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ABSTRACT
Human operators play a major role in the resilience of com-

plex systems–while human error is one of the biggest contributors
to hazardous events, operators additionally play a critical role in
mitigating hazardous events. A key factor underlying this opera-
tor resilience is situation awareness–the ability of operators to un-
derstand their environment and each other to achieve desired sys-
tem functions. In contrast to situation awareness-related accident
models in the literature, which are largely conceptual in nature,
this work proposes the use of a dynamic simulation framework to
concretely model both the effects of situation awareness-related
human errors and situation awareness-related hazard-mitigating
properties using the distributed situation awareness theory. This
work then presents specialized model constructs to enable agents’
individual perceptions of the system state and transactions with
other agents (and thus distributed situation awareness) to be rep-
resented in simulation. To demonstrate this framework, it is then
adapted to an aircraft taxiway case study, where it is used to
model aircraft conflicts due to lack of vision and poor communi-
cations from the air traffic controller. This demonstration shows
the potential of using simulation models to rigorously understand
situation awareness-related human errors and thus inform the
design of resilience.
Keywords: Resilience Modeling, Distributed Situation
Awareness, Complex Systems Design, Simulation

1. INTRODUCTION
Human error is a major contributor to accidents and per-

formance losses in complex engineered systems [1, 2]. If one
examines these human-error caused failures further, the largest
single contributor to these errors is lack of situation awareness.
Studies of aviation accidents involving major air carriers have
shown that situation awareness was the root cause of around 90%
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of accidents involving pilot error [3, 4]. Another study explored
offshore drilling accidents involving human error and found that
40% of accidents were directly attributed to the loss of situation
awareness [5]. Studies of human errors in other domains such
as nuclear power, air traffic control, the process industry, and the
automotive industry show that loss of situation awareness is a
root cause in a majority of the events [6–8]. Situation awareness-
related failures are not only common but also costly and fatal
(e.g., Bhopal Gas Leak [9], Air France 447 Flight Crash [10]).
Thus, the concept of situation awareness has emerged as an im-
portant construct to consider in the engineering process to ensure
the system is resilient to potentially-hazardous events.

Resilience is the ability of a system to prevent and mitigate
hazardous scenarios, which may be achieved not only by ensur-
ing the system can recover performance after a hazardous event,
but by making the system robust to event occurrence, giving the
system “graceful extensibility” so it can mitigate surprise events,
and ensuring a system adapts to maintain these properties un-
der changing conditions [11]. Since humans often take the role
of adapting, responding to, and mitigating hazardous events in
complex engineered systems, resilience engineering posits that
humans are not solely a threat vector, but are also a key part of
maintaining safe operations [12]. Taking this point of view, not
only does the lack of situation awareness lead to failures, but
(positive) situation awareness should be seen as a key contribu-
tor to the operator’s ability to mitigate hazardous events as they
arise–improving their resilience [13]. Because of this, designing
resilient complex engineered systems should involve considering
and encouraging agent situation awareness starting from the early
phases of the process (i.e., in concept development and require-
ments formation).

There are three types of situation awareness models: in-
dividual situation awareness (e.g., three level situation aware-
ness theory [14]), team situation awareness (e.g., individual vs
shared situation awareness theory [15]), and Distributed Situ-
ation Awareness (DSA) [16]) models. While individual situa-
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tion awareness models can give important insight into individual
agents’ situation awareness, the situation awareness in a com-
plex system is not merely the sum of individual agents’ situa-
tion awareness [17]. Also, situation awareness in a system may
not always be shared [18, 19]. For example, an air traffic con-
troller and a pilot do not have access to the same system states,
but their situation awareness does nevertheless enable them to
perform their functional roles in the system. Additionally, as
systems become increasingly automated, situation awareness can
no longer be considered solely as a human property–instead, it
must be considered as a property of all elements in a system
that perform control functions (including humans, hardware, and
software) [18]. As a result, DSA models are more appropriate for
complex systems when compared to individual or team situation
awareness models because they take a systemic view of situation
awareness and treat it as a collective outcome rather than an indi-
vidual cognitive process [19, 20]. However, individual situation
awareness models can be used to complement the systemic situa-
tion awareness models by enabling the study of individual agents’
situation awareness [17]. According to the DSA theory [16, 17],
situation awareness is a result of the coordination between the
elements within a system, and thus a property of the system as
a whole. The totality of situation awareness-related information
elements, held by and distributed among the agents and artifacts
(both human and non-human) of the system, represents the over-
all system’s DSA. While the DSA model has been applied in a
variety of industries (e.g., aviation [10], process control [21], mil-
itary [22] medical [23, 24], sports [25], pandemic response [26],
etc.), these applications have only been to either validate the
DSA model, study the DSA of existing systems, promote DSA
in systems that have been already designed, or investigate past
failures. As a result, these approaches have mainly been helpful
for improving systems (in terms of information availability, com-
munications, and organizational structure) after they have been
implemented, rather than taking a proactive design approach.

