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Abstract 33 
The NASA LIS/WRF-Hydro system is a coupled modeling framework that combines the 34 
modeling and data assimilation (DA) capabilities of the NASA Land Information System (LIS) 35 
with the multi-scale surface hydrological modeling capabilities of the WRF-Hydro model, both 36 
of which are widely used in both operations and research. This coupled modeling framework 37 
builds on the linkage between land surface models (LSMs), which simulate surface boundary 38 
conditions in atmospheric models, and distributed hydrologic models, which simulate horizontal 39 
surface and sub-surface flow, adding new land DA capabilities. In the present study, we employ 40 
this modeling framework in the Tuolumne River basin in central California. We demonstrate the 41 
added value of the assimilation of NASA Airborne Snow Observatory (ASO) snow water 42 
equivalent (SWE) estimates in the Tuolumne basin. This analysis is performed in both LIS as an 43 
LSM column model and LIS/WRF-Hydro, with hydrologic routing. Results demonstrate that 44 
ASO DA in the basin reduced snow bias by as much as 30% from an open-loop (OL) simulation 45 
compared to three independent datasets. It also reduces downstream streamflow runoff biases by 46 
as much as 40%, and improves streamflow skill scores in both wet and dry years. Analysis of 47 
soil moisture and evapotranspiration (ET) also reveals the impacts of hydrologic routing from 48 
WRF-Hydro in the simulations, which would otherwise not be resolved in an LSM column 49 
model. By demonstrating the beneficial impact of SWE DA on the improving streamflow 50 
forecasts, the article outlines the importance of such observational inputs for reservoir operations 51 
and related water management applications. 52 
Plain Language Summary 53 
Land surface models are useful because of their ability to resolve surface-atmosphere feedbacks, 54 
including those with vegetation. Land surface models also have the capability to assimilate 55 
surface observations, usually measured through remote sensing techniques, into the model. 56 
Hydrologic models have the strength of resolving horizontal movements of water both on the 57 
surface and through the sub-surface. In the present study, we combine the data-assimilation 58 
capabilities of the NASA-LIS land surface model with the WRF-Hydro hydrologic model to 59 
combine the utility of both systems. We use this new system to demonstrate the impact of 60 
assimilating snow water equivalent, measured from an aircraft, on both the land surface and 61 
streamflow from the model in the Tuolumne River basin in Central California. Results show that 62 
assimilation of snow water equivalent into the coupled model corrects snow errors and improves 63 
the streamflow in both wet and dry years. We find that hydrologic processes that are now added 64 
to the land surface model impact simulated soil moisture and evapotranspiration. These findings 65 
are important because the ability for a model to better resolve streamflow, from snow 66 
assimilation, could be beneficial for water management. 67 
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1 Introduction 73 



Accurate understanding of the hydrological cycle and the variability of its components is 74 
becoming increasingly important for water management, especially in semi-arid environments 75 
like the western US. The significant natural heterogeneity and the ubiquitous nature of 76 
anthropogenic impacts on the land surface, however, makes it challenging to quantify these 77 
complex processes. Detailed representation of the underlying processes through advanced model 78 
practices and exploitation of information from remote sensing through methods such as data 79 
assimilation (DA) are critical for reducing the uncertainty within global and regional 80 
hydrological predictions (Lettenmaier et al. (2015)). 81 

Land surface models (LSMs) and hydrological models are two different classes of models 82 
that are often used for modeling terrestrial hydrologic processes, but each have a different 83 
historical legacy and modeling emphasis (e.g. Clark et al. 2015). The LSM development has 84 
been primarily focused on improving representations of vertical surface energy and water flux 85 
estimates by incorporating sophisticated parameterizations of vegetation and the root zone 86 
(Pitman (2003), Peters-Lidard et al. (2017)). Modern LSMs include multi-layer formulations of 87 
the vertical canopy structure for better representations of physical and biological processes 88 
related to stomatal control. The LSMs, however, tend to have simplified representations of 89 
surface and subsurface hydrological process, particularly processes related to the horizontal 90 
transport of water. Most contemporary LSMs are one-dimensional column models that focus on 91 
modeling the vertical moisture transport and do not typically include lateral moisture transport 92 
formulations (e.g. Maxwell et al. 2011). In addition, most LSMs have shallow subsurface 93 
representations where characterization of water table and the effect of groundwater recharge are 94 
largely ignored or highly conceptualized. The development of distributed hydrological models 95 
(e.g. Hamman et al. 2018; Sun et al. 2019; Regan et al. 2020), on the other hand, has been 96 
focused on physically based representations of runoff processes (e.g. Clark et al. 2017), 97 
including formulations for 3-d subsurface flow, macropore flow, and surface water flow 98 
processes. The representation of land-atmosphere flux processes in these distributed models are 99 
often limited as they are largely based on empirical formulations (e.g. Anderson, 1973; Nielsen 100 
and Hansen, 1973). 101 

As both LSMs and hydrological models have their strengths and weaknesses in their 102 
model formulations, linking these two classes of models enables the exploitation of advances 103 
made in both modeling communities. The Weather Research and Forecast (WRF) Hydrologic 104 
Model extension (WRF-Hydro) modeling system (Gochis et al., 2020) was designed as an 105 
architecture to explicitly enable these linkages. Though the use of data assimilation methods to 106 
take advantage of remote sensing information has been growing in the LSM community (Reichle 107 
et al. 2007, Zaitchik and Rodell 2009, de Lannoy et al. 2012, Barbu et al. 2014, Kumar et al. 108 
(2008, 2014, 2019a,b)), its application for hydrological models to date has been limited. To 109 
further enhance the WRF-Hydro modeling system with the infusion of land remote sensing and 110 
data assimilation capabilities, an advanced terrestrial hydrological modeling system combining 111 
the NASA Land Information System (LIS; Kumar et al., 2006; Peters-Lidard et al., 2007) and 112 
WRF-Hydro has been developed. LIS is an advanced land surface modeling and data 113 
assimilation framework, developed to enable fine-scale land surface modeling and the 114 
assimilation of terrestrial hydrology and land surface remote sensing observations. The 115 



combination of these DA capabilities with a hydrologic modeling system makes the integrated 116 
environment novel. 117 

This article describes the application of the coupled LIS/WRF-Hydro system over the 118 
Tuolumne River basin in central California, focusing on the use of remotely sensed snow 119 
estimates for DA and the impact of lateral flow on the LSM realized through the hydrological 120 
model. Specifically, we employ the coupled system to utilize the high-resolution snow water 121 
equivalent (SWE) estimates from NASA’s Airborne Snow Observatory (ASO; 122 
https://www.jpl.nasa.gov/missions/airborne-snow-observatory-aso/) over the Tuolumne River 123 
basin in central California. Through DA tools, the ASO SWE estimates are employed to improve 124 
the realization of snow states. The impact of improved snow simulation on streamflow 125 
simulation is then quantified. The study thus focuses on the following specific science questions: 126 

1. What is the added utility of remotely sensed ASO SWE estimates for improving land127 
surface and hydrologic states, including streamflow?128 

2. What are the impacts of additional physical processes realized by WRF-Hydro on LSM129 
variables related to the basin hydrologic response?130 

This article also describes the details of the coupled LIS/WRF-Hydro model. The coupled 131 
environment is enabled through the use of the Earth System Modeling Framework (ESMF; Hill 132 
et al. 2004), which is a high-performance and flexible approach for coupling Earth system 133 
models. The ESMF-based design allows for the clear separation of major modeling system 134 
components of LIS and WRF-Hydro and allows for their independent development, while 135 
maintaining the integrated modeling environment. 136 

