sw shall always satisfy r

TEST TEST-BNDD-RSPNSE

ML o aball iidbhta ©at

FRET bridges the gap

=» Captures requirements in a restricted natural language with
unambiguous semantics

=» Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

e Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner

Checks consistency of requirements and provides feedback
e Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim

v for model checking Lustre code with Kind2

v’ for runtime analysis of C programs with Copilot

Capturing and explaining requirements

Create Requirement ASSISTANT TEMPLATES GLOSSARY

Ready to speak FRETish?
Project
Please use the editor on your left to write your requirement

Requirement ID Parent Requirement ID Demo-FSM
or pick a predefined template from the TEMPLATES tab.

Rationale and Comments

Requirement Description

A requirement follows the sentence structure displayed below, where fields are optional unless indicated
with "*"_ For information on a field format, click on its corresponding bubble.

(SCOPE) (CONDITIONS) GOMPONENT') SHALL* TIMING

SEMANTICS

Capturing requirements

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremem&:
The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:

if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

scope condikion acmpouem&* timing responsex

Capturing requirements

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:
The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:

if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

scope condition acmpo»\em&* timing responsex

Q: Upon which part of the system is the requirement being levied?
A: the altitude hold autopilot

Capturing requirements

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremem&:
The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:

if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

scope condikion Ccmponemk* timing responsex

Q: What do we want the system to achieve?
A: Maintain altitude

Capturing requirements

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:
The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:

if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

scope condition acmpo»\em&* timing responsex

Q: During what portion of the execution is the requirement enforced?
A: During the whole execution: omit scope.

Capturing requirements

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:
The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:

if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

scope condition acmpo»\em&* timing responsex

Q: What condition triggers the response?
A: Altitude hold selected becoming true, within the scope

Capturing requirements

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:
The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:

if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

scope condition acmpo»\em&* timing responsex

Q: When does the response happen, relative to the scope and condition?
A: Whenever (always afterwards) the condition is triggered

Capturing requirements

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiramem&:

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:

if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

scope condition aamponen&* timing responsex

CONDITION and RESPONSE expressions:

Boolean Arithmetic

e 1,&, |, =>if _then_, <=>, p(x,y,2) 5, 15,%,>,<5,>=
 preBool(init,p) 4+ -5 1N fxy)

* persisted(n,p), occurred(n,p) * prelnt(init, n), preReal(init,x)

* Persists(n,p), occurs(n,p)

Capturing requirements

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiramev&:

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:
if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude
scope condition ﬁompcnem:* timing responsex
scopg hull (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter

CONDITION null, regular

TIMING immediately, next, always, never, eventually, until, before, for, within, after

Capturing requirements

scope hull (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter

* (global) The system shall always satisfy count >=0

Capturing requirements

scope hull (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter

* Inlanding mode the system shall eventually satisfy decrease_speed

Capturing requirements

scope hull (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter

>

* Before energized mode the system shall always satisfy energized indicator_off

Capturing requirements

scopg hull (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter

<

e After boot mode the system shall immediately satisfy prompt_for_password

Capturing requirements

scope hull (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter

 When not in initialization mode the system shall always satisfy
commands_accepted

Capturing requirements

scope hull (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter

* (global) The system shall always satisfy count >=0

* Inlanding mode the system shall eventually satisfy decrease_speed

* Before energized mode the system shall always satisfy energized indicator_off

e After boot mode the system shall immediately satisfy prompt_for_password

 When not in initialization mode the system shall always satisfy
commands_accepted

* Onlyinlanding mode shall the system eventually satisfy landing_gear_down

* Only before energized mode shall the system eventually satisfy
manually_touchable

* Only after arming mode shall the system eventually satisfy fired

Capturing requirements

CONDITION null, regular

* upon, if, when, where BOOL_EXP
* unless BOOL_EXP (equivalent to “upon | BOOL_EXP”)

* Trigger: upon the Boolean expression becoming true from being false in
the scope, or being true at the beginning of the scope.

briggering condition

Capturing requirements

TIMING immediately, next, always, never, eventually, until, before, for, within, after

>

* Inroll_hold mode RollAutopilot shall immediately satisfy roll _hold reference = 0.0

Capturing requirements

TIMING immediately, next, always, never, eventually, until, before, for, within, after

E >

* When currentOverload the circuitBreaker shall, at the next timepoint, satisfy shutoff