In the engineering process, DSA should be considered early
on so that operator resilience can be built into the system design
(avoiding costly modifications which would need to happen if
the design was inadequate [27]). Treating situation awareness
as a systemic construct (via the DSA model), rather than an in-
dividual cognitive function, can enable this early design stage
consideration of situation awareness, since it may be treated as a
characteristic of system interfaces (which can be designed) and
interactions rather than the fault of individual agents. One of the
more prominent approaches for considering human accidents is
the Systems Theoretic Accident Model and Process (STAMP),
which focuses on considering systemic interactions between op-
erators and their controlled processes, rather than attempting to
capture the specific chains of events that cause hazards [28, 29].
The resulting STPA hazard analysis and systems engineering ap-
proach has further been developed to prevent human accidents
which occur as a result of inadequate control processes [30]. For
the specific consideration of DSA, the RiskSOAP [31] method
was further developed based on these methods to quantify (and
thus improve) metrics related to DSA. While these approaches are
helpful for understanding situation awareness-related errors, they
are largely conceptual in nature (that is, an analyst must carry out

the resulting hazard assessment process) and are thus inadequate
for the early design of resilience, which may require analyzing the
dynamic behavior of the system over hazardous scenarios across
different design options [32].

In this research, we propose the integration of the DSA model
into a dynamic simulation of system resilience to hazardous sce-
narios to enable designers to model the influence of situation
awareness on resilience during early design stages. To achieve
this, this research will extend the fmdtools toolkit [33] which
is being developed to enable the design and analysis of systems
resilience using a dynamic systems modeling approach. While
fmdtools can currently model human, machine, and software ele-
ments of a system and their interactions [34], so far it has not been
used to analyze situation awareness-related failures at a system
level. While previous work has been conducted to model indi-
vidual situation awareness failures [35], this work did not address
DSA, which requires a more sophisticated analysis to account for
the multiagent nature of the situation–where each agent may take
a number of roles in contributing to the DSA (e.g., perceiving,
storing, processing, communicating, and acting on information).
This research will help shift the focus of DSA models from con-
ceptual models to quantitative simulations and enable the iterative
assessment of different concepts in early design. Additionally, by
approaching DSA errors from a resilience perspective, it will en-
able the study of not just how lost DSA leads to failures, but
of how DSA can prevent externally-caused hazardous scenarios
from leading to high-impact failures. To demonstrate this frame-
work, a case study of a semi-automated airport taxiway will be
presented and used to compare various approaches and metrics
for DSA-based resilience quantification.

2. BACKGROUND
This section details related work in Distributed Situation

Awareness (DSA) theory and explores the tools and frameworks
that model and quantify DSA. Next, we summarize important
context in the development of the fmdtools resilience modeling
framework used (and extended) in this work to model human
errors and resilience.

2.1 Distributed Situation Awareness
Artman and Garbis [36] were the first ones to take a sys-

temic approach to describe Situation Awareness. Their work was
inspired by the the distributed cognition theory [37], according
to which cognition is a systemic function that is a result of the
coordination between the system agents (both human and techni-
cal). Artman and Garbis [36] argued that the system should be
viewed as a unit when analyzing situation awareness, and thus
described situation awareness as an emergent property of the sys-
tem rather than it being individual. Stanton et al. [16] proposed
the Distributed Situation Awareness (DSA) model, which follows
on Artman and Garbis’s [36] work. The DSA theory is built on
eight core tenets [18], which argue that situation awareness is an
emergent behavior of a system and it can hold loosely coupled
systems together. The system’s situation awareness can be repre-
sented by a network of information elements. Each agent within
the system have a different view of this information network, and
these views are dynamic and can change over time based on the
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FIGURE 1: OBJECT-ORIENTED MODELING FRAMEWORK IN FMD-
TOOLS. FROM [33]

goals and tasks performed. Additionally, the situation awareness
related information (knowledge) is owned, shared, or used by the
agents based on the goals of the tasks performed. Therefore,
agents may have different situation awareness for the same situ-
ation, but their situation awareness will be compatible. The ex-
changes (e.g., communications) between agents sustain DSA and
as a result, one agent can compensate for another agents degraded
situation awareness. This view to situation awareness has allowed
the shift from situation awareness being a purely cognitive con-
struct to a systemic construct, which allows the consideration of
situation awareness beyond just humans (e.g., situation awareness
of Autonomous vehicles) [18].

The Event Analysis of Systemic Teamwork (EAST) [38] is
the most commonly used method to model and analyze DSA.
It lays out a systematic process to gather DSA-related informa-
tion (via task analysis, expert interviews, usage logs, observa-
tional studies, or communication logs) and generate three types
of networks; information network, task network, and social net-
work. Then, a composite network that combines the three types
may be used to study DSA further. A specific type of network–
propositional network–is created in this process to capture DSA-
related knowledge effectively. These networks are used to un-
derstand DSA qualitatively and quantitatively via network theory
(e.g., number of connections [39], broken nodes [40], broken
links [41]). Other types of networks (e.g., concept maps [20],
Bayesian Belief Networks [42] have also been used to model
DSA. All of the above methods focus solely on DSA, giving min-
imal attention to the interactions between DSA and other types of
vulnerabilities in the system and their propagation effects. This
approach is insufficient for design, however, since it lacks a way
to concretely map DSA errors onto credible measures of over-
all risk that can be traded against other design considerations.