In section 2 of this paper, we discuss the LIS and WRF-Hydro model structures and the 137 
coupling for LIS/WRF-Hydro. Section 3 includes a description of the ASO dataset and the 138 
LIS/DA methods. In section 4, we discuss the results from the coupled LIS/WRF-Hydro 139 
simulations, impact of the assimilation of ASO data on streamflow, and the added impact of 140 
hydrologic routing on land surface states. Section 5 includes a summary and main conclusions of 141 
this work. 142 

2 LIS/WRF-Hydro Model Description 143 

2.1 LIS Structure and Configuration 144 

LIS is an open source land surface modeling and data assimilation framework that 145 
supports modeling over user-specified regional or global domains using an ensemble of LSMs. 146 
LIS permits high-resolution LSM simulations and the multivariate and concurrent assimilation of 147 
terrestrial remote sensing datasets. The DA subsystem in LIS is an interoperable environment 148 
that supports both sequential and non-sequential assimilation approaches such as the Ensemble 149 
Kalman Filter (EnKF), particle Filter (pF), and the Ensemble Kalman Smoother (EnKS). These 150 
algorithms can be employed with a large suite of observational inputs and LSMs within LIS.  In 151 
the present study, we take advantage of LIS’s data assimilation subsystem within the coupled 152 
LIS/WRF-Hydro environment to assimilate NASA ASO SWE estimates over the upper 153 
Tuolumne basin (described in Section 3.4 below). The LIS capabilities have been demonstrated 154 
for the assimilation of a wide range of remote sensing datasets including soil moisture (e.g. 155 



Kumar et al. 2008, 2009; Peters-Lidard. et al. 2011), snow (Liu et al. 2013, Kumar et al. 2014, 156 
Liu et al. 2015, Kumar et al. 2015a), skin temperature (Reichle et al. 2010), terrestrial water 157 
storage (Kumar et al. 2016), vegetation (Kumar et al. 2019) and albedo (e.g. Kumar et al. 2020). 158 

2.2 WRF-Hydro Structure and Configuration 159 

The WRF-Hydro model can be coupled to the WRF Advanced Research WRF (WRF-160 
ARW) atmospheric model or executed offline as a stand-alone hydrologic simulation.  In this 161 
study we are running WRF-Hydro in its “stand-alone” configuration coupled to LIS and not to an 162 
atmospheric model.  The NOAA National Water Model (NWM) operational hydrologic model is 163 
based on the WRF-Hydro model architecture (e.g. Lahmers et al. 2019; 2021), and WRF-Hydro 164 
has also been used for research in land-atmosphere interactions (e.g. Arnault et al. 2016). WRF-165 
Hydro (Gochis et al. 2020) can be implemented with either the Noah (Ek et al. 2003) or Noah-166 
MP LSMs (Niu et al. 2011) to resolve vertical soil processes and exchanges with the atmosphere. 167 
In addition to the LSM, WRF-Hydro includes horizontal overland and subsurface flow on a high-168 
resolution terrain routing grid. Surface overland flow uses diffusive wave routing (Julien et al. 169 
1995; Ogden 1997). Shallow saturated sub-surface flow (i.e. within the 2-m LSM soil column) is 170 
also resolved within the high-resolution routing grid of WRF-Hydro using a Boussinesq 171 
approximation. In the present study, WRF-Hydro is configured with a 250-m routing grid, 172 
similar to the NWM configuration of WRF-Hydro. WRF-Hydro uses a conceptual baseflow 173 
model to resolve deep groundwater flow. Water that drains out of the bottom of the LSM soil 174 
column is aggregated over the drainage area for a specific reach, then stored and slowly released 175 
to the channel using on an exponential model based on stored water depth. Our LIS/WRF-Hydro 176 
configuration uses the gridded diffusive wave channel flow routing option of WRF-Hydro. 177 

WRF-Hydro has been used for both research and operations. The NOAA National 178 
Weather Service (NWS) Office of Water Prediction (NWS/OWP) uses WRF-Hydro as the model 179 
architecture for the NWM to produce nation-wide streamflow, soil moisture, snow, and ET 180 
forecasts (e.g. Gochis et al. 2020). WRF-Hydro has also been tested and modified for a range of 181 
local-scale and coupled land-atmosphere studies (e.g. Arnault et al. 2016;  Lahmers et al. 2020). 182 

2.3 LIS/WRF-Hydro Model Coupling 183 

As noted earlier, the integrated LIS/WRF-Hydro system is developed using the 184 
standardized software tools and paradigms enabled by ESMF. Prior to coupling of these systems, 185 
both LIS and WRF-Hydro were made ESMF compliant, and these updates will carry through 186 
subsequent model versions. ESMF includes a superstructure for enveloping model and coupler 187 
components and an infrastructure of commonly used utilities, including grid transformations, 188 
time management, and data communications. The ESMF design accommodates a wide range of 189 
data structures, data discretizations, and component layout and sequencing options. Explicit, 190 
semi-implicit, and implicit coupling interactions that involve 2- and 3-dimensional, 191 
regional/global, logically rectangular, point cloud and mesh grid types are supported by ESMF. 192 
The coupled LIS/WRF-Hydro environment also uses a recent enhancement to ESMF called the 193 
National Unified Operational Prediction Capability (NUOPC; Theurich (2014)), which provides 194 
coupling protocols for building, initializing, and sequencing models that enable rapid transition 195 
and increased interoperability between ESMF-based modeling systems. The interoperability 196 



between model components is ensured through the implementation of a NUOPC interface or 197 
“cap”, which can be reused across modeling systems. 198 

NUOPC provides generic representations of four key modeling system elements: 1) A 199 
NUOPC model is a wrapper around the geophysical model code that provides a standard 200 
interface to the model data and execution subroutines, 2) a NUOPC driver controls the execution 201 
of a set of child components based on a user-defined run sequence,  3) a NUOPC mediator 202 
contains custom code for coupling, flux computations, spatial and temporal transforms and other 203 
data manipulations and 4) a NUOPC connector that implements standard communication options 204 
such as redistribution of data across different numbers of processors and grid remapping using 205 
various interpolation methods. The LIS/WRF-Hydro system utilizes NUOPC driver, connector, 206 
mediator, and model components to exchange data between an ensemble of coupled land surface 207 
and hydrological models. The use of NUOPC standardizes component interfaces and 208 
interoperability while preserving model integrity. This software architecture is illustrated in Fig. 209 
1, and it enables LIS/WRF-Hydro to run on high performance computing (HPC) environments 210 
from a single executable file. LIS/WRF-Hydro in the present study uses Noah-MP version 4.0.1, 211 
which is called through the LIS framework. The coupled configuration is as close as possible to 212 
WRF-Hydro as a standalone model and has been tested to verify this consistency. 213 

Fig. 1 also shows the different software components of LIS/WRF-Hydro. The coupled 214 
system adds NUOPC caps to both LIS and WRF-Hydro. These caps enable the models to pass 215 
variables to and from a mediator. Thus LIS, which calls the Noah-MP v4.0.1 LSM, and WRF-216 
Hydro are separately called by the main driver at timesteps set by the user. The LIS and WRF-217 
Hydro structures then exchange variables through a LIS/WRF-Hydro mediator. For example, 218 
LIS executes first and then passes a set of exchange variables to the mediator. Then the mediator 219 
redistributes or interpolates data from the LIS domain to the WRF-Hydro domain. The data are 220 
then passed to WRF-Hydro before WRF-Hydro executes, and this same process occurs in reverse 221 
when WRF-Hydro feedback variables are returned to LIS. The LIS/WRF-Hydro mediator also 222 
supports an ensemble of LIS and WRF-Hydro coupled instances, which enables ensemble DA 223 
instances. 224 

