
Uncovering Hazards Using Multi-Objective Optimization to
Explore the Faulty State-Space

Inga A. Girshfeld ∗

USRA (NASA Ames Research Center), Moffett Field, CA, 95035
University of Southern California, Los Angeles, CA 90007

Daniel Hulse†

NASA Ames Research Center, Moffett Field, CA, 95035

Lukman Irshad‡

KBR, Inc (NASA Ames Research Center), Moffett Field, CA, 95035

Abstract
A key part of resilience analysis is identifying modes of failure which may affect system function. While there is an

opportunity for scenario generation approaches to augment the tedious and error-prone process of mode identification,
existing approaches are not suited to this task, often returning sets of scenarios which are essentially redundant with each
other, rather than a set of distinct modes. In this work, we demonstrate an approach to enable computational failure mode
identification by generating a tractable, unique set of hazardous parameters using multi-objective optimization. In this
approach, a set of scenarios is optimized along two objectives characterizing scenario uniqueness and severity. To best
solve this problem, we propose the use of a cooperative co-evolutionary algorithm (CCEA) that separates the generation
and optimization of individual scenarios from the selection of the combined set. To understand the performance and
usefulness of this approach, we demonstrate it in the generation of drive fault scenarios in an autonomous rover case
study. We then use this case study to (1) benchmark the CCEA algorithm against a more conventional evolutionary
algorithm and (2) explore the solution trade-space over input and response-based uniqueness objectives to better
understand the effect of objective formulation on solution quality. As shown, this approach enables the discovery
of a variety of heterogeneous high-severity scenarios, however, its performance at this task is highly sensitive to the
formulated objectives and their weights.

I. Introduction
One major consideration in the design of resilience is the mitigation of unforeseen “black swan” hazardous

scenarios [1, 2]. While there a variety of methods to achieve this, such as developing generic properties of fault tolerance
and “graceful extensibility,” one of the most effective means is to try to better identify and thus foresee and account for
these scenarios directly [3, 4]. While this is often thought of as a discursive process (i.e., where designers think about
possible failure paths [5]), there is opportunity to leverage computational scenario generation methods to explore the
system state-space to identify novel scenarios which a design team would not have thought of otherwise.

Previous work using scenario generation for resilience-based design has largely focused on the design of infrastructure.
One major application is the management of renewable power sources (such as wind [6], solar, and hydro [7]) for
forecasting potential future power output and loads [8] in a future energy environment [9] given current and past
operational data [10, 11]. This can in turn inform operators or even enable the optimization (see: [11]) of energy
allocation in response to these potentialities. Scenario generation is also used in the resilience-based design of
infrastructure systems to simulate hazards which may occur in operations. Some examples include the generation
of natural disasters (e.g., winter storms [12] and wildfires [13]) to model their effect on power distribution [14], the
synthetic generation of droughts to model their effect on urban water distribution systems [15], and the generation of
meteorological conditions to quantify their effect on airport pavement networks [16]. While the goal of these methods is

∗Research Intern, Intelligent Systems Division, Mail Stop N269-2, Moffett Field, CA 94035
†Software Systems AST, Intelligent Systems Division, Mail Stop N269-2, Moffett Field, CA 94035
‡Research Engineer, Intelligent Systems Division, Mail Stop N269-2, Moffett Field, CA 94035

1

generally to generate “plausible” scenarios based on historical data, exploratory analysis outside the sample region can
additionally help identify potential scenarios when there is no data (e.g., in a novel system design) [15].

The use of scenario generation for the general design of resilience is a relatively new concept. Previous work
incorporating scenario generation either focused on specific applications (e.g., cognition [17], infrastructure, etc.) or on
the ability to generate increasingly complex types of scenarios for evaluation (i.e., joint failures [18–20]). Some existing
research on algorithmic scenario identification has additionally been developed to identify risk scenarios from structural
attributes [21] and search for most likely failure scenario given a probabilistic model [22]. To explore how scenario
generation could be used in resilience-based design to discover unforeseen hazards, the authors previously developed
the technique of synthetic mode generation [23]. This method extended the traditional mode identification process by
sampling a space of potential hazardous states, which was shown to increase the number of discrete failure trajectories
revealed compared to manual identification. However, this approach came at a significant amount of computational
expense and generated many essentially duplicate modes because it was based on an exhaustive search. This problem is
additionally present in many search-based scenario generation approaches, which typically converge on a worst-case
failure scenario (and scenarios similar to it) unless guided by domain knowledge [24], thus providing limited and
redundant information about potential failure paths.

A. Contribution
To ensure the many unique ways a system will fail are mitigated in design, it is instead desirable for scenario

generation methods to not just return the set of worst-case scenarios (which may be redundant with each other each
other), but a set of heterogeneous failure modalities. To enable this, previous work posed the scenario generation
task as a multi-objective optimization problem with objectives for (1) the aggregate hazard function (e.g. severity,
probability, risk, etc.) and (2) the aggregate uniqueness of the modes, defined as the nearest neighbor distance of the
states [25]. A diversity-based genetic algorithm was further proposed to solve this type of problem, with an early proof
of concept demonstration returning good results from the approach. In this paper, we intend to further study (1) the
multi-objective nature of this formulation of the scenario generation problem (i.e., the trade-off between aggregate
severity and uniqueness) and (2) the effectiveness of a Cooperative Co-evolutionary algorithm on this domain, which
we hypothesize will perform well in this domain by separating the optimal generation of each mode from the optimal
combination of modes in a set. This study will be performed over an autonomous rover case study in Section IV,
where the algorithm is used go generate modes in the drive system. The remaining sections provide background for the
methodology (Section II), outline the approach (Section III), and discuss the findings of this case study demonstration
(Section V-VI.

II. Background
To further contextualize this work, this section presents background on previous Scenario Generation approaches

(Section II.A) as well as the Cooperative Coevolutionary Algorithm (Section II.B) adapted in this work to the mode
generation problem.

A. Scenario Generation
The concept of scenario generation has been formally defined in the field of stochastic programming as a set of

approaches used to accurately represent an underlying probability distribution with a few defined points, or scenarios [26–
28]. A wide variety of methods have been formulated for this, including monte carlo (and pseudo-monte carlo)
methods [28], hidden markov models [29], moment matching [30], finite-element/discretization [31], tree search, and
numerical integration-type approaches [26]. This formulation has application to stochastic programming problems in
which the goal is to make an optimal choices that will result in uncertain outcomes (e.g., design under uncertainty or
portfolio optimization problems), where it has been shown that different risk attitudes can effect the choice of generation
strategy [32]. However, considering scenario generation techniques solely within the context of stochastic programming
techniques limit their usefulness–specifically, when the underlying probability distributions are not known or there is
not good real-world data [27], making this approach difficult to rely on for every decision. Scenario generation has
thus come to encompass a wide range of techniques for identifying particular sequences of events with a wide range of
applications outside of optimal decision-making under uncertainty.

