
Capturing and
Analyzing
Requirements
with FRET
Anastasia Mavridou
KBR, NASA Ames Research Center

Types of bugs found in models and code

Johann Schumann, Matt Knudsen, Teme Kahsai, Noble Nkwocha, Katerina Goseva-Popstojanova, Thomas Kyanko, "Report:
Survey on Model-Based Software Engineering and Auto-Generated Code”, NASA/TM-2016-219443, 2016.

how developers write requirements
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in
control (not standby) and the system is supported without failures (not apfail).
• The autopilot shall change states from TRANSITION to STANDBY when the pilot is

in control (standby).
• The autopilot shall change states from TRANSITION to NOMINAL when the system

is supported and sensor data is good.
• The autopilot shall change states from NOMINAL to MANEUVER when the sensor

data is not good.
• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in

control (standby).
• The autopilot shall change states from MANEUVER to STANDBY when the pilot is in

control (standby) and sensor data is good.
• …

every time these conditions hold or only when they become true?

does my model/code satisfy the requirements?

Are the requirements consistent?

what formal analysis tools understand
Lockheed Martin Cyber-Physical System Challenge, component FSM:

FRET bridges the gap

• Captures requirements in a restricted natural language with
unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for runtime analysis of C programs with Copilot

Welcome to FRET
https://github.com/NASA-SW-VnV/fret

Team: Andreas Katis, Anastasia Mavridou, Tom Pressburger, Johann Schumann, Khanh Trinh
Alumni & Interns: Milan Bhandari, David Bushnell, Tanja DeJong, Dimitra Giannakopoulou,
Kelly Ho, George Karamanolis, David Kooi, Jessica Phelan, Julian Rhein, Daniel Riley, Nija Shi

Welcome to FRET

FRET bridges the gap

• Captures requirements in a restricted natural language with
unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for runtime analysis of C programs with Copilot

Capturing and explaining requirements

Capturing requirements

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

condition component* timing response*scope

FRETish:

Capturing requirements

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

condition component* timing response*scope

FRETish:

Q: Upon which part of the system is the requirement being levied?
A: the altitude hold autopilot

Capturing requirements

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

condition component* timing response*scope

FRETish:

Q: What do we want the system to achieve?
A: Maintain altitude

Capturing requirements

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

condition component* timing response*scope

FRETish:

Q: During what portion of the execution is the requirement enforced?
A: During the whole execution: omit scope.

Capturing requirements

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

condition component* timing response*scope

FRETish:

Q: What condition triggers the response?
A: Altitude hold selected becoming true, within the scope

Capturing requirements

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

condition component* timing response*scope

FRETish:

Q: When does the response happen, relative to the scope and condition?
A: Whenever (always afterwards) the condition is triggered

Capturing requirements

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

condition component* timing response*scope

FRETish:

CONDITION and RESPONSE expressions:

Boolean
• !, &, |, =>, if_then_, <=>, p(x,y,z)
• preBool(init,p)
• persisted(n,p), occurred(n,p)
• Persists(n,p), occurs(n,p)

Arithmetic
• =, !=, <, >, <=, >=
• +, -, *, /, ^, f(x,y)
• preInt(init, n), preReal(init,x)

Capturing requirements

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

condition component* timing response*scope

FRETish:

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfter

immediately, next, always, never, eventually, until, before, for, within, after

null, regular

SCOPE

CONDITION

TIMING

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• (global) The system shall always satisfy count >= 0

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• In landing mode the system shall eventually satisfy decrease_speed

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• Before energized mode the system shall always satisfy energized_indicator_off

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• After boot mode the system shall immediately satisfy prompt_for_password

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• When not in initialization mode the system shall always satisfy
commands_accepted

