

A Reynolds-Averaged Navier-Stokes Perspective for the High Lift Common Research Model Using the LAVA Framework

Jared C. Duensing, Jeffrey A. Housman, Luis M. Fernandes, Leonardo M. Machado, Cetin C. Kiris

NASA Ames Research Center

AMS Seminar Series, October 13th, 2020 NASA Ames Research Center, Moffett Field, California

Outline

- ➤ Workshop Task Overview
- Computational Methodology
 - ➤ Numerical methods and turbulence modeling
 - Structured overset mesh generation

➤ Results

- Grid convergence study
- ➤ Flap deflection study
- $ightharpoonup c_{Lmax}$ investigation
 - > Turbulence modeling
 - Alternative solution methods
 - Wind tunnel modeling
- ➤ Summary

Workshop Tasks and Goals

- Use Reynolds-Averaged Navier-Stokes (RANS) methods to characterize aerodynamic performance for the High Lift- Common Research Model (CRM-HL)
- Utilize workshop-provided test cases to determine RANS capability in accurately predicting complex highlift configuration flows
- Determine best-practice modeling techniques using various studies to maximize RANS predictive capability
 - Grid sensitivity study
 - > Turbulence model sensitivity study
 - Wind tunnel modeling study

Quantity	Value	
Mach	0.2	
Re_{MAC}	5.49 M	
$T_{s,\infty}$	521 °R	
$ar{c}$	275.8 in	
S_{ref}	297,360 in ²	

Methodology: Numerical Approach and Convergence

- ➤ Flow solver: structured curvilinear solver within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework
- All simulations solve the Reynolds-Averaged Navier-Stokes (RANS)
 - Modified Roe convective flux discretization
 - Numerous turbulence models
- Steady-state convergence criteria
 - \triangleright Standard deviation of c_D in nonlinear iteration space is within 1e-5 and all loads are statistically stationary
 - All cases achieve 4-5 orders of mean flow equation residual convergence

Workshop Task	Turbulence model
Grid Convergence Study	SA, SA-RC-QCR2000
Flap Deflection Study	SA, SA-RC-QCR2000
c_{Lmax} Study	SA, SA-RC, SA-QCR2000, SA-RC-QCR2000, SA-LRe, $k-\omega$ BSL
Wind Tunnel Simulations	SA

Methodology: Grid Generation

NASA

- Very minor updates to the underlying geometry were necessary to allow structured overset mesh generation
- Mesh generation completed using Pointwise and Chimera Grid Tools (CGT)
- Meshing strategy based on provided Geometry and Mesh Generation Workshop (GMGW-3) guidelines
- Computational grids would serve as the official committeeprovided structured overset mesh family

Mesh Level	Total Solve Points (M)	ABB
Α	20.15	
В	64.71	CDD
С	223.5	
D	550.2	

Free-air nominal configuration grid systems

Wind tunnel modeling study grid system

Flap deflection study grid systems

Grid Convergence Study

- Sensitivity of solution to mesh resolution assessed using two variants of the SA turbulence model at $\alpha = 7.05^{\circ}$
- Differences in quantities between finest resolutions (C and D) within 0.9%
- Baseline SA demonstrates best agreement with experiment

Mesh Level	<i>c_L</i> (SA)	% Diff. from experiment	c_L (SA-RC-QCR2000)	% Diff. from experiment
Α	1.7604	1.03	1.7436	1.97
В	1.7517	1.52	1.7357	2.42
С	1.7514	1.53	1.7402	2.16
D	1.7554	1.31	1.7365	2.37

SA-RC-QCR2000

Flap Deflection Study

NASA

- SA and SA-RC-QCR2000 (not shown) models used to predict flap deflection increments at $\alpha = 7.05^{\circ}$
- Mesh levels B and C results using SA do not predict a negative Δc_L between the highest deflections

Minor differences between resolutions C

and D

$$\delta_f = 37^{\circ}/34^{\circ}$$
 $\delta_f = 40^{\circ}/37^{\circ}$

$$\delta_f = 43^{\circ}/40^{\circ}$$

Streamlines shown for each deflection at mesh level C.