Taking a different approach, RiskSOAP [31] was developed to
quantify risk-related situation awareness in DSA modeling. This
method quantifies the difference between the systems’ ideal risk
perception expectation versus the current risk perception capa-
bilities. It uses a hazard analysis and an early warning hazard
assessment to identify the ideal and as-is system risk perception.
While this approach accounts for the downstream effects of DSA-
related issues by comparing the end state of the ideal versus the
real system, it only focuses on the DSA related to potential risk.
In this research, we address these limitations by enabling the
modeling of DSA in a dynamic simulation of system behavior so
the downstream effects of DSA (in terms of system performance
and human contribution to (or the lack of) DSA can be studied.

2.2 Resilience Modeling
Resilience modeling is the practice of simulating how a sys-

tem performs under hazardous scenarios over time to enable the
use of a resilience framework/metrics such as the resilience tri-
angle [43]. To enable the assessment of system resilience, the
fmdtools toolkit 1 [33] works by simulating the dynamic effects
of hazardous modes and conditions in a functional model of the
system. This functional model is composed of two types of
nodes: functions (which represent the behaviors of the system
and their associated data structures, e.g., components or activ-
ities) and flows (which represent shared variables between the
functions e.g., the flow of materials, energy, and signals). Flows
enable the propagation of faulty behaviors between subsystems,
however, they also pose a limitation to representing communica-
tions/perception between different agents, since functions in this
framework fundamentally share the same copies of variables.
This representation enables the dynamic simulation of system
resilience that takes a high-level functional view of the system
behaves so that resilience can be considered in early design, be-
fore the system components have been designed in detail.

Recently, to enable the representation of human resilience
in complex systems, the fmdtools modeling approach has been
extended with a number of different human-related constructs,
including human error probability models and action sequence
graphs [35]. Action sequence graphs represent the sequence of
steps needed by a function (or agent/human) to complete a task
in a sequence. These action sequence graphs can be used to rep-
resent individual cognitive constructs (e.g., individual situation
awareness model [14]) or team dynamic constructs (e.g., team sit-
uation awareness model [15]). However, this representation is not
capable of representing the systemic cognitive constructs (e.g.,
DSA) alone, because it lacks a sufficient representation of the un-
derlying interactions between agents and the environment. While
the existing flow implementation (in which functions/agents share
variables) is appropriate for modeling tightly coupled behaviors
(e.g., energy/force/material flows), it is unwieldy to use for sig-
nal flows that constitute messages which must be passed back
and forth between agents. The objective of this research is to
overcome this limitation by augmenting the fmdtools framework
so that it can readily represent not just agent actions, but the
flow of information between agents via communications and thus

1https://github.com/nasa/fmdtools
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FIGURE 2: HIGH-LEVEL FRAMEWORK FOR REPRESENTING DIS-
TRIBUTED SITUATION AWARENESS IN SIMULATION

advance the state of the art in resilience modeling to include
DSA-related resilience considerations.

3. METHODOLOGY
To enable the holistic consideration of Distributed Situa-

tion Awareness (DSA) in systems resilience analysis, this section
presents a framework to represent DSA properties in resilience
simulation models. However, it is first important to understand
how DSA can be represented at a system level so that the related
behaviors (e.g., the process of perception and communications)
can be represented in detail. The systemic representation of DSA
is captured in this work via the system functional model that
embodies the framework shown in Fig. 2, where controllers take
actions in an environment based on stimuli and their transactions
(or communications) with each other. This is in essence a STAMP
model [28], except that the underlying agent process models and
control algorithms are distributed to different agents which may
perform different functional roles in the system. The systemic
representation of DSA is in turn captured in this framework via the
system functional model by using new flow types which represent
the situation awareness transactions. Situation awareness trans-
actions are the exchange of information to and/or from agents and
can be broken down into two main types–distributed transactions,
which are exchanges between agents (e.g., communications), and
distributed stimuli, which are stimuli from the environment per-
ceived by an agent (e.g., what an operator sees). In other words,
the system’s situation awareness is composed of stimuli and ex-
changes. Individual agents have different views of these stimuli
and exchanges, which make them distributed in nature (i.e., Dis-
tributed Stimuli and Distributed Transactions of agents). The
collection of Distributed Stimuli and Distributed Transactions of
an agent will form the situation awareness of that agent. However,
with the exchanges and stimuli, they still need to be perceived,
comprehended, and acted upon which we refer to as Distributed
Understanding and Distributed Actions, as shown in Figure 2.

The next subsection describes how these properties may be
represented for the simulation of DSA-related faults for resilience
assessment.