The DA subsystem within LIS executes the land surface model in an ensemble mode, 225 
with small perturbations applied to a select set of model states and meteorological fields. This 226 
land surface model ensemble exists entirely within one instance of LIS. At this time a single 227 
instance of WRF-Hydro does not support an ensemble of hydrological model instances. In order 228 
to avoid coupling an ensemble of land surface model instances to a single hydrological model 229 
instance, the LIS/WRF-Hydro system and LIS/WRF-Hydro mediator support running multiple 230 
instances of one model in a single executable (i.e. WRF-Hydro). This allows for each member of 231 
the LIS ensemble to couple to an individual instance of WRF-Hydro. The LIS/WRF-Hydro 232 
mediator redistributes or interpolates data to each hydrological model from the ensemble of land 233 
surface model instances. Conversely, data from each WRF-Hydro instance is gathered in the 234 



LIS/WRF-Hydro mediator before it is returned to the LIS model. The result is a single 235 
executable capable of running an ensemble of coupled model instances. 236 

3 Datasets and Methodology 237 

3.1 NASA Airborne Snow Observatory (ASO) Estimates 238 

The NASA ASO SWE dataset is obtained from an observation platform that combines a 239 
scanning lidar and an imaging spectrometer to measure snow depth and albedo (Painter et al. 240 
2016). ASO data were measured in approximately weekly intervals over the Tuolumne River 241 
Basin during the cold season, and the full dataset consists of SWE, depth, and snow albedo. SWE 242 
and snow depth are assimilated in the present study; however, albedo is not considered. These 243 
variables are assimilated at 00 UTC on the days they are available. SWE is of principal focus of 244 
this study, as it is used in our DA system (described in detail in section 3.3). The ASO dataset 245 
has a 50-m resolution and its use of high-density Lidar measurements permits it to resolve small-246 
scale variability in snow properties that cannot be resolved by coarser datasets or point estimates. 247 
Note that since ASO SWE is derived from snow depth using in situ measurements and model-248 
based assumptions on spatially-distributed snow density, more uncertainty in the derived ASO 249 
SWE (compared to snow depth) is likely. 250 

ASO has been used in several other recent studies for snow verification and hydrologic 251 
modeling. Henn et al. (2016) demonstrated that ASO data, when fused with streamflow for 252 
model calibration, was able to reduce the uncertainty of inferred precipitation in a catchment 253 
with limited precipitation observations. Cao et al. (2018) used Variable Infiltration Capacity 254 
(VIC) LSM combined with ASO to estimate SWE in the Tuolumne basin and used this dataset to 255 
validate two satellite based snow products. Oaida et al. (2019) used ASO data to validate a high-256 
resolution SWE dataset based on DA of Moderate Resolution Imaging Spetroradiometer 257 
(MODIS) snow data (Painter et al. 2009) into the VIC hydrologic model. This recent work with 258 
ASO demonstrates its potential use for hydrologic simulations and possible benefits when 259 
integrated with LIS/WRF-Hydro. 260 

3.2 Evaluation Datasets 261 

For evaluation of LIS and LIS/WRF-Hydro SWE, three reference data products are 262 
considered: 1) the University of Arizona (UA; Dawson et al. 2016), 2) the Snow Data 263 
Assimilation System (SNODAS; Barrett et al. 2003), and 3) California Cooperative Observing 264 
Sensors (California COOP sites; available at http://cdec.water.ca.gov/). These grid and point 265 
observations are considered over the upper basin study area shown in Fig. 2, which is fully 266 
encompassed by the ASO observation area. The University of Arizona dataset is based on 267 
gridded upscaled point measurements of snow (~4-km resolution) computed using piecewise 268 
linear regression of point measurements and topography (Dawson et al. 2016). The SNODAS 269 
dataset uses a snow model that is forced with numerical weather prediction (NWP) data and 270 
updated through DA of remote sensing snow observations daily (~1-km resolution). The 271 
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California COOP sites consist of snow pillow measurements maintained by the state of 272 
California. 273 

We acknowledge that the SNODAS and University of Arizona gridded datasets have 274 
coarser resolution than the ASO model products. Though the two gridded datasets are also 275 
developed by incorporating observational data products within a model, evaluation of LIS and 276 
LIS/WRF-Hydro compared to these products is still a benchmark for improvement from DA 277 
compared to the open-loop simulations, since these datasets are independent of the ASO product. 278 
These limitations of the gridded datasets are also the reason why the California COOP sites are 279 
also considered where available. 280 

Streamflow is validated using USGS streamflow measurements at a single gage above 281 
Hetch Hetchy Reservoir. USGS maintains hourly streamflow at sites throughout the CONUS 282 
(available online at: https://waterdata.usgs.gov/nwis/rt). Details of the gage used in the study area 283 
are discussed in section 3.4. 284 

3.3 Model Configuration 285 

We consider the impacts of physical processes realized through both DA and hydrologic 286 
routing by executing four different model simulations for the same Tuolumne basin domain (see 287 
next section) as a multi-year case study that includes both wet and dry winters. Atmospheric 288 
forcing data sets needed to execute LIS and LIS/WRF-Hydro include incoming shortwave 289 
radiation, incoming longwave radiation, specific humidity, air temperature, surface pressure, and 290 
near surface wind (both u and v components). The model is forced with atmospheric variables 291 
and precipitation from version 2 of the North American Land Data Assimilation 292 
System (NLDAS-2) forcing dataset (Xia et al., 2012). We acknowledge that it is possible for the 293 
NLDAS-2 product to miss some of the fine-scale precipitation and precipitation variability due 294 
to its coarser resolution relative to that of the models and hydrological processes of the region. 295 

LIS was executed for WY2014-2017 with WY2012-2013 as spin-up, and LIS was 296 
executed both with and without DA (i.e. LIS-Open Loop (OL) and LIS-DA, respectively). 297 
Similarly, LIS/WRF-Hydro was also spun-up for WY2012-2013 and analyzed from WY2014-298 
2017 both without and with DA (i.e. LIS/WRF-Hydro OL and LIS/WRF-Hydro DA, 299 
respectively). LIS/WRF-Hydro had identical LSM settings to LIS, but also included horizontal 300 
surface and sub-surface flow, channel routing, and baseflow as discussed in section 2.2. The 301 
descriptions of each model simulation are also included in Table 1. 302 

3.4 LIS/WRF-Hydro Domain 303 

For the present study, LIS/WRF-Hydro is executed for the full Tuolumne River basin to 304 
its outlet with the San Juaquin River (Fig. 2); however, our analysis is above the Hetch Hetchy 305 
Reservoir (Fig. 2). The analysis area in the upper basin has no management of the streamflow 306 
and is fully encompassed by the ASO dataset. Note that the ASO dataset covers slightly more of 307 
the Tuolumne basin than just the upper basin above Hetch Hetchy; however, we limit our 308 
analysis area to this domain to make analysis of modeled vs. measured streamflow possible. Fig. 309 
2 also shows the high terrain above Hetch Hetchy reservoir. The precipitation climatology (based 310 
on the 1980-2009 NLDAS-2 1/8 Degree precipitation climatology (not shown)) consists of 311 
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amounts on the order of 800-1000 mm/yr over much of the basin. 1981-2010 average 312 
precipitation is of a similar order of magnitude and shown at two National Weather Service 313 
weather stations in Fig. 2. While this demonstrates that NLDAS-2 precipitation is comparable to 314 
observations, we caution that both the NLDAS-2 and station observations likely underestimate 315 
orographic precipitation and are therefore biased towards lower elevations. The upper basin that 316 
is used for analysis has a majority of the deciduous broadleaf forests and needleleaf evergreens, 317 
with a few small areas of shrublands. 318 