Scenario generation is used in many human-in-the-loop simulation approaches where it is desirable to keep the
number of scenarios small due to the costs of working with human participants. Scenario generation is thus often used

2

to develop training simulations for first responders [33, 34] and military personnel [35, 36] to ensure that they learn
how to operate systems in a wide range of situations. While many of the underlying techniques for training scenario
generation share similarities with traditional approaches, they have been heavily modified toward meeting the individual
needs of the students [35], rather than optimizing decisions. Outside of the training application, scenario generation has
been used in human-in-the-loop simulations for simulation of air traffic control systems [37, 38] and exploring the space
of potential product use-cases [39] to limit the number of simulations each participant needs to perform over while still
presenting a variety of circumstances.

Scenario generation approaches are used often in the design and testing of software and systems, where the goal is to
generate test cases over which the software can be evaluated to have correct (or incorrect) behavior. In these approaches,
the goal is generally to achieve product safety/quality by ensuring that the designed system (1) performs as desired in a
wide range of use-cases without introducing undesired failures and/or (2) effectively mitigates potentially hazardous
scenarios. In the broader field of systems engineering, scenario generation has been used in the context of a system
model to ensure that the structure and operations actively mitigate risks [21, 40, 41]. In software engineering, scenario
generation approaches have been traditionally used to ensure a given program will function correctly over every single
edge-case [42–44] based on an interaction model. Newer, more challenging software applications (e.g., automated
driving) have vastly increased the need for sophisticated scenario generation approaches, because the space of potential
situations is very large and the software has an active role in maintaining system safety.

In the design of autonomous vehicles specifically, scenario generation procedures are being developed to test that
a vehicle can respond to the wide range of simulated driving situations normally expected of a driver [45]. Three
types of approaches have been presented for this–data driven approaches (where previous data is used to sample or
generate realistic driving scenarios), knowledge-based generation (where known cases are used directly or used to guide
a scenario generator), and adversarial generation (where the goal is to find scenarios most likely to bring the system
to failure) [46]. Adversarial generation approaches are split into methods that generate static scenarios (single-event
scenarios where parameters are set at a single timestep, e.g., there is an object in the roadway) and dynamic scenarios
(multi-event scenarios with different parameters at each timestep) [46]. Stress testing is a type of dynamic scenario
approach which formulates the generation of likely failure scenarios as a markov decision process [47], and has been
used both for automated driving [48] and aircraft collision avoidance [49, 50]. One of the difficulties with stress testing
is that it often returns many very similar failure scenarios, rather than all of the potential paths to failure, a problem
which has previously been solved by augmenting the search with domain knowledge [24]. A previous static generation
approach has proposed a diversity-based genetic algorithm to better explore the space of potential hazards in scenario
generation [25]. In this research, we seek to advance on this approach by (1) further defining and exploring the multi
objective nature of the problem and (2) presenting a cooperative co-evolutionary algorithm adapted to this type of
problem.

B. Cooperative Co-evolutionary Algorithm
Cooperative co-evolutionary algorithms (CCEA) were developed to solve optimization problems of increased

complexity, specifically, with interacting co-adaptive sub-components [51]. Inspired by evolutionary mutualism, an
interaction within biological systems between species that is beneficial to both [52], CCEAs take into consideration
the effects of interactions between species (parts or components of the overall system) in the evolution of the overall
solution vector. This is in contrast to traditional evolutionary algorithms which evolve the entire solution vector
monotonically [53]. This can be helpful in optimization problems where coupling relationships between components
require them to be co-optimized together [54]. To implement a CCEA, the complex optimization problem is decomposed
to “species” sub-populations which correspond to the partitions of the overall solution vector, which may be permuted at
each iteration. Then, individual representatives from each sub-population are selected, their fitness is evaluated with
respect to the other representatives, and selected for the next generation [51, 53].

In systems with readily-decomposable components (e.g., multiagent systems [55]) with “local” and “global”
objectives to be considered at each level, CCEAs have been observed to enable increased optimization performance by
accounting for the problem structure [56]. These decentralized optimization domains (e.g., [57]) are analogous to the
problem considered in this paper, where individual mode properties (i.e., severity) can be readily decomposed while
others (i.e., uniqueness) require evaluation in the context of a set. We thus hypothesize that a well-implemented CCEA
can outperform a similarly-constructed evolutionary algorithm on the scenario generation problem.

3

III. Methodology
This paper presents a method to search for unique hazardous modes in the faulty state-space, a vector space which

defines input to the system model which includes (but is not limited by) known failure scenario attributes. To present
this method, Section III.A shows the multi-objective optimization-based formulation of the scenario generation problem,
which, when solved, returns a set of hazardous and unique failure modes. To most effectively solve this problem,
Section III.B then proposes a cooperative coevolutionary algorithm for searching modes with the state-space and
selecting the best (most hazardous and heterogeneous) set of modes.

A. Problem Definition
In this research, the task of finding a tractable set of unique modes (defined as perturbations of the system state)

which cause the most harm is considered. This task may be formulated as the multi-objective problem of finding the
set of modes 𝑅 = {®ℎ𝑖}𝑛𝑖=1 that maximizes the severity 𝑓1 and uniqueness 𝑓2 of the modes, where ®ℎ = [ℎ1, . . . , ℎ𝑠] is
the combination of 𝑠 health states defining each of the 𝑛 modes in the set. The resulting constrained multi-objective
optimization problem is:

maximize
𝑅

𝑓1 (𝑅), 𝑓2 (𝑅)

subject to 𝑔 𝑗 (𝑅) ≤ 0, 𝑗 ∈ N
ℎ𝑘 (𝑅) = 0, 𝑘 ∈ N
𝑅 ∈ Ω ⊆ R𝑛 × R𝑠 .

(1)

In general, the objective 𝑓1 is a function representing the aggregate severities resulting from the simulation of each
individual mode, which may be represented as a cost function 𝐶 for each individual mode and evaluated over the set as
the sum:

𝑓1 (𝑅) =
𝑛∑︁
𝑖=1

C(®ℎ𝑖) (2)

We define the uniqueness objective 𝑓2 in two different ways. In general, the uniqueness of the set of modes can be
defined as the sum of the nearest-neighbor distances between the states of the model 𝑥:

𝑓2 (𝑅) =
𝑛∑︁
𝑗=1

min𝑖≠ 𝑗 | | ®𝑥 𝑗 − ®𝑥𝑖 | |2
𝑁 𝑗

(3)

where 𝑁 𝑗 is an optional normalization factor for the dimension (e.g., 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛). Two formulations can thus be
created with this form of objective in mind. In Formulation 1, the goal is to maximize the uniqueness of the modes in
the faulty state-space, meaning that ®𝑥 = ®ℎ. In Formulation 2, the goal is to maximize the uniqueness of the modes in the
resulting set model states ®𝑒 resulting from the fault simulation (e.g., trajectories, damage, etc.). These two formulations
will be explored and compared qualitatively in the Demonstration section (Section IV).

B. Algorithms
We propose solving the problem formalized in Equation 1 with a cooperative co-evolutionary algorithm (CCEA).