3.1 Distributed Stimuli
Distributed Stimuli is the agent’s view of a given environ-

mental (controlled or otherwise) phenomenon. That is, each
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Function A

Local Flow B
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Function B

States

<contains>

FIGURE 3: MULTIFLOW STRUCTURE FOR REPRESENTING DIS-
TRIBUTED PERCEPTION

agent has its own independent view of the environment based
on its role, goals, tasks performed, configuration, and perfor-
mance shaping factors (in case of a human agent). Agents may
individually perceive their environment (e.g., by their senses or
instruments). This view of the environment is in turn limited by
the scope of the measurements (i.e., what is being measured), ac-
curacy of the perception, as well as the internal bandwidth (e.g.,
mental capacity) of the agent. Perceiving Distributed Stimuli has
two major considerations for the modeling of resilience: the in-
clusion of fault modes and behaviors. Fault modes are sources of
hazardous scenarios, and constitute potential ways a stimuli may
become unavailable or ways an agent might fail at perceiving the
stimuli. For example, an autonomous rover may not be able to
gauge its position if the video feed is broken (loss of stimuli).
Examples of failed perception include an agent failing to per-
ceive an object or perceiving the wrong number on a gauge. The
second consideration, behaviors, constitute how the agent gath-
ers and fuses this information, and thus whether the perception
fault leads to further hazardous consequences (which may also be
considered an aspect of Distributed Understanding if it requires
cognition). In this work, the MultiFlow class was developed for
representing Distributed Stimuli tasks, as shown in 3. This class
enables agents to each have their own local views of the same
states, and update these views from their “true” values. Faults re-
lated to perceiving Distributed Stimuli may then be implemented
by modifying how local states are updated from their true values
(e.g., by not updating or updating with wrong/modified values).

3.2 Distributed Transactions
Distributed Transactions is the view an agent has to informa-

tion Transactions (e.g., communications, sensor data, situation
awareness, etc.) that occur in the system. Distributed Transac-
tions can be thought of as an extension of the Distributed Stimuli
concept in which states are passed between agents rather than
between agents and the environment. As a result, the Distributed
Transactions is subject to all of the limitations, faults, and behav-
iors which affect Distributed Stimuli. However, when represent-
ing transactions, faults can occur on the side of the sender, on the
side of the receiver, or both. Additionally, behavioral resilience
can be represented both in the behaviors of the individual agents
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FIGURE 4: COMMSFLOW STRUCTURE FOR REPRESENTING DIS-
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(update interval, etc.) but also in the overall transaction structure
(e.g., hub and spoke vs decentralized communications).

In this work, the CommsFlow class was developed to repre-
sent the transfer of information for Distributed Transactions, as
shown in Fig. 4. This class extends the MultiFlow class via the
incorporation of in states and out states, which enable the pass-
ing of situation awareness transactions, either via explicit ports
(carrying transactions to/from a specific agent) or via the generic
in/out port (which carries transactions to/from all other agents).
The passing of transactions is then managed by “inbox” and “re-
cieved” data structures which specify whether a transaction is
currently being sent between two agents, or has already been read
(thus clearing the way for another transaction). The carrying of
transactions is then used by “send” and “recieve” methods, where
sending (on the side of the sender) updates the corresponding out
port for the transaction, and updates the inbox of the correspond-
ing receiver, and receiving (on the side of the receiver) updates
the corresponding port for the state and carries the transaction
receipt from "inbox" to "received" to enable new transactions to
be sent to the receiver. Distributed Transactions faults can then
be implemented by modifying how these messages are passed
between agents (as with Distributed Stimuli) on the side of the
sender or receiver, as well as by modifying the inbox/received
properties of the local CommsFlow of the agent.

3.3 Distributed Understanding
Distributed Understanding is the property of agents to ab-

stract meaningful (as in, actionable) information based on their
situation awareness transactions and stimuli. Since agents are
faced with multiple heterogeneous (and possibly conflicting) sit-
uation awareness transactions and stimuli, they must in turn make
sense of these stimuli and transactions in order to act. This
is limited by mental capacity and reasoning capabilities of the
agents. As such, modeling the Distributed Understanding prop-
erty involves modeling the agents’ internal information process-
ing, reasoning, and decision-making characteristics. The pro-
cess of Distributed Understanding may be different for human

and non-human agents. For instance, for humans, this may in-
volve cognitive reasoning that depends on factors such as per-
formance shaping factors, tasks performed, goals, and mental
model, whereas for a neural network-based autonomous agent, it
may depend on factors such as data quality, training method, and
processing capacity.

As a simulation construct that represents human reasoning,
distributed understanding can be modeled using (1) internal states
(reflecting the agents’ internal understanding of itself or its envi-
ronment) and (2) agent behaviors reflecting the agent’s decision-
making and reasoning (e.g., projection, problem-solving consid-
eration of uncertainty, etc.). The first component may be repre-
sented via an “internal” version of the MultiFlow or CommsFlow
constructs developed in the previous subsections. Behaviors of
internal states of an agent may be represented by considering
how often the states in the flows are updated, the number of states
updated, how the states are processed, and how factors such as
performance shaping factors affect behaviors. For example, for
the perception of Distributed Stimuli, checking a measurement
frequently/infrequently or the number of redundant sources of
information used can be modeled by altering the internal state of
MultiFlow and related behavioral faults may be induced through
the same. For Distributed Transactions, behavioral resilience can
be represented (in addition to updating) via the communications
structure (e.g., ports) and the way transactions are sent/received
by the agents in the CommsFlow.