The 1-km LSM grid for the full model used in the present study was derived using Land 319 
surface Data Toolkit (LDT; Arsenault et al. 2018), which is the preprocessing environment for 320 
LIS. The 250-m WRF-Hydro routing grid, channel grid, and the baseflow basin model grid was 321 
derived using version 5.1.1 of the WRF-Hydro GIS Pre-Processing tools (Gochis and Sampson 322 
2019) based on the Hydrosheds (Available online at: 323 
https://www.hydrosheds.org/images/inpages/HydroSHEDS_TechDoc_v1_2.pdf) digital 324 
elevation model (DEM) dataset. The baseflow basin model grids, as described above, were 325 
derived using the default ‘FullDom LINKID local basins’ method of the WRF-Hydro processing 326 
tools (Gochis and Sampson 2019), where groundwater basins are derived for specific channel 327 
reaches (computed from the routing grid). All model parameters are default values based on 328 
Noah-MP and WRF-Hydro parameter lookup tables, and no model calibration was performed. 329 

3.5 LIS-DA Methods 330 

In the present study, we use a one-dimensional ensemble Kalman Filter (EnKF) (e.g. 331 
Reichle et al. 2002;) for the assimilation of the ASO SWE (Fig. 1). As noted in prior studies 332 
(Houtekamer and Mitchell. 1998; Reichle et al. 2002; Zhou et al. 2006; Pan and Wood, 2006; 333 
Kumar et al. 2008; Hain et al. 2012) EnKF allows for the flexible characterization of model 334 
errors with an ensemble and the handling of non-linear model dynamics and temporal 335 
observational discontinuities. Alternative DA approaches such as the Particle Smoothing 336 
Approach (e.g. Margulis et al. 2019) offer advantages over EnKF because they can produce 337 
analysis results with coarser temporal resolution without discontinuities at assimilation 338 
timesteps. These methods are not feasible in the present study as they require a larger ensemble 339 
and have a higher latency window between observations, which is not ideal for hydrologic 340 
forecasting applications. The EnKF approach works in a sequential manner by alternating 341 
between a model forecast step and an analysis update step.  342 

The forecast step (i.e. running the LSM) is performed first, wherein the analysis state 343 
from timestep k-1 is projected forward from (𝐱𝐱�𝐤𝐤−𝟏𝟏+ ) to the LSM state at k (𝐱𝐱�𝐤𝐤−). This is followed 344 
by the analysis step where the increments are computed as: 345 

𝒙𝒙�𝒌𝒌+ = 𝒙𝒙�𝒌𝒌− + 𝑲𝑲𝒌𝒌(𝒚𝒚�𝒌𝒌 − 𝑯𝑯𝒌𝒌𝒙𝒙�𝒌𝒌−) 346 

where the observation state (𝒚𝒚�𝒌𝒌) is combined with the a priori state (𝐱𝐱�𝐤𝐤−) to generate the a 347 
posteriori state (𝐱𝐱�𝐤𝐤+). 𝑯𝑯𝒌𝒌 represents the observation operator that relates the model states to the 348 
observation, and 𝑲𝑲𝒌𝒌 is the Kalman gain that acts as the weighting factor that determines the 349 
influence of forecast innovations (𝒚𝒚�𝒌𝒌 − 𝑯𝑯𝒌𝒌𝒙𝒙�𝒌𝒌−) in the analysis update. The Kalman gain is 350 



diagnosed as a function of the model error covariance (𝑷𝑷𝒌𝒌) and the observational error 351 
covariance (𝑹𝑹𝒌𝒌)). 352 

𝑲𝑲𝒌𝒌 =
𝑷𝑷𝒌𝒌𝑯𝑯𝒌𝒌

𝑻𝑻

𝑯𝑯𝒌𝒌𝑷𝑷𝒌𝒌𝑯𝑯𝒌𝒌
𝑻𝑻 + 𝑹𝑹𝒌𝒌

353 

Consistent with prior snow studies (e.g. Liu et al. 2015), we use a 20-member ensemble in the 354 
present study. 355 

It should be noted that the ensemble assimilation systems are limited when the model 356 
spread is insufficient to represent the underlying uncertainty. For example, if the observation 357 
represents a non-zero snow value when the model simulation is near zero, developing a reliable 358 
ensemble spread to represent the model uncertainty is difficult. These issues are common to all 359 
ensemble data assimilation systems as discussed in Kumar et al. (2017) and are not limited to 360 
EnKF assimilation. 361 

Noah-MP snow states are computed using a full energy-balance (e.g. accounting of 362 
radiative, thermal and liquid mass transport fluxes), multilayer snow model (up to 3 layers) that 363 
accounts for changes in snow volume caused by melt and snowfall, as well as changes to density 364 
caused by compaction. No explicit accounting for impurities such as dust, black carbon, forest 365 
litter or aerosol deposition is made.  The snow energy balance is used to estimate snowmelt, 366 
sublimation, evaporation and temperature. The top most layer of the snowpack is thinnest and 367 
used to compute sensible and latent fluxes as well as radiative exchanges with the atmosphere 368 
(Niu et al. 2011). The model state vector in the assimilation consists of the total SWE and snow 369 
depth variables. After every data assimilation update, the total SWE is used to update the 370 
multilayer snowpack states of Noah-MP. A 20-member ensemble with small perturbations 371 
applied to a select set of meteorological forcing variables and the model state vector is used in 372 
the present study. The details of the perturbation parameters are shown in Table 2. These settings 373 
were recommended by prior experiments (Su et al. 2010; Peters-Lidard et al. 2011) and have 374 
been used widely for snow assimilation in recent work (e.g. Liu et al. 2013; Kumar et al. 2014; 375 
Kumar et al. 2015b; Liu et al. 2015). While strictly speaking, EnKF assumes a linear system with 376 
mutually and serially uncorrected associated Gaussian errors (Nerini et al. 2019), such conditions 377 
are seldom met in real applications such as the example in this manuscript. The perturbation 378 
settings used here are developed from prior studies that ensure a reasonable compromise between 379 
the assimilation improvements and possible suboptimal filter performance due to the deviations 380 
from Gaussian assumptions (e.g. Crow et al. 2006; Kumar et al. 2008; Reichle et al. 2008; De 381 
Lannoy et al. 2012). Perturbation frequencies for forcing, model state, and observations are set to 382 
1-hour,  3-hours, and 6-hours, respectively. As noted in Liu et al. (2013), perturbations to383 
meteorology forcing, which include cross correlation in space and time are intended to simulate 384 
model uncertainty for DA. Time correlation uses a first-order regressive model (time-order of 3-385 
hours) as in Liu et al. (2013). In order to avoid the addition of spurious skill in the model 386 



ensemble from perturbations, a bias correction approach following Ryu et al. (2009) is 387 
employed. 388 

4 Results 389 

4.1 Impacts of ASO DA on LIS and LIS/WRF-Hydro SWE 390 

In this section, we evaluate the impacts of SWE DA in a fully coupled hydrological 391 
environment on both direct (SWE) and downstream (ET and soil moisture) variables. The results 392 
in Table 3 show that the assimilation of ASO SWE results in reduced errors in the snow states in 393 
the model. Relative to the respective OL integrations, the LIS-DA and LIS/WRF-Hydro DA 394 
simulations have statistically significant reduced RMSE and bias estimates when validated 395 
against the University of Arizona dataset based on a Chi-Square Distribution and a student’s t-396 
test (95% confidence intervals for each value are shown), respectively. In particular, the model 397 
integrations without assimilation have large negative biases in SWE, but these biases are reduced 398 
in both the LIS-DA and LIS/WRF-Hydro-DA simulations compared to the SNODAS and UA 399 
datasets. The DA simulations do have slightly worse correlation coefficients (95% confidence 400 
intervals are computed using a Fisher transform), likely due to removal of snow in the lower 401 
basin (which we will show in later figures). Reductions of negative bias are well pronounced 402 
compared to the independent SNODAS and University of Arizona (on the order of ~15%). 403 