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• (global) The system shall always satisfy count >= 0
• In landing mode the system shall eventually satisfy decrease_speed
• Before energized mode the system shall always satisfy energized_indicator_off
• After boot mode the system shall immediately satisfy prompt_for_password
• When not in initialization mode the system shall always satisfy

commands_accepted
• Only in landing mode shall the system eventually satisfy landing_gear_down
• Only before energized mode shall the system eventually satisfy

manually_touchable
• Only after arming mode shall the system eventually satisfy fired

Capturing requirements

null, regularCONDITION

• upon, if, when, where BOOL_EXP
• unless BOOL_EXP (equivalent to “upon ! BOOL_EXP”)
• Trigger: upon the Boolean expression becoming true from being false in

the scope, or being true at the beginning of the scope.

triggering condition

Capturing requirements

immediately, next, always, never, eventually, until, before, for, within, after TIMING

• In roll_hold mode RollAutopilot shall immediately satisfy roll_hold_reference = 0.0

Capturing requirements

immediately, next, always, never, eventually, until, before, for, within, after TIMING

• When currentOverload the circuitBreaker shall, at the next timepoint, satisfy shutoff

Capturing requirements

immediately, next, always, never, eventually, until, before, for, within, after TIMING

• In landingMode the system shall eventually satisfy LandingGearLowered

Capturing requirements

immediately, next, always, never, eventually, until, before, for, within, after TIMING

• The autopilot shall always satisfy if allGood then state = nominal

Capturing requirements

immediately, next, always, never, eventually, until, before, for, within, after TIMING

• In roll_hold mode RollAutopilot shall immediately satisfy if (roll_angle< 6.0 &
roll_angle > -6.0) then roll_hold_reference = 0.0

• When currentOverload the circuitBreaker shall, at the next timepoint, satisfy shutoff
• In landingMode the system shall eventually satisfy LandingGearLowered
• The autopilot shall always satisfy if allGood then state = nominal
• In drivingMode the system shall never satisfy cellPhoneOn & !cellPhoneHandsFree
• When errorCondition, the system shall, for 4 ticks, satisfy alarmOn
• In landing mode, the the system shall within 2 ticks satisfy is_stable
• When input = 1, the integrator shall, after 10 ticks, satisfy output = 10
• In CountdownMode the system shall, until Count = 0, satisfy Count > 0
• The system shall, before TakeOff, satisfy CheckListTasksCompleted

Let’s write a requirement together

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30 degrees.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30 degrees.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

If abs(roll_angle) >30 & roll_hold_mode_engagement,

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30 degrees.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30 degrees.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot shall

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot shall
always

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot shall
always satisfy roll_hold_reference = 30

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

If abs(roll_angle) >30 & roll_hold_mode_engagement, autopilot shall
always satisfy roll_hold_reference = 30

Hmm, this is not what I mean..

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

if abs(roll_angle) >30 & roll_hold_mode_engagement autopilot shall always
satisfy roll_hold_reference = 30

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

Autopilot shall always satisfy if (abs(roll_angle) >30 &
roll_hold_mode_engagement) then roll_hold_reference = 30

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

Autopilot shall always satisfy if (abs(roll_angle) >30 &
roll_hold_mode_engagement) then roll_hold_reference = 30
what does that mean?

Getting to the right requirement

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

shall*

When in roll_hold_mode autopilot shall immediately satisfy if abs(roll_angle)
>30 then roll_hold_reference = 30

FRET bridges the gap

• Captures requirements in a restricted natural language with
unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for runtime analysis of C programs with Copilot

Requirement templates

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Requirement templates

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Requirement templates

Exporting Requirements

Importing Requirements

cFE requirements publicly available:
https://github.com/nasa/cFE/blob/main/docs/cFE_FunctionalRequirements.csv

https://github.com/nasa/cFE/blob/main/docs/cFE_FunctionalRequirements.csv

FRET bridges the gap

• Captures requirements in a restricted natural language with
unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for runtime analysis of C programs with Copilot