Capturing requirements

TIMING immediately, next, always, never, eventually, until, before, for, within, after

* InlandingMode the system shall eventually satisfy LandingGearLowered

Capturing requirements

TIMING immediately, next, always, never, eventually, until, before, for, within, after

* The autopilot shall always satisfy if allGood then state = nominal

Capturing requirements

TIMING immediately, next, always, never, eventually, until, before, for, within, after

In roll_hold mode RollAutopilot shall immediately satisfy if (roll_angle< 6.0 &
roll_angle >-6.0) then roll_hold_reference = 0.0

When currentOverload the circuitBreaker shall, at the next timepoint, satisfy shutoff
In landingMode the system shall eventually satisfy LandingGearLowered

The autopilot shall always satisfy if allGood then state = nominal

In drivingMode the system shall never satisfy cellPhoneOn & !cellPhoneHandsFree
When errorCondition, the system shall, for 4 ticks, satisfy alarmOn

In landing mode, the the system shall within 2 ticks satisfy is_stable

When input = 1, the integrator shall, after 10 ticks, satisfy output = 10

In CountdownMode the system shall, until Count = 0, satisfy Count >0

The system shall, before TakeOff, satisfy CheckListTasksCompleted

Let’s write a requirement together

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremem&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30 degrees.

FRETish:

scope condibtion componenk* shall* Eimaine responsex
P P N P

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremem&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30 degrees.

FRETish:

If abs(roll_angle) >30 & roll_hold_mode_engagement,

scope condibtion componenk* shall* Eimaine responsex
P P N P

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30 degrees.

FRETish:

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot

scope condition componhentx shall= Eiming responsex

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30 degrees.

FRETish:

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot shall

scope condition componhentx shall= Eiming responsex

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

FRETish:

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot shall
always

scope condition componhentx shall= Eiming responsex

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

FRETish:

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot shall
always satisfy roll_hold_reference = 30

scope condition componhentx shall= Eiming responsex

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremem&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

FRETish:

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot shall
always satisfy roll_hold_reference = 30

Beginning of Time TC

TC = (abs (roll_angle) > 30 & roll_hold_mode_engagement),
Response = (roll_hold_reference = 30).

Hnama, this is ot what I mean.,

scope condition componhentx shall= Eiming responsex

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremem&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

FRETish:

if abs(roll _angle) >30 & roll _hold_mode_engagement autopilot shall always
satisfy roll_hold_reference = 30

Beginning of Time TC

—O———O—
0—0——0——0- o O—0—
I

TC = (abs (roli_angle) > 30 & roll_hold_mode_engagement),
Response = (roli_hold_reference = 30).

(o]
(o]
(o]

o—0—0—-O0—0—0

scope condibtion componenk* shall* Eimaine responsex
P P N P

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

FRETish:

Autopilot shall always satisfy if (abs(roll_angle) >30 &
roll_hold_mode_engagement) then roll_hold_reference = 30

Beginning of Time

Response = ((abs (roli_angle) > 30 &
roll_hold_mode_engagement) => roll_hold_reference = 30).

scope condition aomponem&* shall* Eiming responsex

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremem&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

FRETish:

Autopilot shall always satisfy if (abs(roll_angle) >30 &

roll_hold_mode_engagementDthen roll_hold reference = 30

what aoe akt mean? T
Beginning of Time i

Response = ((abs (roli_angle) > 30 &
roll_hold_mode_engagement) => roll_hold_reference = 30).

scope condition componhentx shall= Eiming responsex

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

FRETish:

When in roll_hold_mode autopilot shall immediately satisfy if abs(roll_angle)
>30 then roll_hold_reference = 30

S

M = roll_hold_mode, Response = (abs (roll_angle) > 30 =>
roll_hold_reference = 30).

scope condition aomponem&* shall* Eiming responsex

FRET bridges the gap

e Captures requirements in a restricted natural language with
unambiguous semantics

e Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

=» Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner

* Checks consistency of requirements and provides feedback
e Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v’ for runtime analysis of C programs with Copilot

Requirement templates

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

* The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

* The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from MANEUVER to STANDBY when the pilotis in
control (standby) and sensor data is good.

Requirement templates

Lockheed Martin Cyber-Physical System Challenge, component FSM:

e The autopilot shall change states fromm TRANSITION to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

* The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

* The autopilot shall change states from NOMINAL to STANDBY when the pilotis in
control (standby).