The spatial impact of these results (averaged over the full WY2014-2017 analysis period) 404 
is presented in Fig. 3, which shows model SWE from the LIS/WRF-Hydro-OL and LIS/WRF-405 
Hydro-DA simulations as well as the reference products (SNODAS and University of Arizona). 406 
This figure only shows the upper basin, where ASO snow data are available and that are 407 
upstream of the Hetch Hetchy reservoir (Fig. 2). Fig. 3d shows that LIS/WRF-Hydro in the OL 408 
configuration has a less spatially variable distribution of SWE across the domain compared to the 409 
DA solution (Fid. 3e), which has more SWE in the high elevation headwater reaches. Both 410 
solutions have less snow compared to the two evaluation products (Fig. 3a,b); however, the DA 411 
solution increases the amount of model SWE by as much as 60% in some locations in the higher 412 
elevations of the ASO domain (Fig. 3f). Lower elevation SWE in the DA solution is decreased. 413 
Fig. 3c shows the magnitude of these snow increases as well as their relative distribution across 414 
the basin. The SWE in the DA solution is more realistic than the OL solution when compared to 415 
the independent SNODAS and University of Arizona observations. These improvements in the 416 
model SWE are visible despite the tendency for both evaluation datasets to underestimate SWE 417 
variations as a function of elevation (discussed in detail in section 3.2). 418 

The LIS/WRF-Hydro solutions are also compared in Fig. 4 at three California 419 
Cooperative Snow Measurement Sites (Fig. 4a). The DAN site (Fig. 4b) has the most complete 420 
data, and the bias at this site is clearly reduced from DA. A delay in snowmelt in WY2017 from 421 
the DA solution increases RMSE here (Table 3), despite improvements at other times. 422 
Observation data at the SLI (Fig. 4c) and TUM (Fig. 4d) sites are less complete; however, Fig. 4 423 
shows the added value of DA, particularly for reducing bias. At these sites, RMSE significantly 424 
improves from DA (Table 3), and bias improves at the SLI site. Analysis of Fig. 4 and the skill 425 



scores from Table 3 show the added value of DA compared to snow observations, in addition to426 
the improvements from the University of Arizona and SNODAS sites. 427 

The impacts of DA can be better understood in Fig. 5, which shows the timeseries of the 428 
basin average SWE for LIS/WRF-Hydro-OL and LIS/WRF-Hydro-DA for the Tuolumne basin 429 
above Hetch Hetchy reservoir as well as all of the observation-based data products. WY2014-430 
2015 were associated with drier than average precipitation due to an ongoing drought, while 431 
WY2016-2017 both experienced Atmospheric River events and were associated with wetter 432 
conditions. This figure shows that DA generally reduces the low bias of the LIS/WRF-Hydro-OL 433 
simulation in both wet and dry years. Changes to the SWE bias are also not uniform in time. For 434 
example, LIS/WRF-Hydro-OL has less low bias in WY2014 (Fig. 5b) and WY2015 (Fig. 5b), 435 
both dry years, and LIS/WRF-Hydro-DA is associated with fewer changes to LIS/WRF-Hydro 436 
SWE. Meanwhile, low bias in WY2016 (Fig. 5c) and WY2017 (Fig. 5d) (both wet years) is more 437 
noticeable, and LIS/WRF-Hydro with DA experiences a greater correction. These changes in 438 
SWE subsequently impact the streamflow in later timesteps, and the location of SWE changes 439 
also impact hydrologic response, both of which are shown in later figures. 440 

Figure 5 also shows that DA causes the model to exhibit some discontinuities in the SWE 441 
timeseries. The discontinuities in Figure 5 are a result of the infrequent set of observations and 442 
the fact that we are using a sequential data assimilation method. The magnitude of the 443 
corrections introduced by DA is dependent on the differences between  the observations and the 444 
prior model state (before the analysis), which is why the corrections look more dramatic in some 445 
years. 446 

Changes to SWE model skill for the full WY2014-2017 analysis period, including RMSE 447 
and correlation coefficient for LIS/WRF-Hydro-OL and  LIS/WRF-Hydro-DA are shown in Fig. 448 
6. In this figure, correlation and RMSE differences shown in the panels are based on the449 
quantities computed from the timeseries of the model variables compared to the observations at 450 
each grid point. This figure includes statistical significance to RMSE changes (based on a Chi-451 
Squared Distribution) and correlation changes (based on a Fisher transform). DA reduces RMSE, 452 
primarily due to decreases in negative bias, across the northern areas of the basin compared to 453 
both SNODAS (Fig. 6a) and UA SWE (Fig. 6c) products. RMSE changes are less consistent in 454 
the lower basin, as removal of excess valley snow has a more mixed impact. Even as RMSE is 455 
improved over much of the basin due to improvements from bias (particularly in the northern 456 
headwaters), there are also areas with increased RMSE (i.e. more error), and these are 457 
statistically significant. These increases to RMSE follow decreased correlation coefficients in 458 
some of the lower reaches where there is less snow after DA (Fig. 3b,d). The likely reason for 459 
this reduced model skill is the reduction of SWE in the lower basin may be responsible for 460 
reducing the correlation coefficient for SWE in this area due to snow becoming less frequent and 461 
therefore more variable. Reductions to model SWE after DA also increase negative bias further 462 
upstream to the East, which lead to increased RMSE values. Thus, while DA mostly improves 463 
SWE skill, this is not true everywhere in the domain. 464 

Fig. 7 shows the impacts of DA on other surface variables in the LIS/WRF-Hydro 465 
simulations for the melt season (when surface runoff and streamflow are high). This includes the 466 
months of April through July during the full WY2014-2017 period. This figure shows that the 467 
northern basin, where DA increases snow, is also associated with increased soil moisture, while 468 



soil moisture is reduced slightly downstream (Fig. 7a,c). This is consistent with the changes to 469 
SWE demonstrated in Fig. 3c,f. While the percent change to snow is large throughout the domain 470 
(~50% or greater in some areas; Fig. 3f), this corresponds to only minor and often spatially 471 
variable changes in ET, even during the melting season (Fig. 7b,d). These results demonstrate 472 
that SWE DA does impact other surface variables, and this is particularly noticeable for soil 473 
moisture. While lateral flow routing is more physically consistent with hydrologic systems, the 474 
addition of this component does make ET changes from SWE DA more spatially variable.  475 

4.2 Impacts of DA on Streamflow 476 

In this section, we consider the impacts of physical changes realized through ASO SWE 477 
DA on streamflow. The only USGS gauge in the upper Tuolumne basin is USGS 11274790, and 478 
this is upstream of the Hetch Hetchy reservoir (Fig. 2), which significantly alters the hydrologic 479 
response downstream for water management. Since this model configuration does not include the 480 
reservoir or streamflow extractions/diversions in the lower basin, model streamflow estimates at 481 
this gauge are considered “natural” flows and expected to approximate the gage observations in 482 
the upper basin only. In this basin, default model parameters are used in WRF-Hydro, so the 483 
impacts of calibration are not considered here. Streamflow from the upper basin is shown in Fig. 484 
8. Overall, the model hydrologic response reasonably follows the observations, despite the model485 
having a slightly over-active diurnal cycle (where runoff tends to follow snowmelt during the 486 
primary melt season due to the diurnal temperature cycle). 487 