CCEAs enable the combined optimization of individuals and teams in problems where individual and team performance
can be separated (e.g., multiagent coordination problems). As shown in Figure 1, this can be contrasted with a more
conventional evolutionary algorithm, where the entire team (or solution) is permuted and evaluated at once. We thus
claim that CCEAs are well suited to the search of hazardous modes, where the goal is not just to provide high-impact
modes (at the individual level), but also to provide a heterogeneous set (at the team level). While many implementations
of cooperative coevolutionary algorithms exist [58], we develop our own implementation in this research which is
adapted to the scenario search task defined in the problem defined in Equation 1. This algorithm is shown in Figure 1,
with each step explained in detail in the next sub-sections.

1. Instantiation
During instantiation, each mode sub-population is initialized with random modes in the space. Mathematically, the

algorithm defines parents, 𝑃 = {𝑆 𝑗 }𝑛𝑗=1, such that 𝑛 is the number of sub-populations and 𝑆 𝑗 = {®ℎ𝑖}𝑘𝑖=1, where 𝑘 is the
number of individuals per sub-population ®ℎ𝑖 = (ℎ1, . . . , ℎ𝑠)𝑖 , where 𝑠 is the number of faulty states. At this point, each

4

Sub-Populations

M
od

es

Representatives

Existing Sub-
Populations

Offspring

2: Permutation

1: Instantiation

7

7

8 3 8
3 57 8 5

8

3

5 7 7
3 83 5 3

3: Evaluation

f(r1)=7

f(r2)=8

f(r3)=5

f(r4)=3

4: Selection

Combination

Fitness
Assignment

False

g=g+1

True

f(r2)>f(rbest)?

rbest

Result
Saving

Outputting
Results

rbest

g>ngen?

7
78

87 8
87 7

8

Selected Sub-
Populations

g=0

Mutation

Crossover

Modes

Po
pu

la
tio

n

Existing
Population

Offspring

2: Permutation

1: Instantiation

3: Evaluation

f(s1)=7

f(s2)=8

f(s3)=5

f(s4)=3

4: Selection

Fitness
Assignment

False

g=g+1

True

f(s2)>f(sbest)?

sbest

Result
Saving

Outputting
Results

sbest

g>ngen?

g=0

Mutation

Crossover

8
3
5

7 Selected
Population

Cooperative
Coevolutionary

Algorithm
Evolutionary

Algorithm

Fig. 1 Overall Cooperative Co-evolutionary Algorithm Compared to a Traditional Evolutionary Algorithm

of these modes are simulated in the model, giving the individual severities 𝐶 (ℎ 𝑗) and output states 𝑒 𝑗 which are saved
as properties of the mode. Note these states are only evaluated once on instantiation to reduce the computational cost
associated with re-evaluating already-simulated modes. This further enables simple evaluation of global fitness values
in Step 3 and 4, which are relatively simple mathematical operations. Steps 2-4 are then performed in a loop:

2. Permutation
To supplement the existing sub-populations, a copy of the sub-population is permuted with mutation and crossover

operations and added from a new overall set of sub-populations, resulting in the offspring population 𝑂 = {𝑆′
𝑗
}𝑛
𝑗=1. In

our implementation of the CCEA, the states of the mode ®ℎ are permuted using a normal distribution in the mutation step:

ℎ𝑖𝑚𝑢𝑡 = 𝑁 (ℎ𝑖𝑜𝑙𝑑 , 𝑤 ∗ (ℎ𝑖𝑚𝑎𝑥 − ℎ𝑖𝑚𝑖𝑛) (4)

which is then truncated within the range of possible health-states:

ℎ𝑖𝑛𝑒𝑤 =

ℎ𝑖
𝑚𝑖𝑛

if ℎ𝑖
𝑚𝑖𝑛

< ℎ𝑖𝑚𝑢𝑡

ℎ𝑖𝑚𝑎𝑥 if ℎ𝑖𝑚𝑎𝑥 > ℎ𝑖𝑚𝑢𝑡

ℎ𝑖𝑚𝑢𝑡 otherwise
(5)

where ℎ𝑖𝑛𝑒𝑤 is the new faulty state value, ℎ𝑖
𝑜𝑙𝑑

is the old faulty state value, 𝑤 is a range factor (which was set to 0.25
after some experimentation) and ℎ𝑖

𝑚𝑖𝑛
and ℎ𝑖𝑚𝑎𝑥 are the minimum and maximum faulty state values in the range.

Crossover, on the other hand, takes an existing mode and combines its states with the previous mode in the
sub-population at a random point. As with the instantiation of new modes, these new modes are simulated as they are
created to determine the resulting severities and output states to be used in the evaluation steps.

3. Evaluation
To evaluate the sub-populations, representative modes from each sub-population are combined to create representative

solution vectors which can then be evaluated in terms of the objectives 𝑓1 and 𝑓2. In this process, each sub-population
is sampled to generate a solution vector, 𝑅𝑙 = {®ℎ′

𝑗
}𝑛
𝑗=1 for resulting in the set of representatives {𝑅𝑙}𝑚𝑙=1. Since an

5

exhaustive elaboration of representatives is computationally costly (O(𝑛𝑘)), 𝑚 of these solution vectors are created at
each iteration in this research, where 𝑚 was set to 1000. It should be noted that many more sophisticated methods for
creating this set exist in the literature, such as hall of fame evaluation [57], which may be explored in future work.

To evaluate the solutions, the objective values 𝑓1 and 𝑓2 are evaluated using the existing values stored in the modes
created on instantiation. These objective values are then combined using the weighted sum approach:

𝑓 (𝑅𝑙) =
𝑤

𝐶𝑚𝑎𝑥 ∗ 𝑛
∗ 𝑓1 (𝑅𝑙) +

1 − 𝑤

𝑛
√
𝑠

∗ 𝑓2 (𝑅𝑙) (6)

where 𝐶𝑚𝑎𝑥 is the maximum severity cost, 𝑛 is the number of modes, 𝑠 is the number of dimensions making up the
state-space defining mode uniqueness, and 𝑤 is a weighting factor chosen by the analyst to weight objectives. At this
point, the vector 𝑅𝑙 is compared with the previous best representative solution and replaced if it has a higher overall
objective value. The algorithm may then terminate if the maximum number of generations is reached.

4. Selection
Finally, the modes are selected based on their performance in the representatives. In this work, we use leniency

(see: [57]) as a heuristic to assign credit to modes, meaning that the local fitness for each mode in each sub-population is
determined to be the maximum value of the representatives it is involved in, or

𝑓 (ℎ𝑖) = max
𝑅 𝑠.𝑡. ℎ𝑖 ∈𝑅

(𝑓 (𝑅)) (7)

Based on these fitness values, each sub-population undergoes a selection process, in this case taking the modes with the
top 50% of local fitness values to carry on to the next generation.