Checking realizability

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Checking realizability

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Input state: TRANSITION

Checking realizability

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Input state: TRANSITION
Condition 1: pilot is in control
Condition 2: system is supported

sensor data is good

Checking realizability

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Input state: TRANSITION
Condition 1: pilot is in control
Condition 2: system is supported

sensor data is good

Checking realizability

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Input state: TRANSITION
Condition 1: pilot is in control
Condition 2: system is supported

sensor data is good
Output state 1: STANDBY
Output state 2: NOMINAL

FRET takes it a step further

• Realizability checking can be challenging
• Nested quantifiers for solvers
• Infinite-state problems are undecidable
• Non-linear expressions (not entirely supported by SMT solvers)

• A novel approach for compositional realizability checking
• Smaller, more tractable parts: partial specifications

• Automatically partitions a global specification into partial ones
• We proved that
• Checking that a global spec is realizable reduces to checking partial

specs
• Implementation and diagnostic analysis within FRET
• Visualization of conflicts
• Simulation of conflicting requirements through counterexamples

Compositional realizability checking
• Requirements graph
• Each vertex corresponds to a requirement
• If variables referenced by two requirements, their vertices are connected
• Connected components represent partial specifications:
• Sets of requirements that can be analyzed independently

6 connected components from 12 requirements

Compositional realizability checking

• Successful decomposition
• Effectively reduces problem complexity
• Surpasses challenges
• Leads to significant performance benefits

Variable declaration

Variable Type:
• Input: the system monitors the variable
• Output: the system controls the variable
• Internal: a macro for a Lustre expression

Datatype
Boolean, integer, double,
unsigned integer, single

Checking realizability

Simulation of conflicting requirements

FRET bridges the gap

• Captures requirements in a restricted natural language with
unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for runtime analysis of C programs with Copilot

The FRET-CoCoSim Integrated Framework

• Elicit, explain, and formalize the
semantics of the given natural
language requirements
(Steps: 0, 1)

• Generate verification code and
monitors that can be
automatically attached to the
Simulink models
(Steps: 2, 3, 4)

• Perform verification by using
Lustre-based model checkers or
SLDV
(Steps: 5, 6)

FRET-CoCoSim

Generation of Simulink Monitors

If the roll angle is greater than 30 degrees at the time of roll hold mode engagement,
the autopilot shall set the roll hold reference to 30.

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

FRETish:

When in roll_hold_mode autopilot shall immediately satisfy if abs(roll_angle)
>30 then roll_hold_reference = 30

CoCoSpec specification:

Generation of Simulink Monitors
Lockheed Martin Cyber-Physical System Challenge:
FRETish:

When in roll_hold_mode autopilot shall immediately satisfy if abs(roll_angle)
>30 then roll_hold_reference = 30

CoCoSpec specification:

Simulink monitor

Generation of Simulink Monitors
Simulink monitor automatically attached on the model:

Connection with CoCoSim

The FRET-Copilot Integrated Framework

Copilot is a high-level runtime verification framework that generates hard real-time C99 code.
Ogma takes the FRET generated specifications and translates them into Copilot monitors.

Connection with Copilot

Connection With Copilot

Connection With Copilot

Connection With Copilot

captures + assists

stores + displays

explains

formalizes

checks + diagnoses
connects + exports

Ready for FRETish?

https://github.com/NASA-SW-VnV/fret

FRET’s mission is to provide an intuitive
platform for capturing precise requirements,
to serve as a portal to a variety of analysis
tools, and to support requirements repair
based on analysis feedback.