For WY2014 (Fig. 8a) and WY2015 (Fig. 8b), when the basin was drier, SWE DA 488 
eliminates some slight low streamflow bias during those dry years, even as water was removed 489 
from the snowpack at times during those same years (Fig. 5a,b). As we will show in later figures, 490 
this is due to the redistribution of SWE from DA that can be visualized in Fig. 3. Similarly, snow 491 
DA substantially decreases wet bias for streamflow during WY2016 (Fig. 8c), and to a lesser 492 
extent WY2017 (Fig. 8d), which were both wetter than the earlier years in the simulation (Fig. 493 
5c,d). Table 4 shows streamflow skill for both the OL and DA simulations as bias, correlation, 494 
RMSE, Nash-Sutcliffe Efficiency (NSE), and Kling-Gupta Efficiency (KGE;  Gupta et al. 2009). 495 
These quantities are improved from DA. Note that KGE equally weights correlation, bias, and 496 
standard deviation errors, while NSE tends to weight correlation higher (e.g. Gupta et al. 2009). 497 
This suggests that the changes to snow in the model, which had only nominal changes to SWE in 498 
dry years and reduced the low SWE bias in wet years are also able to ameliorate some 499 
streamflow biases. During WY2015, LIS/WRF-Hydro with DA is able to capture runoff early in 500 
the season that the OL simulation does not resolve. Note that DA only was used for SWE (not 501 
streamflow or other hydrologic variables); however, these results show added value from snow 502 
DA in LIS in a hydrologic simulation. 503 

The physical processes that lead to the redistribution of streamflow due to DA are 504 
considered in Figs. 9 and 10. In Fig. 9, it is obvious that most lateral flow (i.e. surface runoff and 505 
shallow saturated flow that reaches the WRF-Hydro channel network) originates in the high 506 
elevations, where the snowpack is the greatest. Close analysis of this figure also reveals that 507 
much of the  flow entering the channel network originates at a few points while inflow in 508 
surrounding channel grid points is less. This would be expected in a basin dominated by snow 509 
hydrology, and is especially true in the years with greater snowpack (i.e. WY2016-2017). 510 
However, Fig. 10 also demonstrates that changes to this runoff entering the channels from DA 511 



tend to vary in wet and dry years. During dry years (i.e. WY2014-2015), runoff is added to 512 
upstream reaches in the northern part of the basin, where SWE is generally the highest (i.e. Fig. 513 
3), and this is consistent with the reduction of low streamflow bias during these same years (i.e. 514 
Fig. 8) from added SWE in these areas. Meanwhile, during the wet years, while some runoff is 515 
again added in the high elevation reaches, runoff is also reduced in the lower reaches, consistent 516 
with Fig. 3 where SWE is reduced in these areas. This reduction of snowpack in the lower basin 517 
(above Hetch Hetchy reservoir) is the reason why the high streamflow bias in the OL simulation 518 
is reduced in the DA simulation during WY2016-2017. Thus, the spatial redistribution of SWE 519 
from DA, where SWE increases in the high elevations but decreases further down seems to be 520 
important for correcting some of the model streamflow errors, such that low flow bias during dry 521 
years and high flow bias during wet years are partially corrected by these spatial changes that are 522 
realized through DA. While the increase in SWE and decrease of streamflow during wet years 523 
may seem counter-intuitive, it is consistent with the impact of SWE redistribution on the model 524 
hydrologic response. 525 

Fig. 10 also shows that DA affects at least some snowmelt and runoff outside of the 526 
analysis area above Hetch Hetchy. This is because the ASO domain is slightly larger than our 527 
analysis domain. ASO DA does not affect other parts of the basin, as the 1-D EnKF only affects 528 
model variables where ASO data are available. 529 

4.3 Impacts of hydrologic routing on land surface states 530 

The coupled LIS/WRF-Hydro system not only enables the translation of improved land 531 
surface states through LIS from data assimilation to streamflow, but also allows the simulation of 532 
the impact of hydrologic routing on land surface states. In this section, we consider the impacts 533 
of that lateral redistribution of water from WRF-Hydro on soil moisture and ET. For example, 534 
surface flow recycled from routing that is otherwise removed from the LSM would influence the 535 
soil moisture states (e.g. Lahmers et al. 2020). The influence of the two-way feedbacks simulated 536 
by the coupled LIS/WRF-Hydro environment is examined by contrasting the LIS/WRF-Hydro 537 
simulations with LIS-only simulations in supplemental material, Figs. 11-12, and in Table 5. 538 

A figure equivalent to Fig. 8 is included in Supplemental material, and it considers the 539 
impacts of hydrologic model routing by plotting WRF-Hydro channel flow compared to LIS-540 
only surface and sub-surface runoff (the LIS surface runoff variable is not used when coupled to 541 
WRF-Hydro terrain routing schemes since explicit routing is included). In this figure, the 542 
LIS/WRF-Hydro OL and DA streamflow is plotted with solid red and dark blue lines, 543 
respectively (as in Figure 8). LIS OL and DA aggregated surface and sub-surface runoff (over 544 
the same basin) are plotted with dashed orange and purple lines, respectively. Observed 545 
streamflow is plotted with a solid black line. 24-hour averages are used in this figure as the LIS-546 
only runoff is written daily in our configuration. The LIS-only runoff follows a similar trajectory 547 
to LIS/WRF-Hydro, but tends to miss the timing of some peaks captured by LIS/WRF-Hydro 548 
and USGS streamflow. LIS-only simulations tend to have runoff peaks that are too fast and 549 
flashier compared to the observations and LIS/WRF-Hydro solution. This is especially true 550 
earlier in the water year, when runoff is driven by rainfall rather than snowmelt. This is likely 551 
due to WRF-Hydro aggregating some runoff and routing it downstream, which is slower and 552 
more consistent with actual hydrologic response. In some cases late in the season, LIS-only 553 
runoff (surface and sub-surface) also has a longer recession, which may indicate increased 554 



reliance on sub-surface flow. Thus, this figure shows the added value of LIS/WRF-Hydro 555 
surface runoff. 556 

The addition of lateral terrain routing tends to influence the hydrologic response, as 557 
shown in soil moisture for both the OL (Fig. 11a) and DA (Fig. 11c) simulations. Fig. 11b,d 558 
shows a vectorized version of the LIS/WRF-Hydro routing grid in the analysis domain. This 559 
figure shows that soil moisture changes from routing are relatively constant across much of the 560 
model domain, but increases tend to be more pronounced near channel grid cells. As DA reduced 561 
SWE and soil moisture further downstream but increased both variables upstream (i.e. Fig. 3 and 562 
Fig. 7, respectively), the effects of routing are slightly more noticeable downstream when DA is 563 
used because lateral terrain routing increases soil moisture downstream in areas where DA would 564 
otherwise reduce it. Meanwhile, increases in soil moisture also lead to increased ET near the 565 
channel network in LIS/WRF-Hydro (Fig. 12b,d). Basin ET averages are also shown in Fig 566 
12a,c. 567 

The driving force for these changes is increased surface flow at high elevations, as 568 
infiltration excess produced from Noah-MP that would otherwise be removed from the system as 569 
a sink is allowed to flow down-gradient through WRF-Hydro. Table 5 also shows that soil 570 
moisture and ET increase the most at lower elevations, which is expected since increased surface 571 
runoff results in more infiltration further downstream in the basin. This occurs to a lesser extent 572 
at higher elevations. 573 

5 Summary and Implications 574 

This article presents the development of the coupled LIS/WRF-Hydro system, which is 575 
aimed at exploiting and connecting the land surface DA capabilities of NASA LIS and the 576 
hydrological modeling capabilities of WRF-Hydro. The coupled environment is facilitated using 577 
the constructs of the ESMF, enabling a flexible and interoperable environment that integrates the 578 
two large modeling systems. The application of the coupled LIS/WRF-Hydro system is 579 
demonstrated over the Tuolumne basin in California, where remotely sensed SWE estimates 580 
from the NASA ASO dataset are employed for DA. The ASO SWE estimates are assimilated 581 
within LIS to improve the representation of snow states within the land surface model, and the 582 
coupled LIS/WRF-Hydro environment is used to examine the corresponding impacts on 583 
streamflow from snow DA. The ASO estimates are available over a subset of the entire modeled 584 
domain. For this work, we use EnKF DA due to its ability to run with fewer ensembles and its 585 
shorter latency window, which is ideal for a streamflow forecasting proof of concept. This would 586 
not preclude the use of other DA methods such as particle smoothing (e.g. Margulis et al. 2019) 587 
for future work if the computational challenge of its larger ensemble size could be overcome. 588 