IV. Demonstration
To demonstrate the use of the multi-objective optimization formulation of the scenario generation problem as well

as the performance of the CCEA algorithm, we consider a case study of finding fault modes in the drive system of an
autonomous rover. This rover was developed in previously to study a variety of resilience simulation methodologies,
including the exhaustive generation of failure modes [23]. The goal of the rover is to perform a basic autonomous
driving task by following a line-marking from a given start to given end location. The structure of the rover can be
viewed in Figure 2b and is comprised of control, avionics, drive and power systems, in addition to its interaction with
the environment. While there are a variety of possibilities for input lines for the rover to follow, the route used in this
paper for demonstration purposes follows an L-Curve as seen in Figure 2a. If the rover deviates from the center line, it
may go off course and crash into its surroundings. If it deviates more than a meter from the center line, the rover can no
longer see the center-line and stops moving because the rover has crashed.

Modes considered in this case study a mode are made up of the faulty state vector ®ℎ = [ℎ 𝑓 , ℎ𝑑 , ℎ𝑡] where ℎ 𝑓 , ℎ𝑑 ,

and ℎ𝑡 represents friction, drift and transfer in the drive system, respectively. The severity of these modes is evaluated
by injecting them as the rover enters the turn and simulating the progression of the rover until it stops itself, crashes, or
reaches the desired end-location, at which the end-location and deviation from the center-line is recorded. This line
distance measure 𝑑𝑙 (®ℎ 𝑗) is used in this work as the severity of fault modes in 𝑓1. Thus:

C(®ℎ 𝑗) = 𝑑𝑙 (®ℎ 𝑗). (8)

The set of modes to identify is then 𝑅 = {®ℎ 𝑗 }𝑛𝑗=1, 1 ≤ 𝑙 ≤ 𝑛𝑘 , a set of 𝑛 desired ®ℎ 𝑗 vectors that maximizes this line
distance metric 𝑑𝑙 in Equation 2 as well as the uniqueness metric in Equation 3.

In the next subsections, two formulations of the multi-objective search problem are used for this rover. In the
first formulation, objective for the uniqueness of solutions (Equation 3) is defined in terms of distance in the faulty
state-space (i.e., distance between fault-state vectors). In the second formulation, solution uniqueness is defined in terms
of distance in the results space (i.e., distance between rover final end-locations). In the next subsections, each of these
formulations are studied and compared qualitatively on the basis of both uniqueness considerations (spanning the faulty
state-space and results-space), as well as the resulting distribution. To form the basis for this comparison, the CCEA
algorithm is first bench-marked to show its overall effectiveness.

6

0 10 20 30 40
x-distance (m)

0

10

20

30

40

y-
di

st
an

ce
(m

)

Fault Trajectories
bounds
nominal
faulty

(a) Chosen L-shaped rover trajectory

Power

Operator

Communications

Perception

Avionics

Override

Drive
Environment

Ground

Pos_Signal

EE_12

EE_5

EE_15

Video

AvionicsControl

MotorControl

Control

Comms
OverrideComms

Obstacle
Healthstates

(b) Structure of rover model in this case study.

Fig. 2 Rover Case Study Model Environment and Structure

A. Algorithm Performance Comparison
To test the merit of the CCEA algorithm on the mode search problem, this section compares the CCEA algorithm

with an evolutionary algorithm and monte carlo search. To perform this comparison, the algorithms were run using
similar parameters over 100 generations in Formulation 1 of the rover optimization problems with equally-weighted
objectives. The resulting average best solution over 20 runs is shown in Figure 3. As shown, the CCEA consistently
outperforms the conventional evolutionary algorithm, especially early in the search, meaning that it is both a more
efficient and effective optimization strategy. Both evolutionary algorithms also consistently outperform the monte carlo
search strategy, which seemingly approaches an asymptote. This makes sense because both evolutionary searches have
the ability to reuse previous high-value points and their evaluations at each generation, while each generation of the
monte carlo search is essentially a random solution, making the search slower (since all individuals must be simulated at
each generation) and less targeted (since good individuals cannot be reused/permuted).

0 25 50 75 100 125 150 175 200
Computational Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

Ob
je

ct
iv

e
Va

lu
e

Search Performance (μ± σ
2 over 20 Replicates)

CCEA
EA
Monte Carlo

Fig. 3 Comparison of CCEA algorithm with EA and Monte Carlo algorithms for joint faulty state-space
exploration

Additionally, the performance of the CCEA can be attributed to the more effective permutation and combination
of individuals. In the EA, mutation and crossover happen on the mode vectors that make up a given solution in the
population. In the CCEA, mutation and crossover happen within sub-populations which are then combined to make
an overall solution. This separation enables each mode to be varied (rather than an entire solution) individually and
then combined (with both mutations and previous good solutions in the other sub-populations) to form the best overall
solution. The CCEA approach can also result in better simulation efficiencies per generation compared to the EA, since
each new solution does not require a re-simulation of the constituent modes (as opposed to the EA permutation/evaluation
step, which occurs for the entire solution), and evaluating these solutions requires a relatively inexpensive tabulation of
the objectives from the results saved for each mode. While this shows the merit of the CCEA approach, there may be

7

other formulations of the EA which could improve performance, such as modifying the permutation mutation/crossover
functions to better match the problem, for example by swapping points instead of state-values or permuting a narrower
set of points. Similarly, the CCEA approach could additionally be improved by enabling the sharing of individuals
between sub-populations and using a better-performing combination method (e.g., those in Ref. [57]). However, this
demonstration shows the general merit of the CCEA approach as an effective search method for generating unique
failure modes.

6 7 8 9 10 11
Sum of Line Distance

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Su
m

 o
f M

in
 H

ea
lth

 S
ta

te
 S

ep
ar

at
io

n

w=0.0 w=0.25 w=0.5

w=0.75

w=1.0

Revealed Pareto Front - Formulation 1

Fig. 4 Found Pareto front of Line Distance and Faulty State-Space Distance in Formulation 1

B. Formulation 1: State-Space Distance
In Formulation 1, the overall severity of the modes is optimized along with the uniqueness of the modes in the faulty

state-space used to generate the modes. As a multi-objective problem, the weighting of each objective can be chosen to
form a more unique or hazardous set. This section shows the results of varying the weights of this problem to show its
effect (both quantitatively and qualitatively) on the modes found. Figure 4 shows the revealed pareto front of optimal
solutions found over the five chosen weights (0.0, 0.25, 0.5, 0.75, 1.0). As shown, there is a significant trade-off between
faulty state uniqueness and total severity of the set which begins at weight 𝑤 = 0.5 and becomes sever above the weight
𝑤 = 0.75.

To compare the sets of modes more qualitatively, Figure 5 shows the modes found at each algorithm (a) in the faulty
state-space, (b) in terms of resulting trajectories and (c) in terms of the resulting line distance distribution. As shown, at
low weights, the modes are spread out in the faulty state-space, which results in a number of low-severity modes (most
of which are clustered by the fault injection location). However, as the weight is increased (𝑤 >= 0.5), the modes all
converge on a single point in the space with maximum line distance value. This is further reflected in the trajectory
end-locations, which cluster at a single point above the course at the weight 𝑤 = 1.0. Qualitatively examining the
solutions, the weight of 𝑤 = 0.5 seems to best identify points and trajectories with sufficient distance from each other
while having a high severity distribution. However, there may be weights within the interval which achieve a better
balance. This shows how properly balancing fault mode uniqueness and severity requires weights to be tuned effectively.