The second component of Distributed Understanding is more
difficult to represent, since it may be task/scenario and agent de-
pendent. In this work, this part is represented as an integral
component of the agent behaviors, which may be embodied in
simulations as state machines, action sequence graphs, if/else
statements, or a sequence of function calls. While past work [17]
has proposed a DSA model (via Schema theory and Perceptual
Cycle) that model this understanding in humans, there is very
little details in terms of how DSA will be gained and acted upon
in autonomous agents. One is not limited to DSA related mod-
els when choosing cognitive processing models. For simulation
purposes, designers may choose any cognitive reasoning model
(e.g., Three Level Situation Awareness Model [14]) as they see
fit depending on their application. If the modeling is done at
a high level, the cognitive models can be converted to work for
non-human agents to make the Distributed Understanding related
simulations possible for non-human agents. For example, using
the three level situation awareness theory at a high level, agents
have to perceive, comprehend, project, and act upon the situation
awareness-related information regardless of them being a human
or non-human agent. This perspective may be adopted to model
Distributed Understanding in non-human agents. This high level
modeling is especially more feasible during early design stages
when very little system information is available.

3.4 Physical Effects and Metrics
Finally, DSA can be measured by its effects on the agents and

their environment via actions made by the agents as shown on the
right side of Fig. 2. While not explicitly a part of DSA, Distributed
Actions determine the effects which result from the agents’ DSA,
which is a function of agent roles and capabilities. Modeling these
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effects enables the consideration of the external effects of DSA
faults, as well as how feedback between the environment and agent
DSA, understanding, and actions unfolds over time. As a result,
these effects are necessary both for the understanding of severity
(i.e., external consequences of DSA faults) and resilience (i.e.,
how DSA faults unfold over time). Based on these effects, severity
metrics can thus be identified (which have been developed in
previous work [33]) and calculated for the system to quantify the
risks associated with scenario consequences.

Aside from severity metrics, the impact of scenarios on DSA
can be quantified with their own specialized metrics. In this
work, the concept of a “degraded field” is used to developed an
indicator of DSA. A degraded field is a model state that differs
between the nominal scenario and a faulty scenario under test at
a particular timestep, and has been used previously in fmdtools
models to highlight the propagation of faults through the graph.
The degraded field may be calculated as the indicator function 𝑓𝑑
of the nominal value of the field 𝑓𝑛 and fault scenario value of
the field 𝑓𝑠:

𝑓𝑑 = 1𝑓𝑛≠ 𝑓𝑠 (1)

where a 𝑓𝑑 of 1 means the field has degraded, while an 𝑓𝑑 of 0
means the field is nominal. The total percent degradation 𝑝𝑑 of
the system over 𝑛 fields in a system can thus be calculated:

𝑝𝑑 = 100%
∑︁𝑛

𝑖 𝑓𝑑,𝑖

𝑛
(2)

In this work, the number of these degraded fields is tallied up
and calculated as a basis of DSA impact, under the rationale that
perceived distributed stimuli and transactions (which are fields
in the model) which differ from the nominal state are likely to
be incorrect, either because they are themselves a directly result
of a faulty perception or communications, or may be a result of
faulty transaction being passed through the system. This metric
will thus be shown and evaluated Section 4.

4. DEMONSTRATION
In this research, we use an aircraft taxiway model to demon-

strate the modeling of Distributed Situation Awareness (DSA)
using the constructs presented in Section 3. Using this case
study, we plan to analyze if DSA can be modeled and measured
during the early design stages, specifically studying how simu-
lating DSA errors can inform our understanding of resilience in
complex systems design. We also analyze the effects of DSA er-
rors on performance over time (or, resilience) to understand how
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FIGURE 6: AIRCRAFT/HELICOPTER PROGRESSION THROUGH
MODES

DSA-related errors propagate into system-level failures. The next
sub-sections introduce the model, demonstrate two DSA-related
fault scenarios simulated in this model, and then discuss the find-
ings from modeling these scenarios.

4.1 Model Overview
The aircraft taxiway model is composed of Aircraft,

Helicopter, and air traffic control (ATC) functions, as shown
in Fig. 5, along with Ground, Location, and Requests flows.
To describe each function/flow in detail:

• Aircraft land in the landing area, taxi to a gate, park at a gate
for a defined amount of time, and then taxi to the runway and
takeoff. This cycle is shown in Figure 6, which shows the
progression of an aircraft through different modes, as they
circulate through the taxiway. Aircraft can be additionally
be piloted (displayed as MA in the figures) or unpiloted (dis-
played as UAV in the figures)–the main (modeled) difference
being the size and shape of the vision coverage areas. The
vision coverage areas assume a one kilometer visibility. The
vision coverage for an unpiloted aircraft is a circular radius,
resembling perception from sensors whereas for piloted air-
craft, they are a vision cone covering acute, peripheral, and
temporal regions.