Over areas where ASO coverage exist, the ASO SWE DA leads to reduced SWE biases 589 
(Table 3) in the LIS/WRF-Hydro simulations.  Further, these benefits also extend to the 590 
hydrologic model simulation through the improvements to model runoff. For example, 591 
streamflow bias at USGS gauge 11274790 (above Hetch Hetchy Reservoir) is reduced from 16% 592 
to less than 10% with DA. The benefits of snow DA for streamflow are better understood when 593 
considering the impacts of DA on surface runoff entering channels (i.e. Fig. 10), as removal of 594 



snow at low elevations tends to reduce high bias during wet years, while added snow at high 595 
elevations tends to reduce negative bias during dry years. 596 

Model improvements via reductions of model streamflow biases above Hetch Hetchy 597 
reservoir from ASO DA (too dry in dry years and too wet in wet years) should be significant for 598 
water management in the western US and other semi-arid environments with growing 599 
populations. We also note that negative SWE bias is reduced across much of the high-elevation 600 
northern area of the study region, while excess SWE in the valleys and at generally lower 601 
elevations is removed. At high elevations, especially to the North, SWE is increased by over 602 
60% in some areas, while it is reduced by ~25% in lower elevations (Fig. 3). This redistribution 603 
of SWE with additional SWE in the headwaters and reduced SWE downstream improves the 604 
hydrologic response, where the former reduces negative bias during dry years and the latter 605 
reduces excessive positive bias of streamflow above Hetch Hetchy Reservoir during wet years.  606 
If SWE DA in hydrologic models can improve forecasts of streamflow entering reservoirs, this 607 
modeling framework (applied in a real-time quasi-operational simulation) could potentially be 608 
significant for dam operations and seasonal water forecasts. 609 

Addressing the impacts of SWE DA on streamflow for this application would not be 610 
possible without the integrated capabilities of LIS coupled to WRF-Hydro. Though prior studies 611 
have examined the use of remote sensing snow measurements on land surface characterization, 612 
only a few studies have focused their impact on the integrated land and hydrological response 613 
(e.g. Caleb and Moradkhani, 2011, Liu et al. 2015, Huang et al. 2017). The results described here 614 
therefore provide the systematic process level quantification of the impact of ASO SWE DA on 615 
various land surface and hydrologic processes. As future remote sensing estimates of snow are 616 
being developed, quantitative assessment of their anticipated utility for hydrologic process 617 
improvements is important to quantify. The methodology and the results of this study using the 618 
coupled LIS/WRF-Hydro system serve as an important benchmark in this regard. 619 

The evaluations presented in this study also indicate that the systematic errors in the snow 620 
and streamflow estimates are significant sources of uncertainty in the model simulations. These 621 
errors may be due to uncertainties in model forcing, physics schemes within the model structure, 622 
and adjustable parameters. To further improve the accuracy of model simulations (including 623 
those with DA), calibration (e.g. Gupta et al. 2009; Samaniego et al. 2010) of land surface and 624 
hydrologic parameters that control surface water partitioning, snow, and flow routing parameters 625 
could be beneficial. The calibration approaches must also consider inconsistencies between 626 
model streamflow and surface variables, as Lahmers et al. (2019) demonstrated that calibration 627 
to surface flow degraded soil moisture in some southwest US catchments. Both LIS and WRF-628 
Hydro include significant parameter estimation capabilities, which could be exploited to 629 
potentially ameliorate these issues through the refinement of relevant model parameters. 630 

Another finding of this analysis is the coupled LIS/WRF-Hydro system simulates the 631 
redistribution of soil moisture from the feedback of the hydrologic model into the land surface 632 
model. Over the simulation domain, this feedback leads to increases in soil moisture and ET in 633 
areas near the channel network. ET and soil moisture near the channel network can increase by 634 
over 10% in some locations (Figs. 11-12). These findings are similar to the results from Lahmers 635 
et al. (2020), who showed that soil moisture increases in WRF-Hydro compared to control 636 
simulations without surface hydrology in a semi-arid environment, especially in areas with low 637 



soil conductivity. This addition of physical processes representing surface hydrology can 638 
therefore impact land-atmosphere interactions in some environments (e.g. Lahmers et al. 2020), 639 
and is thus relevant to future work. 640 

The combination of DA and hydrologic routing in the coupled LIS/WRF-Hydro 641 
modeling system opens up new possibilities for the analysis of surface processes on atmospheric 642 
coupling (e.g. Santanello et al. 2018). The snow DA example demonstrated here is a “weakly-643 
coupled” DA instance where the assimilation is performed within the offline land surface model 644 
and the impacts on streamflow are demonstrated (indirectly) through the mediator between LIS 645 
and WRF-Hydro. The development of the coupled system also paves the way for strongly 646 
coupled DA environments where cross-model DA updates are used. For example, the 647 
assimilation of streamflow observations within WRF-Hydro could be employed with the land 648 
surface moisture variables (in LIS) updated in a DA instance. Such a strongly coupled DA 649 
environment could be accomplished with an additional mediator designed specifically for DA 650 
related exchanges. Similarly, the addition of hydrologic routing and its impacts on soil moisture 651 
could influence surface fluxes, as was shown in previous literature (e.g. Maxwell et al. 2011; 652 
Arnault et al. 2016; Lahmers et al. 2020). Thus, this new coupled modeling system has the 653 
potential to combine both of these abilities to improve our understanding of land surface 654 
processes and variables on atmospheric processes that govern NWP and climate prediction. 655 
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Table 1: LIS and LIS/WRF-Hydro simulation descriptions. 969 

Simulation Name Description 
LIS-OL LIS Noah-MP v4.0.1 model run without assimilation 
LIS-DA LIS Noah-MP v4.0.1 with ASO SWE DA 
LIS/WRF-Hydro-OL LIS Noah-MP v4.0.1 coupled to WRF-Hydro, including surface 

routing, sub-surface flow, baseflow, and channel routing without 
assimilation 

LIS/WRF-Hydro-DA LIS Noah-MP v4.0.1 coupled to WRF-Hydro, including surface 
routing, sub-surface flow, baseflow, and channel routing with ASO 
SWE DA 

970 
971 



Table 2: Parameters for meteorological forcing and model state variables for EnKF 972 
configuration. 973 

974 

Variable 
Perturbation 
Type Std. Dev. Cross Correlation across variables 

Meteorological Forcing SW corr LW corr 
PCP 
corr T corr 

Downward Shortwave (SW) Multiplicative 0.2 1 -0.3 -0.5 0.3 
Downward Longwave (LW) Additive 30 -0.3 1 0.5 0.6 
Precipitation (PCP) Multiplicative 0.5 -0.5 0.5 1 -0.1
Near surface Air Temperature (T) Additive 0.5 0.3 0.6 -0.1 1 
Noah LSM snow states SWE snod 
SWE Multiplicative 0.01 1 0.9 
Snow depth (snod) Multiplicative 0.01 0.9 1 



Table 3: LIS and LIS/WRF-Hydro skill scores compared to University of Arizona and SNODAS 975 
data on the top two panels and the California COOP sites on the bottom three panels. For gridded 976 
datasets, skill is computed in the basin area above Hetch Hetchy Reservoir. Confidence intervals 977 
for RMSE and Bias are based on a Chi-Square Distribution and a student’s T-test, respectively, 978 
for the timeseries of area averaged errors. Intervals are computed for correlation coefficient use a 979 
Fisher transform. 980 