* The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

Requirement templates

Create Requirement

Requirement ID Project

FSM 002 Parent Requirement ID LM_requirements v

Rationale and Comments A

Rationale

Comments

The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control
(standby).

Requirement Description

A requirement follows the sentence structure displayed below, where fields are optional unless indicated with "*". For information
on a field format, click on its corresponding bubble.

,/ N\
scope) (conoi) (componENT*) sHALL* TIMING @

component] shall always satisfy if ((input_state] & [condition]) then[outjut_state|

ASSISTANT TEMPLATES

Template

Change State -

Choose a predefined template

This template describes how the state of a finite-state-machine
component changes. It describes the input state and some
conditions based on which the change must occur. The
corresponding output state must reflect the required change.
The input and output states have a pre - post- relationship

Examples:

| FSM_Autopilot | shall always satisfy if (

{state = ap_standby_state } & [! standby &! apfaiID then

{STATE = ap_transition_state]

Exporting Requirements

<>

Total Projects

13

Hierarchical Cluster

Total Requirements

298

TEST-REALIZABILITY
Demo-FSM
InfusionManager TestRequirements
LM_requirements
GPCA_with_modes
FOL_Rover
LiquidMixer

CubETH

DeepTaxi

TEST

Liquid_mixer

Formalized Requirements

90.94.

System Components Requirement Size

42 2 529 1 bytes

Recent Activity

FOL_Rover G005
when assumptions goalAgent shall eventually satisfy GoalSet =
goalsetWithChargePos

FOL_Rover G004
when assumptions goalAgent shall eventually satisfy (atGoal & sO
1= chargePos) => GoalSet = GoalSetMinusSo

FOL_Rover G003
when assumptions goalAgent shall eventually satisfy lobstacle(g)

FOL_Rover G001
when assumptions goalAgent shall eventually satisfy (recharge =>
g =chargePos) & (g =chargePos => recharge)

FOL_Rover G002
when assumptions goalAgent shall eventually satisfy (g !=
chargepos => g= hottest(H))

LiquidMixer LM-003
when liquid_level_1 the liquid_mixer shall until emergency_button
satisfy if ! liquid_level_2 then valve_1

TEST TEST-TCND-N
when occurred(7, persisted(2,fault)) the sw shall immediately
satisfy q

TEST
when not in m mode when p the sw shall always satisfy r

Importing Requirements

cFE_FunctionalRequirements

Summary field (R D)
ES: Housekeeping Message cES1000 Upon receipt of a Message, the cFE shall generate a housekeeping message that includes the following Executive Services items:
- Number of Registered Applications
- Number of Registered Child Tasks
- Number of Registered Shared Libraries
- Reset Type
- Reset Subtype
- Number of entries in System Log
- Size of the System Log
- Number of bytes used in the System Log
- Current Exception and Reset Log Index
- Number of Processor Resets
- Maximum Number of Processor Resets before a Power On Reset
- Boot Source [N
- ES Valid Command Counter
- ES Invalid Command Counter
| ES: NOOP Event cES1001 [Upon receipt of a Command, the cFE shall generate a NO-OP event message.
| ES: Valid Command Counter cES1002 Upon receipt of a valid Command, the cFE shall increment a valid Command counter.
ES: Invalid Command Counter cES1003 Upon receipt of an invalid Command, the cFE shall increment the invalid Command counter and generate an event message.
ES: Zero Command Counters cES1004 | Upon receipt of a Command, the cFE shall set to zero the valid Command counter and invalid Command counter.
‘ ES: Start Application cES1005 Upon receipt of a Command, the cFE shall create the Command specified Application by defining the Application in the System Resources Definition using information from the Command specified file, and bec
‘ ES: Start - Ci Ci cES1005.1 The Command shall include the following parameters:
- Application Path/Filename
- Application Entry Point
- Application Name
- Application Priority
- Application Stack Size
- Exception Action (restart 1 or perform p reset)
ES: Start Application - Location cES1005.2 The Command specified cFE Application file shall be in any valid cFE file system including the volatile file system and the non-volatile file system
ES: Start - Reject L cES1005.3 v If the Command specified Application is undefined then the cFE shall reject the Command, increment the invalid command counter and generate an event message.