• Helicopters land, park, and take off at the helipad shown in
Fig. 7. As such, they can be thought of as a related class to
the aircraft that does not taxi. Helipads can only be occupied
by one helicopter at a time, or there will be a crash.

• The Air Traffic Controller (ATC) assigns areas for take-
off/landing, routes to/from the gate to aircraft, and gives
assets the go-ahead to takeoff/land/taxi when they request it.

• The Ground flow contains the map shown in Fig. 7, along
with three constructs: area_allocation, a dictionary that
tracks map areas an asset may be present in the map given
its instructions (e.g., a taxiing asset would be allocated both
to a gate and runway), asset_area, a dictionary that tracks
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where assets are on the map, and asset_assignment, a
dictionary that tracks where each asset is intended to go.
As a MultiFlow, this flow contains two copies as shown in
Figure 13–the “true” version that reflects what each asset is
doing, and the ATC version that reflects ATC’s perception
of what the assets are doing.

• The Location flow contains position, velocity, and mode
information for each asset. This flow uses the MultiFlow
class to represent asset location as shown in Fig. 8. In
this structure, each asset has a true position (reflecting the
asset’s true state), a perceived position (reflecting the asset’s
perception of its state) and a closest position (representing
the asset’s perception of the closest asset). This closest asset
position is determined by the asset by scanning the vision
coverage area in front of it, and thus can be updated from
all other asset positions while being subject to vision-related
perception faults.

• The Requests flow contains the desired action to be under-
taken by the asset, the clearance by the ATC, as well as
the route assignment given by the ATC. This flow uses the
CommsFlow class to represent the communications between
the ATC and assets, as shown in Fig. 12. As shown, this flow
has a hub-and-spoke structure where each asset communi-
cates solely with the ATC (though more communications
structures are possible with the CommsFlow class).

When these functions and flows are instantiated and simu-
lated in a model, it results in the procession of aircraft and heli-
copter on the taxiway shown in Fig. 7. In this environment, there
are six gates, one dedicated landing runway and takeoff runway,
and one helipad, along with a few segments between the runways
and gates which may be used as routes. Aircraft/helicopters (re-
ferred to as assets, a class they both inherit from) either begin
the simulation in air, or are randomly assigned a gate or runway
in the map. While different parameters (e.g., number of aircraft,
park/land time, etc) can be changed to represent different sce-
narios, this study uses the following parameters. The simulation
progresses for 120 timesteps, where each timestep represents one
minute. In the nominal scenario, each asset in this simulation (2
helicopters, 3 piloted aircraft, 3 UAVs) should be able to success-
fully land, park, and takeoff without any accidents, however, this
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performance may be modified by fault scenarios (or simulating
under other parameters, e.g., more aircraft). The next subsec-
tions show the performance of this model in two DSA-related
fault scenarios.

4.2 Scenario 1: Aircraft Vision Reduced
To demonstrate the use of this methodology to model the ef-

fects of perception faults, in this section the scenario of reduced
aircraft vision is considered. In this scenario, the pilot’s vision
coverage is reduced such that they cannot perceive the closest
aircraft on the taxiway, resulting in loss of DSA. However, they
are still able to navigate the runway through other means. To
demonstrate this scenario, the fault was injected at t=1 in the
ma3 aircraft. This fault leads to no immediate hazardous con-
sequences, since the aircraft is not in close contact with other
aircraft until it is queuing to takeoff behind the aircraft ma2 at
t=93, as shown in Fig. 9. At this point, as shown in Fig. 8, the
asset ma3’s closest location flow is degraded from nominal,
causing it to degrade its own perceived location, as well as
ma2’s closest location flow (and thus it is containing true
location). This causes it to crash into ma2 from behind, as shown
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in Fig. 9. As shown in Fig. 10, ma3’s loss of DSA relating to
its closest asset also results in the degradation of operations of
aircraft ua2 and ua3, which are unable to takeoff and complete
their mission due to the blocked runway.

The progression of this simulation is shown in Fig. 11, where
degraded fields means the number of model states that were in
a degraded state, cycle assets means the number of assets that
were activated, and faulty assets means the number of assets that
were in a fault mode. As shown, the vision fault injected at t=1
causes a small percentage of fields to degrade from their nominal
values (mostly those localized/related to the ma3 asset). This
changes when the crash occurs at t=93, resulting in an additional
faulty asset, as well as a large increase in degraded fields, since
both assets are now immobilized and no aircraft can take off.
This results in a reduction in cycled assets after that point, since
only the helicopters can take off. The results of this scenario at
the final timestep are shown in Table 1. As shown, despite the
fault only directly causing an additional fault in the other aircraft
because of the crash, it still results in half of the assets not being
able to complete their mission, even though only 1/3 of the fields
are degraded. This shows how loss of DSA in an individual asset
can result in non-localized system-level consequences, even if the
rest of the system is functioning properly.
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TABLE 1: FINAL SUMMARY METRICS FOR VISION FAULT

cycled assets (%) degraded fields (%) faulty assets (%)