UA LIS-OL LIS-DA 
LIS/WRF-
Hydro OL 

LIS/WRF-
Hydro DA 

RMSE 

108.6 
(104.9 – 

112.7) 
90.9 (87.8 

– 94.4)

108.6 
(104.8 – 

112.7 
91.0 (87.8 

– 94.4)
Bias (mm) -46.9 ±5.0 -32.5 ±4.4 -46.8 ±5.0 -32.5 ±4.4

R (-) 

0.988 
(0.987 – 

0.990 

0.980 
(0.978 – 

0.982) 

0.988 
(0.987 – 

0.989) 

0.980 
(0.978 – 

0.982) 
SNODAS 

RMSE 

129.3 
(124.8 -

134.1) 
99.6 (96.1 - 

103.3) 

129.3 
(124.7 - 

134.1) 
99.6 (96.1 - 

103.4) 
Bias (mm) -49.0 ±6.1 -34.6 ±4.8 -48.9 ±6.1 -34.6 ±4.8

R(-) 

0.980 
(0.978 – 

0.982) 

0.981 
(0.979 – 

0.983) 

0.980 
(0.978 – 

0.982) 

0.981 
(0.979 – 

0.983) 
DAN CA Coop. 

RMSE 
94.6 (91.3 

– 98.2)

169.3 
(163.4 – 

175.7) 
94.6 (91.3 

– 98.2)

169.4 
(163.4 – 

175.7) 
Bias (mm) -31.1 ± 4.6 4.6 ± 8.7 -31.1 ± 4.6 4.6 ± 8.7 

R(-) 

0.972 
(0.969 -

0.974) 

0.893 
(0.882 – 

0.903) 

0.972 
(0.969 – 

0.974) 

0.893 
(0.882 -

0.903) 
SLI CA Coop. 

RMSE 

413.6 
(399.1 – 

429.1) 

281.8 
(271.9 – 

292.4) 

413.7 
(399.3 – 

429.3) 

281.9 
(272.0 – 

292.5) 

Bias (mm) 
-238.3 ±

29.8 
-179.5 ±

19.1 
-238.3 ±

29.8 
-179.6 ±

19.1 

R(-) 

0.993 
(0.993 
0.994) 

0.978 
(0.976 -

0.980) 

0.993 
(0.993 -

0.994) 

0.978 
(0.976 -

0.980) 
TUM CA Coop. 

RMSE 

107.1 
(103.3 – 

111.1) 
74.7 (77.5 

– 72.1)

107.2 
(103.4 – 

111.2) 
74.71 (77.5 

– 72.1)



Bias (mm) -2.8 ± 7.8 -11.3 ± 5.4 -2.8 ± 7.8 -11.3 ± -5.4

R(-) 

0.960 
(0.955 – 

0.963) 

0.982 
(0.980 – 

0.984) 

0.960 
(0.955 -

0.963) 

0.982 
(0.980 – 

0.984) 
981 



Table 4: Streamflow skill scores at USGS gauge 11274790 for the control and DA ensemble 982 
mean LIS/WRF-Hydro simulations. 983 

LIS/WRF-Hydro OL Simulation 
Gage KGE NSE Bias R RMSE 
11274790 0.04 -0.65 15.86 0.80 21.99 
LIS/WRF-Hydro DA Simulation 
Gage KGE NSE Bias R RMSE 
11274790 0.44 0.14 9.48 0.80 15.88 

984 



Table 5: Average percent increase to ET and soil moisture between LIS/WRF-Hydro and 985 
LIS (LIS/WRF-Hydro – LIS)  for elevation ranges across the upper basin model analysis 986 
domain (Fig. 2). Analysis is for simulations with DA. 987 

Elevation 
Range (m) 

ET 
(%-
Increase) 

0-10 cm
Soil Vol.
Water
(%-
Increase)

1400-1800 8.83 4.80 
1800-2200 11.63 4.62 
2200-2600 8.47 3.13 
2600-3000 8.53 2.91 
3000-3400 8.61 2.28 
3400-3800 5.17 2.33 

988 
989 



990 
Figure 1: Conceptual illustration of the LIS/WRF-Hydro system. LIS and WRF-Hydro share 991 
data through a mediator in the center right of the image that exchanges model variables through 992 
the LIS and WRF-Hydro NUOPC caps. 993 

994 



995 
Figure 2: The Tuolumne test basin is shown relative to the Contiguous US (CONUS) (top). The 996 
full basin with  National Hydrography Dataset (NHD) flowlines is shown in the bottom panel. The 997 
Upper Tuolumne Basin analysis area with the analysis USGS Gage, Hetch Hetchy Reservoir, 998 
elevation from the 250-m grid, and two precipitation observations are also shown. 999 

1000 



1001 
Figure 3: Mean SWE (in mm) for SNODAS, (a), University of Arizona (b),  LIS/WRF-Hydro 1002 
DA vs. OL (c), LIS/WRF-Hydro OL (d), LIS/WRF-Hydro DA (e) and LIS/WRF-Hydro DA vs. 1003 
OL percent change (f). 1004 

1005 



1006 
Figure 4: California Cooperative SWE sites (a) and LIS/WRF-Hydro OL and LIS/WRF-Hydro 1007 
DA SWE v. California Cooperative Site SWE. Sites include DAN (b), SLI, (c), and TUM (d).   1008 



1009 
Figure 5: Timeseries of modeled (LIS/WRF-Hydro) and observed basin-averaged SWE. Data 1010 
for WY2014 (top) to WY2017 (bottom). 1011 

1012 



1013 

1014 
Figure 6: Change in RMSE (mm) (top) and Correlation (bottom) from DA compared to 1015 
SNODAS (left) and University of Arizona observations (right) for the LIS/WRF-Hydro 1016 
simulations.  1017 

1018 



1019 
Figure 7:  Change in Noah-MP 0-10 cm soil volumetric water content (top) and ET (bottom) 1020 
from ASO DA for LIS/WRF-Hydro (left) and for LIS/WRF-Hydro as a percent change (right) 1021 
during the snowmelt season (April – July). 1022 

1023 
1024 



1025 
Figure 8: Hydrographs from LIS/WRF-Hydro OL (red), ASO DA ensemble mean (dark blue), 1026 
LIS/WRF-Hydro DA minus OL (green), and observations (black) at USGS gauge 11274790 for 1027 
WY2014 through WY2017 (top to bottom). 1028 



1029 
Figure 9: Upper Tuolumne Basin mean annual lateral flow (m3s-1) into stream channels for 1030 
WY2014 (top left), WY2015 (top right), WY2016 (bottom left), and WY2017 (bottom right) 1031 
from the LIS/WRF-Hydro DA simulation.  1032 

1033 



1034 
Figure 10: Upper Tuolumne Basin DA minus OL change to mean annual lateral flow (m3s-1) 1035 
into stream channels for WY2014 (top left), WY2015 (top right), WY2016 (bottom left), and 1036 
WY2017 (bottom right).  1037 

1038 

1039 



1040 

1041 
Figure 11: Average soil volumetric water content for LIS/WRF-Hydro (top) and change in soil 1042 
moisture in LIS/WRF-Hydro compared to LIS (bottom) for the OL (left) and DA (right) 1043 
simulations. 1044 

1045 
1046 



1047 

1048 

Figure 12: Average ET (mm/day) for LIS/WRF-Hydro (top) and change in ET in LIS/WRF-1049 
Hydro compared to LIS (bottom) for the OL (left) and DA (right) simulations. 1050 
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