c_{Lmax} Study: Turbulence Model Sensitivity

NASA

- Six turbulence models were assessed using mesh level C (5 SA variants and k-ω BSL)
- Simulations demonstrate unique characteristics at high-α conditions
- Corrections to SA model generally lead to mispredictions in these regions
- Pressure distributions analyzed for perceived "best" and "worst" performing models with respect to c_{Lmax} prediction

c_{Lmax} Study: Turbulence Model Sensitivity

- \triangleright Six turbulence models were assessed using mesh level C (5 SA variants and k- ω BSL)
- \triangleright Simulations demonstrate unique characteristics at high- α conditions, driven by flow topology predictions on the outboard wing and inboard corner flow regions
- Corrections to SA model generally lead to mispredictions in these regions

c_{Lmax} Study: Alternative Solution Methods

- Additional simulation methods utilized in attempt to improve baseline SA predictions at high- α
 - Unsteady RANS, cold start
 - \triangleright Steady RANS, warm start (increasing α)
 - Steady RANS, warm start (decreasing α)
- Benefit observed with steady RANS, warm start (increasing α), which delays spurious outboard separation

c_{Lmax} Study: Comparison with Scale-Resolving Methods

- RANS solutions compared with results from scale-resolving simulations in LAVA
 - ➤ Hybrid RANS/LES (HRLES)¹
 - ➤ Wall-Modeled LES (WMLES)²
- Scale-resolving simulations also struggle to predict accurate pitch break in free air
- Validity of RANS methods in free air should not be solely based on inboard separation-induced pitch break

 $\alpha = 21.47^{\circ}$

¹Browne, O. M., Housman, J. A., Kenway, G., Ghate, A. S., and Kiris, C. C., "A Hybrid RANS-LES Perspective for the High Lift Common Research Model Using LAVA," AIAA Aviation Paper to appear, 2022.

²Ghate, A. S., Stich, G.-D., Kenway, G., Housman, J. A., and Kiris, C. C., "A Wall-Modeled LES Perspective for the High Lift Common Research Model Using LAVA," AIAA Aviation Paper to appear, 2022.

c_{Lmax} Study: Wind Tunnel Modeling

Lift

Drag

0.35

S 0.25

NASA

Pitching Moment

-0.25

- QinetiQ tunnel wall interference effects studied by incorporating the CRM-HL test article into test section
- Inviscid (slip) wall and viscous (no-slip) wall treatments tested

Total conditions prescribed at tunnel inflow and static pressure prescribed at outflow to set test section Mach number

Stagnation Inflow

c_{Lmax} Study: Wind Tunnel Modeling

- Pressure distributions at selected angles of attack compared
 - α = 5.98°/7.05°: pressure differences on suction side related to tunnel impacts on effective angle of attack
 - α = 17.98°/19.57°: Inboard suction side pressure rise noted for no-slip tunnel treatment only
 - α = 19.98°/21.47°: Both tunnel treatments exhibit better agreement with experiment

c_{Lmax} Study: Wind Tunnel Modeling

 α

 α

Skin friction distributions at the highest three angles of attack used to assess separation tendencies for each simulation method

- $\geq \alpha = 17.98^{\circ}/19.57^{\circ}$: All methods exhibit qualitatively similar flow topologies
- α = 18.97°/20.55°: No-slip tunnel case exhibits premature inboard separation, free-air exhibits spurious outboard separation
- α = 19.98°/21.47°: Both tunnel treatments experience inboard and outboard separation, inboard section in free air still attached

Summary of LAVA RANS Contributions to Workshop

- Hundreds of RANS simulations conducted in pursuit of identifying RANS prediction capabilities and shortcomings for high-lift configurations
- Preliminary simulations used to reduce modeling errors where possible and determine best-practices (grid resolution, numerical methods, etc.) for additional workshop studies
- \triangleright Six turbulence models (SA variants and k- ω BSL) were used in c_{lmax} study in free air
 - SA corrections generally lack accuracy in c_{lmax} prediction, but do exhibit varying degrees of pitching moment break
 - Baseline SA exhibits excellent c_{Lmax} prediction, but spurious outboard separation present in post- c_{Lmax} conditions
 - > k-ω BSL provides best agreement with experiment, but is very computationally expensive using current simulation methods and convergence criteria
- Wind tunnel modeling improves various shortcomings of the baseline SA model in free air, with other erroneous features persisting
- While all experimental flow phenomena could be predicted qualitatively using at least one method, no one RANS methodology can capture all flow topologies across entire α -range with exceptional accuracy

Acknowledgements

- All funding was provided by the Transformational Tools and Technologies (T³) project under NASA's Aeronautics Research Mission Directorate (ARMD)
- Computational resources provided by the NASA Advanced Supercomputing (NAS) facility at NASA Ames Research Center
- > The authors would also like to acknowledge the following individuals:
 - Elisha Makarevich of Science and Technology Corp. (STC) for grid generation support
 - Christopher Rumsey, Anthony Sclafani, Niloufar Mahmoudnejad, Eric Laurendeau, and many other HLPW-4 committee organizers and participants
 - Aditya Ghate, Oliver Browne, Gaetan Kenway, Gerrit-Daniel Stich, William Chan, Jacob Wagner and many other LAVA team members for invaluable technical insight