50.0 29.518072 22.222222

This demonstration further shows how failures in perception
can be represented in a simulation model. In this case, a specific
perception behavior (perceiving the closest asset location within
a vision coverage zone) was modified, resulting in poor actions
(getting too close to the asset in front of it and thus crashing).
This in turn affects the environment, and thus the perceptions,
understanding, and actions of the other agents (not being able
to take off), in line with the DSA framework in Figure 2 with-
out an explicit communications component. This limitation in
communications is present in that the driving behaviors assume
the aircraft rely on line of sight to navigate along set routes and
there is no communications between aircraft or the ATC to in-
tervene if they detect aircraft getting too close. This was done
to demonstrate perception faults individually–to better show the
full framework, the next scenario studies a combined percep-
tion/communications fault.

4.3 Scenario 2: ATC Inappropriately Clears Landing
To demonstrate the simulation of communication-based

DSA-related faults, this section showcases a scenario in which
ATC inappropriately clears aircraft for landing. In this scenario,
the ATC incorrectly directs an aircraft to land when there is an
aircraft on the runway. This is similar to the “near miss” event
that happened in February 2023 in which a FedEx cargo plane
was cleared to land as a Southwest flight was set to take off. In
this event, the cargo plane was able to pull up at the last minute,
averting catastrophic consequences [44]. However, it would have
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been foreseeable for the pilots to not perceive the aircraft on the
runway in time. To model this potential worst-case outcome of
the near miss event, we simulate the joint fault in which the de-
scending aircraft does not perceive the aircraft on the runway,
resulting in loss of DSA.

This joint fault scenario was modeled by first injecting a
wrong land command fault in the atc function at time t=8,
followed by a lost sight fault in the ua2 asset at time t=10,
during the time when aircraft (ma3) is currently taxiing on the
runway after just landing. The wrong land command is reflected
in the incorrect requests at time t=10, as shown in Fig. 12, which
propagate to the aircraft currently in the air (ua2, h2, and ua3). It
further results in modified area allocations and asset assignments,
as shown in Fig. 13. However, while these assets are cleared to
land, only ua2 attempts a landing, because of its lost sight
fault, which prevents it from seeing the aircraft ma3 on the runway.
In other words, even though the wrong land command caused
the

DSA of the assets in the air to degrade, most of them (ex-
cept for the one with additional DSA degradation’s) were able
to avoid the crash, because they were able to gain DSA through
other stimuli (visual inspection) in the environment. The crashed
aircraft was not able to gain situation awareness because of the
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lack of vision.
This results in the crashes shown in the respective assets, as

shown in Fig. 13, and Fig. 15, which occurs because ua2 lands
when ma3 is still taxing on the runway. The sequence of the fault
events and metrics is then shown in Fig. 16. As shown, the faults
injected early in the simulation cause a single additional faulty
asset (ma3) due to the crash, resulting in 33% of the modeled
assets being faulty (the atc, along with the two ground assets).
This also leads to a high number of degraded fields immediately
after the scenario, since these aircraft cannot land. Nevertheless,
aircraft continue to cycle, since the takeoff runway is clear and
most of the aircraft have already landed and are thus not blocked
from taking off. The results at the final timestep are shown in
Table 2.

This scenario demonstrates how SA transactions related er-
rors can be modeled in simulation. In this case, communications
faults send incorrect information to agents, which in turn either
correct for this information (by avoiding the runway at the last
minute) or, in the case when they cannot correct for this informa-
tion (by having inadequate perception), take faulty actions (land
at the wrong time). It is also a case that further strengthens the
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TABLE 2: FINAL SUMMARY METRICS FOR ATC CLEARANCE
FAULT

cycled assets (%) degraded fields (%) faulty assets (%)

62.5 24.096386 33.333333

idea that simulation can be used to represent DSA for the assess-
ment of system resilience. Often, resilience is seen as a property
of human-operated systems that can mitigate the many potential
errors which may come up in operations–ensuring they become
“near misses” instead of catastrophic failures [12]. As demon-
strated here, simulation can be used to represent what would
happen with or without human behavior that promotes system
resilience (e.g., seeing the runway or not seeing the runway in
time).

4.4 Discussion
This demonstration showed how Distributed Situation

Awareness can be simulated in the context of hazardous sce-
narios for the quantification of human resilience using the con-
structs introduced in Section 3. The first scenario showed how
poor perception (and the resulting DSA degradation) can lead to
hazardous actions (and thus consequences) in a situation where
Distributed Transactions and Distributed Understanding are not
able to provide checks on information. The second scenario
showed a situation where a communications error can combine
with a perception error to lead to hazardous actions. As shown,
both simulations give results which would be expected from their
given scenarios, despite being modeled at a high level of abstrac-
tion. We thus think there is significant merit in using simulations
to quantify hazards and resilience related to DSA.