C. Formulation 2: Result-Space Distance
In Formulation 2, the overall severity of the modes is optimized along with the uniqueness of the modes, using

output states of the simulation for uniqueness. In this case, these faulty states are the end-locations of the rover when the
simulation is completed after the fault. To explore the trade-space between objectives, the weighting parameter 𝑤 was
again varied over a range of values (0, 0.25, 0.5, 0.75, 1.0), producing the pareto front shown in Figure 6. As shown, this
pareto front has an inflection point around 𝑤 = 0.75, with most of the change in line distance sum happening at smaller
weights.

The solution faulty state-space, resulting trajectories, and line distance distributions are further shown in Figure 7.
As shown, at low weights the end-locations of the rover are very spread out, while at high weights (0.75 or higher) the
end-locations begin to cluster together (similar to Formulation 1) with high line distance. Interestingly, while faulty
state-space uniqueness is not explicitly optimized in this formulation, the modes are nevertheless fairly spread out at low
weights, which suggests that unique points in the trajectory space correspond to unique points in the faulty state-space
(even if the reverse is not true). This formulation seems to also find better trade-offs between solution distance and

8

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=0.0

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=0.25

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=0.5

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=0.75

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=1.0

(a) Faulty State-Space.

16 18 20 22 24
0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=0.0

16 18 20 22 24
0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=0.25

16 18 20 22 24
0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=0.5

Bounds
Center-line
Faulty Scenarios
Nominal
fault time

16 18 20 22 24
0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=0.75

16 18 20 22 24
x-distance (m)

0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=1.0

(b) Resulting Trajectories.

0

2

4

6

8

10

co
un

t

w=0.0

0

2

4

6

8

10

co
un

t

w=0.25

0

2

4

6

8

10

co
un

t

w=0.5

0

2

4

6

8

10

co
un

t

w=0.75

0.0 0.5 1.0 1.5 2.0
line distance (m)

0

2

4

6

8

10

co
un

t

w=1.0

(c) Resulting Line Distances.

Fig. 5 Fault scenarios revealed at different weights for Line Distance and State-Space Distance in Formulation 1

severity at 𝑤 = 0.5 and 𝑤 = 0.25, resulting in many different end-locations points that also happen to have a high line
distance. This is a better result than what was returned by formulation 1, where the set was composed of a cluster of
high-severity end-locations offset by a single far-off point.

V. Discussion
This work explored (1) the formulation of an optimization problem to search the faulty state-space for a tractable

set of hazardous modes and (2) the solution of this problem with a cooperative co-evolution algorithm. As shown in
Figure 3, this algorithm performs well compared to less-sophisticated optimization approaches on this problem, in part
because of its separation between the permutation and simulation of modes, and combination and evaluation of them
in the set. However, as an overall strategy for finding modes, it should be noted that previous work performing an
exhaustive search of modes (within a certain resolution) took less computational time overall [23], and there is thus a
question of the value of this approach. We propose a few advantages: First, the exhaustive search approach can only
be carried out at a specific resolution, which may miss worst-case modes which occur in between points. This search
approach, on the other hand, progressively searches near promising points (via mutation), resulting in the identification
of higher-severity modes. Second, while the computational cost of these experiments is higher than the exhaustive
search with given resolution, much of this is because the optimization was run towards completion–if the optimization
was cut off at a generation with equal computational cost, the modes in the set would still be more targeted towards the
objectives than would be found in the exhaustive search. Finally, it should be noted that in the CCEA approach, the
modes are being evaluated intelligently (simulated on creation, rather than at objective evaluation), meaning that the
algorithm itself does not add substantial computational cost to the elaboration of modes compared to the fault simulation.

9

6 7 8 9 10
Sum of Line Distance

5

10

15

20

25

30

35

Su
m

 o
f M

in
 R

es
ul

t S
ta

te
 S

ep
ar

at
io

n

w=0.0w=0.25 w=0.5 w=0.75

w=1.0

Revealed Pareto Front - Formulation 2

Fig. 6 Found Pareto front of Line Distance and Final Point distance in Formulation 2

Thus, for the task of elaborating a given number of modes in the faulty state-space, we would expect the slight increase
in computational cost of running the CCEA algorithm (and saving the population over time) to be offset by its ability to
find much higher-impact modes.

The study of Formulation 1 and 2 in the rover model shows the importance of selecting good weights for the
objectives to best balance mode uniqueness and severity. Typically, the weighted sum formulation requires scaling
objectives over utopia points so that the objectives are weighted equally at 𝑤 = 0.5. While this was performed in the case
study, the results for Formulation 1 (see Figure 5) indicate a difficulty in satisfactorily balancing objectives. Additionally,
trying to find a satisfactory balance of objectives by re-running the optimization over each weight introduces a significant
computational burden to the process. Future work should thus adapt the CCEA to more naturally accommodate multiple
objectives (e.g., by keeping the set of non-dominated solutions over time and using domination for fitness evaluation and
mode selection).

Finally, from the design perspective, both formulations (optimizing over the distribution of a faulty state space and
result state space) provide important information which can be used to increase system resilience. Optimizing over the
faulty state-space (formulation 1) can help ensure there is more exploration of instantiating modes, which may help to
promote the discovery of failure causes which would be unknown otherwise (even if these result in similar effects). This
information can then be used to better create safegaurds on the system state (e.g., warnings or operational limits) to
prevent these faulty modes from occurring in operation. Conversely, optimizing over the result state space (formulation
2) can help designers identify a wide range of potential outcomes that the system may face during its operation. In turn,
this information can similarly be used to create general fault-tolerant control policies which actively avoid prevent these
outcomes from occurring post-fault (e.g., fault corrections, etc.). Thus, both approaches have use for promoting system
resilience, both in terms of identifying unique failure causes (formulation 1) and unique failure effects (formulation 2).

VI. Conclusion
Formulating the generation of a set of scenarios as a multi-objective problem solves one of the major limitations of

existing scenario generation approaches–convergence on a single “worst-case” scenario (or type of scenario) rather
than revealing the different discrete types of failures that could occur. Within this formulation of the problem, the
cooperative co-evolutionary algorithm appears to be suited to the generation of the set because it separates the evaluation
and optimization of scenario severity from the formation of the set, resulting in better computational performance than
a traditional evolutionary algorithm. However, as demonstrated here, the performance of the overall multi-objective
optimization approach is highly sensitive to the underlying formulation of objectives (i.e., the metrics and their weights).
While this enables one to tailor the search to the goals of the analysis (i.e., by weighting objectives differently to generate
a more unique or severe set), it also creates difficulties for implementation, since one may not know up-front what set of
weights may generate the most informative results.

To resolve this limitation, future work should explore the use of non-dominated sorting in the CCEA to enable the
search of the entire pareto front at once, rather than a single distinct set of weights. This would make it easier to find
the desired balance between set uniqueness and overall severity without needing to re-optimize over different weights.
Additionally, while this approach was developed to generate a tractable set of unique high-severity modes, there is an
opportunity to use the entire populations of scenarios generated and evaluated during optimization for a larger-scale

10

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=0.0

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=0.25

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=0.5

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=0.75

Friction
10

20 Dri
ft−0.5

0.0
0.5

Tr
an

sf
er

0.0
0.5
1.0

w=1.0

(a) Faulty State-Space.