cFE requirements publicly available:
https://github.com/nasa/cFE/blob/main/docs/cFE FunctionalRequirements.csv

https://github.com/nasa/cFE/blob/main/docs/cFE_FunctionalRequirements.csv

FRET bridges the gap

e Captures requirements in a restricted natural language with
unambiguous semantics

e Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

e Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner

=» Checks consistency of requirements and provides feedback
e Connects with analysis tools and exports verification code

v for model checking Simulink models with CoCoSim

v for model checking Lustre code with Kind2

v’ for runtime analysis of C programs with Copilot

Checking realizability

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Checking realizability

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state:

Checking realizability

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state:

Condition 1: pilot is in control

Condition 2: system is supported
sensor data is good

Checking realizability

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state: \/

Condition 1: pilot is in control ‘/
Condition 2: system is supported
sensor data is good

Checking realizability

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state: \/

Condition 1: pilot is in control ‘/
Condition 2: system is supported
sensor data is good

Output state 1: STANDBY @
Output state 2: NOMINAL

FRET takes it a step further

* Realizability checking can be challenging
* Nested quantifiers for solvers
* Infinite-state problems are undecidable
* Non-linear expressions (not entirely supported by SMT solvers)

* A novel approach for compositional realizability checking
* Smaller, more tractable parts: partial specifications

* Automatically partitions a global specification into partial ones

* We proved that
* Checking that a global spec is realizable reduces to checking partial
specs
* Implementation and diagnostic analysis within FRET
* Visualization of conflicts
» Simulation of conflicting requirements through counterexamples

Compositional realizability checking

* Requirements graph
* Each vertex corresponds to a requirement
* If variables referenced by two requirements, their vertices are connected
e Connected components represent partial specifications:
* Sets of requirements that can be analyzed independently

v 0 1 v.l v.2 ST

& connected components from 12 requirements

Compositional realizability checking

 Successful decomposition
* Effectively reduces problem complexity
* Surpasses challenges
* Leads to significant performance benefits

Variable declaration

Variable Type:

* Input: the system monitors the variable

e Qutput: the system controls the variable
e Internal: a macro for a Lustre expression

Update Variable
Datatype
. FRET Project FRET Component
Boolean, integer, double, Demmo-FSM o

unsigned integer, single

Model Component

FRET Variable Variable Type*

ap_maneuver_state Internal v
Data Type*

double -

Variable Assignment in Lustre*
1.

Parse Errors: missing ID at '<EOF>'

Lustre [_] CoPilot

Description

value 1.0|

CANCEL UPDATE

Checking realizability

File View Help

= RET

VARIABLE MAPPING REALIZABILITY

Timeout (seconds

= FSM v
Compositional [] Monolithic 900 - HELP

cco cec1 cc2

D ™ Summary
0 FSMO001 FSM shall always satisfy (limits & 'standby & 'apfail & supported) => pullup
FSMO002 FSM sha atisfy andby t = ap_transit e) => STATE = 1 ate
FSMO! FSM sha atisfy ate = r n_state &) ed) => STATE = ap_nominal_state
FSMO:! FSM shall al atisfy (! good & state = ap_nom! ate) => STATE = ap_maneuver_state
FSMO00 SM sha atisfy (state=ap_nominal_state & standby) => STATE = ap_standby_state
FSMOO0¢ FSM sha satisfy (state = ap_maneuver_state & standby & good) => STATE = ap_standby_state
FSMO(F hall al atisfy (state = ap_maneuver_state & supported & good) => S ansiti ate
FSM008 FSM shall a atisfy ate n => STATE = ap_transition_state
FSMOC(FSM sha apfail)=> STATE =
FSM sha ate & limits) => SENSTATE = sen

Rows per page: 10 = 1-10 0f 13 >

Simulation of conflicting requirements

LTLSIM Trace: X

Requirements in FRETish ~

FSM-002: FSM_Autopilot shall always satisfy (standby & state = ap_transition_state) => STATE = ap_standby_state
FSM-003: FSM_Autopilot shall always satisfy (state = ap_transition_state & good & supported) => STATE = ap_nominal_state

0 1 2 3 4 5 6 7 8 9
o

TRUE

standby

FALSE o
10

Stat% 8 Q Q Q Q Q Q Q Q

oo

10
ap_tra3..8 Q Q o Q Q 9 Q 9

TRUE @ o
state ...
FALSE

oo

10
STATE ¢ Q Q Q Q Q Q Q Q

[og
3
ap{-ftﬁj" Q Q Q Q Q 0 Q o}
TRUE)
STATE ..
FALSE
TRUE
good
FALSE o
TRUE
SUppor...
FALSE °