In this work, a variety of metrics were used to character-
ize both scenario severity (cycled assets, faulty assets) and DSA
impact (degraded fields). One of the main differences between
these metrics is their relative severity and impact–that is, de-
graded fields/cycled assets are likely to vary significantly (and
this impacts a large number of assets), their overall severity is
low. Faulty assets, in contrast, is relatively bounded to two to
three assets which are likely to communicate poorly and/or crash,
however it is a high severity metric, since it affects pilot and
passenger safety. Another main difference between these met-
rics is that severity metric characterizes how bad an outcome
is, while the DSA-related metric (degraded fields) characterizes
the change in DSA between the nominal scenario and faulty sce-
nario. In general, degraded fields is a weak indicator of DSA,
since it merely quantifies whether states in a given condition have
changed, rather than explicitly calculating which fields are mod-
ified in error (e.g., because their agent is faulty) and which field
are being modified correctly (i.e., because their agent is correctly
perceiving a changed environment). Future work should develop
and implement more sophisticated metrics for quantifying DSA
errors which take into account intended and unintended modified
behaviors.

However, this demonstration also highlights some of the lim-
itations of this framework in understanding the “distributed un-
derstanding” component of DSA. In general, operators have more

sophisticated capabilities to fuse multiple sources of data to rec-
ognize and correct for errors, which is a major contributor to
human resilience. Poor human understanding (i.e., inadequate
mental models) can also contribute to human errors by causing
operators to take inappropriate actions which they thought were
appropriate. Thus, while the taxiway model has (simple) human
decision-making components, to fully develop a human resilience
assessment that fully embodies the overall framework in Fig. 2,
future work should investigate and develop constructs and/or a for-
malism specifically for representing the human decision-making
component. One way to achieve this is to implement cogni-
tive reasoning models (e.g., Perceptual cycle theory, three level
situation awareness model, etc.) to model the distributed under-
standing constructs. Nevertheless, the usefulness of this work
without these components should be apparent from the demon-
stration in Section 4–specifically, it enables us to represent the
potential (realistic) propagation and effects of DSA-related errors
and track the progression of DSA over time.

5. CONCLUSION
To conclude, distributed situation awareness is a key as-

pect of systems resilience which can (when distributed situation
awareness is weak) lead to hazards or (when distributed situa-
tion awareness is strong) prevent them from occurring. Situation
awareness stimuli and transactions are furthermore key compo-
nents of distributed situation awareness. To readily enable the
consideration of distributed situation awareness for simulations
of system resilience, this paper developed specific modeling con-
structs for representing the situation awareness transactions be-
tween agents and their environment in which each agent is able
to have copies of system state representing its own awareness of
the system, as well as messages to and from other agents. When
integrated in the context of an overall system model, this enables
the propagation of distributed situation awareness-related faults
and the quantification of related hazards and distributed situation
awareness degradation.

This framework was demonstrated in the context of a model
of aircraft and helicopters navigating an airport taxiway by the
direction of air traffic control. As shown in Section 4, this method-
ology was helpful for understanding how lack of awareness (from
degraded perception, communications, or understanding) results
in hazards, either in terms of direct consequences, or in terms
of consequences which could occur in joint failure scenarios.
Because of the high-level of abstraction and simplicity of the
underlying model, using this tool can shift the application of dis-
tributed situation awareness modeling from later design stages
to earlier design stage. As a result, the simulation can be used
to proactively design the system (to form requirements) rather
than reconfigure the system afterward using operational data.
Furthermore, because it is based on an underlying simulation,
it enables the iterative testing of different distributed situation
awareness strategies and assumptions, rather than relying on de-
signer knowledge alone. This can lead to a better understanding
of system vulnerabilities early on, allowing designers to build
distributed situation awareness error mitigation into the system
rather than treating it as an afterthought. Additionally, the abil-
ity to model distributed situation awareness-related faults along
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with other types of faults sets this frameworks apart from exist-
ing distributed situation awareness modeling frameworks. This
will allow designers to analyze how the different types of faults
interact and if distributed situation awareness can help mitigate
any of the other types of faults. This framework can thus enable
designers to build more resilience systems that are less prone to
accidents.

The main limitation with this methodology is the representa-
tion of agent (both human and non-human) understanding in the
context of distributed awareness. In the future, we would like to
add further constructs to represent this piece of distributed situ-
ation awareness at a greater level of specificity and fidelity. We
would also like to demonstrate this scenario in a complete human
behavioral modeling framework with human actions represented
as Action Sequence Graphs, as has been done in the past [35].
Additionally, as was noted in Section 4.4, very few distributed
situation awareness-specific measures have been developed in
this model, and those that have (field degradation) have major
limitations. Future work should thus enable the modeling of a
number of different metrics in this framework to fully represent
the degradation of distributed situation awareness. Finally, to
better demonstrate the usefulness of this approach in identifying
hazards, we would like to explore the use of hazard sampling
techniques to automatically create a list of potential ditributed
situation awareness-related hazards.
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