16 18 20 22 24
0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=0.0

16 18 20 22 24
0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=0.25

16 18 20 22 24
0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=0.5

Bounds
Center-line
Faulty Scenarios
Nominal
fault time

16 18 20 22 24
0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=0.75

16 18 20 22 24
x-distance (m)

0
2
4
6
8

10

y-
di

st
an

ce
 (m

)

Trajectories-w=1.0

(b) Resulting Trajectories.

0

2

4

6

8

10

co
un

t

w=0.0

0

2

4

6

8

10

co
un

t

w=0.25

0

2

4

6

8

10

co
un

t

w=0.5

0

2

4

6

8

10

co
un

t

w=0.75

0.0 0.5 1.0 1.5 2.0
line distance (m)

0

2

4

6

8

10

co
un

t

w=1.0

(c) Resulting Line Distances.

Fig. 7 Fault scenarios revealed at different weights for Line Distance and Final Point distance in Formulation 2

analysis, since these populations span a much larger space than the found solution while still being more targeted (and
thus higher severity) than an exhaustive search performed at similar computational cost. Future work should additionally
study the use of the populations to explore the faulty state-space and compare this search with more exhaustive search
methods previously used in terms of the comparative properties of the modes found. Finally, the approach generated
was a static scenario generation approach, only considering the effects of events that occur at a single timestep, rather
than chains of events that occur over multiple timesteps (as is considered in stress testing formulations [59]). Future
work thus should adapt this approach to the dynamic scenario generation use-case e.g., by using the co-evolutionary
approach to train the learning agents used in the algorithms to find a set of unique severe scenarios.

VII. Acknowledgement
This research was partially conducted at NASA Ames Research Center. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government. The United States Government retains, and by accepting the article for
publication, the publisher acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States
Government purposes.

References
[1] Taleb, N. N., The black swan: The impact of the highly improbable, Vol. 2, Random house, 2007.

11

[2] Aven, T., “On the meaning of a black swan in a risk context,” Safety science, Vol. 57, 2013, pp. 44–51. https://doi.org/https:
//doi.org/10.1016/j.ssci.2013.01.016.

[3] Craighead, S., “Stress and Resiliency Testing: Mandelbrotian Grey Swan Scenarios,” Enterprise Risk Management Symposium
Monograph, 2011, pp. 1–35.

[4] Aven, T., “Implications of black swans to the foundations and practice of risk assessment and management,” Reliability
Engineering & System Safety, Vol. 134, 2015, pp. 83–91. https://doi.org/https://doi.org/10.1016/j.ress.2014.10.004.

[5] Stamatis, D. H., Failure mode and effect analysis: FMEA from theory to execution, Quality Press, 2003.

[6] Ma, X.-Y., Sun, Y.-Z., and Fang, H.-L., “Scenario generation of wind power based on statistical uncertainty and variability,”
IEEE Transactions on Sustainable Energy, Vol. 4, No. 4, 2013, pp. 894–904. https://doi.org/10.1109/TSTE.2013.2256807.

[7] Camal, S., Teng, F., Michiorri, A., Kariniotakis, G., and Badesa, L., “Scenario generation of aggregated Wind, Photovoltaics and
small Hydro production for power systems applications,” Applied Energy, Vol. 242, 2019, pp. 1396–1406. https://doi.org/https:
//doi.org/10.1016/j.apenergy.2019.03.112.

[8] Ge, L., Liao, W., Wang, S., Bak-Jensen, B., and Pillai, J. R., “Modeling daily load profiles of distribution network for scenario
generation using flow-based generative network,” IEEE Access, Vol. 8, 2020, pp. 77587–77597. https://doi.org/10.1109/
ACCESS.2020.2989350.

[9] Soares, J., Borges, N., Ghazvini, M. A. F., Vale, Z., and de Moura Oliveira, P. B., “Scenario generation for electric
vehicles’ uncertain behavior in a smart city environment,” Energy, Vol. 111, 2016, pp. 664–675. https://doi.org/https:
//doi.org/10.1016/j.energy.2016.06.011.

[10] Seljom, P., Kvalbein, L., Hellemo, L., Kaut, M., and Ortiz, M. M., “Stochastic modelling of variable renewables in
long-term energy models: Dataset, scenario generation & quality of results,” Energy, Vol. 236, 2021, p. 121415.
https://doi.org/https://doi.org/10.1016/j.energy.2021.121415.

[11] Lei, Y., Wang, D., Jia, H., Chen, J., Li, J., Song, Y., and Li, J., “Multi-objective stochastic expansion planning based on
multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy,”
Applied energy, Vol. 276, 2020, p. 115395. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115395.

[12] Austgen, B., Garcia, M., Pierre, B., Hasenbein, J., and Kutanoglu, E., “Winter storm scenario generation for power grids based
on historical generator outages,” 2022 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), IEEE,
2022, pp. 1–5. https://doi.org/10.1109/TD43745.2022.9816863.

[13] Trakas, D. N., and Hatziargyriou, N. D., “Optimal distribution system operation for enhancing resilience against wildfires,”
IEEE Transactions on Power Systems, Vol. 33, No. 2, 2017, pp. 2260–2271. https://doi.org/10.1109/TPWRS.2017.2733224.

[14] Trakas, D. N., Panteli, M., Hatziargyriou, N. D., and Mancarella, P., “Spatial risk analysis of power systems resilience during
extreme events,” Risk Analysis, Vol. 39, No. 1, 2019, pp. 195–211. https://doi.org/10.1111/risa.13220.

[15] Herman, J. D., Zeff, H. B., Lamontagne, J. R., Reed, P. M., and Characklis, G. W., “Synthetic drought scenario generation to
support bottom-up water supply vulnerability assessments,” Journal of Water Resources Planning and Management, Vol. 142,
No. 11, 2016, p. 04016050. https://doi.org/https://doi.org/10.1061/(ASCE)WR.1943-5452.0000701.

[16] Faturechi, R., Levenberg, E., and Miller-Hooks, E., “Evaluating and optimizing resilience of airport pavement networks,”
Computers & Operations Research, Vol. 43, 2014, pp. 335–348. https://doi.org/https://doi.org/10.1016/j.cor.2013.10.009.

[17] Short, A.-R., and DuPont, B. L., “Computational Cognition for Mission Command and Control Decisions Facing Risk
in Unknown Environments,” International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Vol. 59193, American Society of Mechanical Engineers, 2019, p. V02BT03A020. https://doi.org/https:
//doi.org/10.1115/DETC2019-98483.

[18] Balchanos, M., Li, Y., and Mavris, D., “Towards a method for assessing resilience of complex dynamical systems,” 2012 5th
International Symposium on Resilient Control Systems, IEEE, 2012, pp. 155–160. https://doi.org/10.1109/ISRCS.2012.6309310.