11
aP-Hug-- g g g g g g g g g
TRUE o
STATE ..
FALSE

TRUE

FSM_002
FALSE o o
TRUE

FSM_003
FALSE o o

oo

oo

FRET bridges the gap

e Captures requirements in a restricted natural language with
unambiguous semantics

e Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

e Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner

* Checks consistency of requirements and provides feedback
=» Connects with analysis tools and exports verification code

v for model checking Simulink models with CoCoSim

v for model checking Lustre code with Kind2

v’ for runtime analysis of C programs with Copilot

The FRET-CoCoSim Integrated Framework

CSimulink model)—

* Elicit, explain, and formalize the
semantics of the given natural Explanations
language requirements — step 2
(Steps: 0, 1)
A4
(pmLTL) @chitectural mappi@
. [. tep 3
 Generate verification code and P
; iy FRET
monitors that can be
automatically attached to the CoCospec monitors &
S|mU||nk mOde|S Traceability data
(StepS. 2, 3, 4) step 4
strecode) iﬁigzé;“;ii:@ -
* Perform verification by using
Lustre-based model checkers or Kindz, Zustre | step5 SLDV
SLDV CoCoSim
(Steps: 5, 6)
step 6 y Y

\Counterexampl@

FRET-CoCoSim

.-
=n VARIABLE MAPPING REALIZABILITY
Requirement Variables to Model Mapping: Demo-FSM
<>
Export Language * v
N2
A FSM | EXPORT ~

Corresponding Model Component

FRET Variable Name 1 Model Variable Name Variable Type Data Type Description
ap_maneuver_state Internal double value 2.0
ap_nominal_state Internal double value 1.0
ap_standby_state Internal double value 3.0
ap_transition_state Internal double value 0.0

apfail apfail Input boolean
good good Input boolean
limits limits Input boolean
pullup pullup Output boolean
request request Input boolean
sen_fault_state Internal double value 2.0

Rows per page: 10 1-10 of 18 >

Generation of Simulink Monitors

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremeh&:

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

FRETish:

When in roll_hold_mode autopilot shall immediately satisfy if abs(roll_angle)
>30 then roll_hold_reference = 30

CoCoSpec stet‘:Lﬁtaﬁmw

-=-0Once --Historically
node 0(X:bool) returns (Y:bool); node H(X:bool) returns (Y:bool);
let let
Y = X or (false -> pre Y); Y =X -> (X and (pre Y));
tel tel
==Y since X --Y since inclusive X
node S(X,Y: bool) returns (Z:bool); node SI(X,Y: bool) returns (Z:bool);
let let
Z = X or (Y and (false -> pre Z)); Z =Y and (X or (false -> pre Z));
tel tel

-- AP-003c-v3 requirement in CoCoSpec

guarantee H((roll_hold and (FTP or (pre (not roll_hold))))
=> abs(roll_angle) > 30 =>
roll_hold_reference = 30 =«

Generation of Simulink Monitors

Lockheed Martin Cyber-Physical System Challenge:
FRETish:

When in roll_hold_mode autopilot shall immediately satisfy if abs(roll_angle)
>30 then roll_hold_reference = 30

CoCoSpec specification:

-= AP-003c-v3 requirement in CoCoSpec

guarantee H((roll_hold and (FTP or (pre (not roll_hold))))
=> abs(roll_angle) > 30 =>
roll_hold_reference = 30

Simulinke monitor

A==>Bf—pIn1 Guarantee guarantee >

Guarantee

Generation of Simulink Monitors

Simulink monitor automatically attached on the model:

P roll_angle

<phi>

| HDG Mode

Contract

»|{ APEng

P roll_hold_reference

valid [y

Contract

<airspeed>

D

1
HDG M
2

HDG Ref
3

Turn Knob

Phi

Psi

p

TAS

AP Eng
HDG Mode
HDG Ref

Turn Knob

Ail Cmd

HdgMode_cmd

PhiRef_cmd

phiCmd

>

Aileron Cmd

»(3)

HdgModeCmd

>

PhiRef_cmd

D)

Assume =sm

Assume

phiCmd

A==>B|—pIn1

Roll_Autopilot

Guarantee

J:’.,

AP-003¢

Guarantee

guarantee2

valid

Validator

valid

Connection with CoCoSim

@ MATLAB Window Help QOVODO T P T 200 Thub14PM Q @ =
®0 fsm_12B

SIMULATION 2 ?