FRET is open source:

Collaborators: Hamza Bourbouh, Esther Conrad, Aaron Dutle, Marie Farrell, Pierre-Loic
Garoche, Alwyn Goodloe, Mohammed Hejase, Ivan Perez, Irfan Sljivo,
Laura Titolo, Tim Wang

Connection with open-source analysis tools:
CoCoSim: https://github.com/NASA-SW-VnV/CoCoSim

Copilot (through Ogma): https://github.com/NASA/ogma
https://github.com/Copilot-Language/copilot

https://github.com/NASA-SW-VnV/fret
https://github.com/NASA-SW-VnV/CoCoSim
https://github.com/NASA/ogma
https://github.com/Copilot-Language/copilot

Ready for FRETish?

https://github.com/NASA-SW-VnV/fret

FRET’s mission is to provide an intuitive
platform for capturing precise requirements,
to serve as a portal to a variety of analysis
tools, and to support requirements repair
based on analysis feedback.

Esther Conrad, Laura Titolo, Dimitra Giannakopoulou, Thomas Pressburger, Aaron Dutle. A Compositional Proof
Framework for FRETish Requirements. CPP 2022.

Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe, Dimitra Giannakopoulou. Automated Translation of
Natural Language Requirements to Runtime Monitors, TACAS 2022

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen: From
Partial to Global Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET. FM 2021.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann: Automated Formalization of
Structured Natural Language Requirements. IST Journal, 2021.

Aaron Dutle, César A. Muñoz, Esther Conrad, Alwyn Goodloe, Laura Titolo, Iván Pérez, Swee Balachandran, Dimitra
Giannakopoulou, Anastasia Mavridou, Thomas Pressburger: From Requirements to Autonomous Flight: An Overview of the
Monitoring ICAROUS Project. FMAS 2020.

Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou, Thomas Pressburger, Mohammad Hejase, P-Loïc
Garoche,Johann Schumann: The Ten Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed, and Explained. RE
2020.

Anastasia Mavridou, Hamza Bourbouh, Pierre-Loïc Garoche, Dimitra Giannakopoulou, Thomas Pressburger, Johann
Schumann: Bridging the Gap Between Requirements and Simulink Model Analysis. REFSQ 2020. Thank you

Back up slides

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• (global) The system shall always satisfy count >= 0
• In landing mode the system shall eventually satisfy decrease_speed
• Before energized mode the system shall always satisfy energized_indicator_off
• After boot mode the system shall immediately satisfy prompt_for_password
• When not in initialization mode the system shall always satisfy

commands_accepted
• Only in landing mode shall the system eventually satisfy landing_gear_down

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• (global) The system shall always satisfy count >= 0
• In landing mode the system shall eventually satisfy decrease_speed
• Before energized mode the system shall always satisfy energized_indicator_off
• After boot mode the system shall immediately satisfy prompt_for_password
• When not in initialization mode the system shall always satisfy

commands_accepted
• Only in landing mode shall the system eventually satisfy landing_gear_down
• Only before energized mode shall the system eventually satisfy

manually_touchable

Capturing requirements

null (global), in, before, after, notin, onlyIn, onlyBefore, onlyAfterSCOPE

• (global) The system shall always satisfy count >= 0
• In landing mode the system shall eventually satisfy decrease_speed
• Before energized mode the system shall always satisfy energized_indicator_off
• After boot mode the system shall immediately satisfy prompt_for_password
• When not in initialization mode the system shall always satisfy

commands_accepted
• Only in landing mode shall the system eventually satisfy landing_gear_down
• Only before energized mode shall the system eventually satisfy

manually_touchable
• Only after arming mode shall the system eventually satisfy fired

Scope grammar

Condition grammar

Explaining the semantics

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

condition component* timing response*scope

FRETish:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

Getting to the right requirement

The altitude hold autopilot shall maintain altitude whenever altitude hold is selected

Lockheed Martin Cyber-Physical System Challenge:

Natural language requirement:

FRETish:

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

the altitude_hold_autopilotshall always satisfy if altitude_hold_selected then
maintain_altitude

Getting to the right requirement

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

the altitude_hold_autopilotshall always satisfy if altitude_hold_selected then
maintain_altitude

When in cruising mode, the altitude_hold_autopilot shall always satisfy if
altitude_hold_selected
then maintain_altitude