[19] McIntire, M. G., Keshavarzi, E., Tumer, I. Y., and Hoyle, C., “Functional models with inherent behavior: Towards a
framework for safety analysis early in the design of complex systems,” ASME International Mechanical Engineering Congress
and Exposition, Vol. 50657, American Society of Mechanical Engineers, 2016, p. V011T15A035. https://doi.org/https:
//doi.org/10.1115/IMECE2016-67040.

12

https://doi.org/https://doi.org/10.1016/j.ssci.2013.01.016
https://doi.org/https://doi.org/10.1016/j.ssci.2013.01.016
https://doi.org/https://doi.org/10.1016/j.ress.2014.10.004
https://doi.org/10.1109/TSTE.2013.2256807
https://doi.org/https://doi.org/10.1016/j.apenergy.2019.03.112
https://doi.org/https://doi.org/10.1016/j.apenergy.2019.03.112
https://doi.org/10.1109/ACCESS.2020.2989350
https://doi.org/10.1109/ACCESS.2020.2989350
https://doi.org/https://doi.org/10.1016/j.energy.2016.06.011
https://doi.org/https://doi.org/10.1016/j.energy.2016.06.011
https://doi.org/https://doi.org/10.1016/j.energy.2021.121415
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115395
https://doi.org/10.1109/TD43745.2022.9816863
https://doi.org/10.1109/TPWRS.2017.2733224
https://doi.org/10.1111/risa.13220
https://doi.org/https://doi.org/10.1061/(ASCE)WR.1943-5452.0000701
https://doi.org/https://doi.org/10.1016/j.cor.2013.10.009
https://doi.org/https://doi.org/10.1115/DETC2019-98483
https://doi.org/https://doi.org/10.1115/DETC2019-98483
https://doi.org/10.1109/ISRCS.2012.6309310
https://doi.org/https://doi.org/10.1115/IMECE2016-67040
https://doi.org/https://doi.org/10.1115/IMECE2016-67040

[20] Irshad, L., Demirel, H. O., and Tumer, I. Y., “Automated generation of fault scenarios to assess potential human errors and
functional failures in early design stages,” Journal of computing and information science in engineering, Vol. 20, No. 5, 2020.
https://doi.org/https://doi.org/10.1115/1.4047557.

[21] Nejad, H., and Mosleh, A., “Automated risk scenario generation using system functional and structural knowledge,” ASME
International Mechanical Engineering Congress and Exposition, Vol. 42304, 2005, pp. 85–89. https://doi.org/https://doi.org/10.
1115/IMECE2005-81331.

[22] Chen, Y., Yang, S., and Men, W., “Automatic Generation of Failure Mechanism Propagation Scenario via Guided Simulation
and Intelligent Algorithm,” IEEE Access, Vol. 7, 2019, pp. 34762–34775. https://doi.org/10.1109/ACCESS.2019.2904305.

[23] Hulse, D., and Irshad, L., “Synthetic fault mode generation for resilience analysis and failure mechanism discovery,” Journal of
Mechanical Design, 2022, pp. 1–10. https://doi.org/10.1115/1.4056320, URL https://doi.org/10.1115/1.4056320.

[24] Corso, A., Du, P., Driggs-Campbell, K., and Kochenderfer, M. J., “Adaptive stress testing with reward augmentation for
autonomous vehicle validation,” 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, pp. 163–168.
https://doi.org/10.1109/ITSC.2019.8917242.

[25] Oliveira, B. B., Carravilla, M. A., and Oliveira, J. F., “A diversity-based genetic algorithm for scenario generation,” European
Journal of Operational Research, Vol. 299, No. 3, 2022, pp. 1128–1141. https://doi.org/https://doi.org/10.1016/j.ejor.2021.09.
047.

[26] Römisch, W., Stochastic Programming, Scenario Generation In, John Wiley & Sons, Ltd, 2018, pp. 1–5. https://doi.org/https:
//doi.org/10.1002/9781118445112.stat08075, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat08075.

[27] Kaut, M., and Stein, W., Evaluation of scenario-generation methods for stochastic programming, Humboldt-Universität zu
Berlin, Mathematisch-Naturwissenschaftliche Fakultät . . . , 2003. https://doi.org/https://doi.org/10.18452/8296.

[28] Löhndorf, N., “An empirical analysis of scenario generation methods for stochastic optimization,” European Journal of
Operational Research, Vol. 255, No. 1, 2016, pp. 121–132. https://doi.org/https://doi.org/10.1016/j.ejor.2016.05.021.

[29] Messina, E., and Toscani, D., “Hidden Markov models for scenario generation,” IMA Journal of Management Mathematics,
Vol. 19, No. 4, 2008, pp. 379–401. https://doi.org/10.1093/imaman/dpm026.

[30] Høyland, K., Kaut, M., and Wallace, S. W., “A heuristic for moment-matching scenario generation,” Computational optimization
and applications, Vol. 24, No. 2, 2003, pp. 169–185. https://doi.org/https://doi.org/10.1023/A:1021853807313.

[31] Casey, M. S., and Sen, S., “The scenario generation algorithm for multistage stochastic linear programming,” Mathematics of
Operations Research, Vol. 30, No. 3, 2005, pp. 615–631. https://doi.org/https://doi.org/10.1287/moor.1050.0146.

[32] Guastaroba, G., Mansini, R., and Speranza, M. G., “On the effectiveness of scenario generation techniques in single-period
portfolio optimization,” European Journal of Operational Research, Vol. 192, No. 2, 2009, pp. 500–511. https://doi.org/https:
//doi.org/10.1016/j.ejor.2007.09.042.

[33] Abdelgawad, A. A., Noori, N., and Comes, T., “Automated scenario generation for training of humanitarian responders
in high-risk settings,” International Journal of Simulation–Systems, Science & Technology, Vol. 19, No. 5, 2018. URL
https://ijssst.info/Vol-19/No-5/paper23.pdf.

[34] Ferdinandus, G. R., “Automated scenario generation, coupling planning techniques with smart objects,” Master’s thesis, Utrecht
University, 2012. URL https://studenttheses.uu.nl/handle/20.500.12932/11826.

[35] Zook, A., Lee-Urban, S., Riedl, M. O., Holden, H. K., Sottilare, R. A., and Brawner, K. W., “Automated scenario generation:
toward tailored and optimized military training in virtual environments,” Proceedings of the international conference on the
foundations of digital games, 2012, pp. 164–171. https://doi.org/https://doi.org/10.1145/2282338.2282371.

[36] Rowe, J., Smith, A., Pokorny, B., Mott, B., and Lester, J., “Toward automated scenario generation with deep reinforcement
learning in GIFT,” Proceedings of the Sixth Annual GIFT User Symposium, 2018, pp. 65–74.

[37] Chatterji, G. B., Palopo, K., Zheng, Y., and Nguyen, J., “Automated Scenario Generation for Human-in-the-Loop Simulations,”
2018 Modeling and Simulation Technologies Conference, 2018, p. 3751. https://doi.org/https://doi.org/10.2514/6.2018-3751.