1 Open ~]] =y Stop Time |10 <m > u[; a

W Hs (8 . » bl S & %
New e - Library Signal | Normal s Step Run Step Data >

v @ Prnt Browser Table @ Fast Restart Back v - Forward Inspector

FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS -

Tools

hd

® |%ajfsm_12B »

Cyber-Physical V&V Challenge Problems
LM Aeronautics Quantum Information Science Research Team 2015
Copyright © 2015 Lockheed Martin Corporation

O E 4 B ®

boolean
()77 pistandy

standby

m» apfail

apfail

boolean
> supported pullup

supported

boolean —
lmits

limits

P E

» @ FiniteStateMachine

Automated Analysis Framework 222% FixedS! iscrete

The FRET-Copilot Integrated Framework

l | e o
~»(Copilot Monitor)—
" Ogma , B Sttt Copilot

I step 5
step 3_L { C Monitors
(E;mponea) /N step & step 7
Specification C —>C0bject Code)

Copilot is a high-level runtime verification framework that generates hard real-time C99 code.
Ogma takes the FRET generated specifications and translates them into Copilot monitors.

Connection with Copilot

Total Projects Total Requirements Formalized Requirements System Components Requirement Size

0 0 0 % O 0 bytes

Hierarchical Cluster Recent Activity

Connection With Copilot

|| ivan@laptop-1828: ~fairspeed-monitor Q = 2@

s 1

Connection With Copilot

= ivan@laptop-1828: ~fairspeed-monitor Q= &®

- $ unzip ~/airspeed.zip

Archive: /[home/ivan/airspeed.zip

inflating: aircraftSpec.json
- $ ogma fret-component-spec --fret-file-name aircraftSpec.json > Monitor.hs

s 1

Connection With Copilot

aap&umes + assisks
U=

when in cruising mode, the altitude_hold_:

skores + di,s[pl.ajs

AP-

0 when in roll_hold mode
002A
AP-
° in roll_hold mode RollA
002B
AP-003 ° "This requirement is th

connecks + e.xpm'&s

FRET Variable Name

ABSOF_ALT_MINUS_ALTIC

ALTITUDE_HOLD

ENFORCED: in every interval where cruising holds. TRIGGER: first
point in the interval. REQUIRES: for every trigger, RES must hold at all
time points between (and including) the trigger and the end of the
interval.

exptaiv\s

0 1 2 1 6 7 8

_hold =>

Diagram Semantics

Mode of operation
(mentioned in Scope)

formalizes

Future Time LTL

(LAST V (cruising ->
maintain_altitude)))

(altitude hold ->

Target: altitude_hold_autopilot component.

Past Time LTL

checks + diagnoses

Step

2 3 4 5
rue true true true
rue true true true
rue true true true

Ready for FRETish?

- - "";Q ~ FRET’s mission is to provide an intuitive

' platform for capturing precise requirements,
to serve as a portal to a variety of analysis
tools, and to support requirements repair
based on analysis feedback.

FRET s opeh source: https://github.com/NASA-SW-VnV/fret

Collaborakors: Hamza Bourbouh, Esther Conrad, Aaron Dutle, Marie Farrell, Pierre-Loic
Garoche, Alwyn Goodloe, Mohammed Hejase, Ivan Perez, Irfan Sljivo,

Laura Titolo, Tim Wang

Connection wikth open-source ahalusis tools:
CoCoSim: https://github.com/NASA-SW-VnV/CoCoSim

Copilot (through Ogma): https://github.com/NASA/ogma
https://github.com/Copilot-Language/copilot

https://github.com/NASA-SW-VnV/fret
https://github.com/NASA-SW-VnV/CoCoSim
https://github.com/NASA/ogma
https://github.com/Copilot-Language/copilot

FRET’s mission is to provide an intuitive
platform for capturing precise requirements,
to serve as a portal to a variety of analysis
tools, and to support requirements repair
based on analysis feedback.

https://github.com/NASA-SW-VnV/fret

Esther Conrad, Laura Titolo, Dimitra Giannakopoulou, Thomas Pressburger, Aaron Dutle. A Compositional Proof
Framework for FRETish Requirements. CPP 2022.

lvan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe, Dimitra Giannakopoulou. Automated Translation of
Natural Language Requirements to Runtime Monitors, TACAS 2022

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen: From
Partial to Global Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET. FM 2021.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann: Automated Formalization of
Structured Natural Language Requirements. IST Journal, 2021.

Aaron Dutle, César A. Mufoz, Esther Conrad, Alwyn Goodloe, Laura Titolo, Ivan Pérez, Swee Balachandran, Dimitra
Giannakopoulou, Anastasia Mavridou, Thomas Pressburger: From Requirements to Autonomous Flight: An Overview of the

Monitoring ICAROUS Project. FMAS 2020.

Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou, Thomas Pressburger, Mohammad Hejase, P-Loic
Garoche,Johann Schumann: The Ten Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed, and Explained. RE
2020.

Anastasia Mavridou, Hamza Bourbouh, Pierre-Loic Garoche, Dimitra Giannakopoulou, Thomas Pressburger, Johann
Schumann: Bridging the Gap Between Requirements and Simulink Model Analysis. REFSQ 2020. Thank you

Back up slides

Capturing requirements

scopg hull (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter

* (global) The system shall always satisfy count >=0

* Inlanding mode the system shall eventually satisfy decrease_speed

* Before energized mode the system shall always satisfy energized indicator_off

e After boot mode the system shall immediately satisfy prompt_for_password

 When not in initialization mode the system shall always satisfy
commands_accepted

* Onlyinlanding mode shall the system eventually satisfy landing_gear_down

Capturing requirements

scope hull (global), in, before, after, notin, onlyin, onlyBefore, onlyAfter

* (global) The system shall always satisfy count >=0

* Inlanding mode the system shall eventually satisfy decrease_speed

* Before energized mode the system shall always satisfy energized indicator_off

e After boot mode the system shall immediately satisfy prompt_for_password

 When not in initialization mode the system shall always satisfy
commands_accepted

* Onlyinlanding mode shall the system eventually satisfy landing_gear_down

* Only before energized mode shall the system eventually satisfy
manually_touchable

Capturing requirements

scope hull (global), in, before, after, notin, onlyin, onlyBefore, onlyAfter

* (global) The system shall always satisfy count >=0

* Inlanding mode the system shall eventually satisfy decrease_speed

* Before energized mode the system shall always satisfy energized indicator_off

e After boot mode the system shall immediately satisfy prompt_for_password

 When not in initialization mode the system shall always satisfy
commands_accepted

* Onlyinlanding mode shall the system eventually satisfy landing_gear_down

* Only before energized mode shall the system eventually satisfy
manually_touchable

* Only after arming mode shall the system eventually satisfy fired

Scope grammar

ONLY

scope_mode

’WHILE)-—lscope condxtxon:

AFTER
BEFORE

EXCEPT

DURING

scopQJmode:

7

Iscope mode

scope_condition

W=

{ wHILE

scope_condition

IN

scope_mode:

scope_mode:

[
{ wnILE

scope_condition

AFTER

BEFORE

scope_mode:

scope_condition

Condition grammar

regular_condition

H—— aualified_conditionl FL(—L@Aq qualified_condition2 H}L@;H

H——(mes) ———H

qualifier_word

qualified_condition1

H—I qualifier word H pre_condition

qualified_condition2

qualif ier=word I—I pre=condition m TRUE \ :
(or)

Explaining the semantics

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiramem&:

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:
if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

scope condition aamponen&* timing responsex

Beginning of Time TC

TC = (altitiude_hold_selected), Response = (maintain_altitude).

Getting to the right requirement

Lockheed Martin Cyber-Physical System Challenge:

Natural language requiremem&:

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected
FRETish:
if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

the altitude_hold_autopilotshall always satisfy if altitude _hold_selected then
maintain_altitude

Beginning of Time TC Beginning of Time

TC = (altitiude_hold_selected), Response = (maintain_altitude). Response = (altitiude_hold_selected => maintain_altitude).

Getting to the right requirement

if altitude_hold_selected the altitude hold_autopilot shall always satisfy maintain_altitude

the altitude_hold_autopilotshall always satisfy if altitude_hold_selected then
maintain_altitude

Beginning of Time TC Sageribg ol

| e ——

TC = (altitiude_hold_selected), Response = (maintain_altitude). Response = (altitiude_hold_selected => maintain_altitude).

When in cruising mode, the altitude _hold_autopilot shall always satisfy if
altitude_hold_selected
then maintain_altitude

u

-
M = curising, Response = (altitiude_hold_selected =>
maintain_altitude).