[38] Chatterji, G. B., and Zheng, Y., “Automated Scenario Generation for Meeting Human-in-the-Loop Simulation Requirements,”
AIAA Scitech 2019 Forum, 2019, p. 1710. https://doi.org/https://doi.org/10.2514/6.2019-1710.

13

https://doi.org/https://doi.org/10.1115/1.4047557
https://doi.org/https://doi.org/10.1115/IMECE2005-81331
https://doi.org/https://doi.org/10.1115/IMECE2005-81331
https://doi.org/10.1109/ACCESS.2019.2904305
https://doi.org/10.1115/1.4056320
https://doi.org/10.1115/1.4056320
https://doi.org/10.1109/ITSC.2019.8917242
https://doi.org/https://doi.org/10.1016/j.ejor.2021.09.047
https://doi.org/https://doi.org/10.1016/j.ejor.2021.09.047
https://doi.org/https://doi.org/10.1002/9781118445112.stat08075
https://doi.org/https://doi.org/10.1002/9781118445112.stat08075
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat08075
https://doi.org/https://doi.org/10.18452/8296
https://doi.org/https://doi.org/10.1016/j.ejor.2016.05.021
https://doi.org/10.1093/imaman/dpm026
https://doi.org/https://doi.org/10.1023/A:1021853807313
https://doi.org/https://doi.org/10.1287/moor.1050.0146
https://doi.org/https://doi.org/10.1016/j.ejor.2007.09.042
https://doi.org/https://doi.org/10.1016/j.ejor.2007.09.042
https://ijssst.info/Vol-19/No-5/paper23.pdf
https://studenttheses.uu.nl/handle/20.500.12932/11826
https://doi.org/https://doi.org/10.1145/2282338.2282371
https://doi.org/https://doi.org/10.2514/6.2018-3751
https://doi.org/https://doi.org/10.2514/6.2019-1710

[39] Anggreeni, I., Van der Voort, M., et al., “Classifying Scenarios in a Product Design Process: a study towards semi-automated
scenario generation,” CIRP design conference 2008, 2008.

[40] Pedersen, T. A., Neverlien, Å., Glomsrud, J. A., Ibrahim, I., Mo, S. M., Rindarøy, M., Torben, T., and Rokseth, B., “Evolution
of Safety in Marine Systems: From System-Theoretic Process Analysis to Automated Test Scenario Generation,” Journal of
Physics: Conference Series, Vol. 2311, IOP Publishing, 2022, p. 012016. https://doi.org/10.1088/1742-6596/2311/1/012016.

[41] Pan, X., Hu, L., Xin, Z., Zhou, S., Lin, Y., and Wu, Y., “Risk scenario generation based on importance measure analysis,”
Sustainability, Vol. 10, No. 9, 2018, p. 3207. https://doi.org/https://doi.org/10.3390/su10093207.

[42] Chowdhury, N. S., and Choi, Y., “Automated Scenario Generation for Model Checking Trampoline Operating System,”
Proceedings of the Korea Information Processing Society Conference, Korea Information Processing Society, 2011, pp.
1342–1345.

[43] Sapna, P., and Mohanty, H., “Automated scenario generation based on uml activity diagrams,” 2008 International Conference
on Information Technology, IEEE, 2008, pp. 209–214. https://doi.org/10.1109/ICIT.2008.52.

[44] Maiden, N. A., Minocha, S., Manning, K., and Ryan, M., “CREWS-SAVRE: Systematic scenario generation and use,”
Proceedings of IEEE International Symposium on Requirements Engineering: RE’98, IEEE, 1998, pp. 148–155. https:
//doi.org/10.1109/ICRE.1998.667820.

[45] Nalic, D., Mihalj, T., Bäumler, M., Lehmann, M., Eichberger, A., and Bernsteiner, S., “Scenario based testing of automated
driving systems: A literature survey,” FISITA web Congress, 2020, pp. 1–10. https://doi.org/10.46720/f2020-acm-096.

[46] Ding, W., Xu, C., Arief, M., Lin, H., Li, B., and Zhao, D., “A Survey on Safety-Critical Driving Scenario Generation-A
Methodological Perspective.” CoRR, 2022. https://doi.org/https://doi.org/10.48550/arXiv.2202.02215.

[47] Koren, M., Corso, A., and Kochenderfer, M. J., “The adaptive stress testing formulation,” arXiv preprint arXiv:2004.04293,
2020. https://doi.org/https://doi.org/10.48550/arXiv.2004.04293.

[48] Xie, Y., Dai, K., and Zhang, Y., “A Real-time Critical-scenario-generation Framework for Testing Autonomous Driving System,”
arXiv preprint arXiv:2206.00910, 2022. https://doi.org/https://doi.org/10.48550/arXiv.2206.00910.

[49] Moss, R. J., Lee, R., Visser, N., Hochwarth, J., Lopez, J. G., and Kochenderfer, M. J., “Adaptive stress testing of trajectory
predictions in flight management systems,” 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), IEEE, 2020,
pp. 1–10. https://doi.org/10.1109/DASC50938.2020.9256730.

[50] Lee, R., Kochenderfer, M. J., Mengshoel, O. J., Brat, G. P., and Owen, M. P., “Adaptive stress testing of airborne
collision avoidance systems,” 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), IEEE, 2015, pp. 6C2–1.
https://doi.org/10.1109/DASC.2015.7311450.

[51] Potter, M., and De Jong, K., “Cooperative coevolution: an architecture for evolving coadapted subcomponents,” Evolutionary
computation, 2000, p. 1–29. https://doi.org/https://doi.org/10.1162/106365600568086.

[52] Boucher, D. H., James, S., and Keeler, K. H., “The Ecology of Mutualism,” Annual Review of Ecology and Systematics, Vol. 13,
1982, pp. 315–347. URL http://www.jstor.org/stable/2097071.

[53] Ma, X., Li, X., Zhang, Q., Tang, K., Liang, Z., Xie, W., and Zhu, Z., “A Survey on Cooperative Co-Evolutionary Algorithms,”
IEEE Transactions on Evolutionary Computation, Vol. 23, No. 3, 2019, pp. 421–441. https://doi.org/10.1109/TEVC.2018.
2868770.

[54] Soria Zurita, N. F., Colby, M. K., Tumer, I. Y., Hoyle, C., and Tumer, K., “Design of complex engineered systems
using multi-agent coordination,” Journal of Computing and Information Science in Engineering, Vol. 18, No. 1, 2018.
https://doi.org/https://doi.org/10.1115/1.4038158.

[55] Panait, L., “The Analysis and Design of Concurrent Learning Algorithms for Cooperative Multiagent Systems,” Ph.D. thesis,
George Mason University, 2006.

[56] Iscen, A., Agogino, A., SunSpiral, V., and Tumer, K., “Controlling tensegrity robots through evolution,” Proceedings
of the 15th annual conference on Genetic and evolutionary computation, 2013, pp. 1293–1300. https://doi.org/https:
//doi.org/10.1145/2463372.2463525.

[57] Colby, M., and Tumer, K., “Fitness function shaping in Multiagent Cooperative Coevolutionary algorithms,” Autonomous
Agents and Multi-Agent Systems, Vol. 31, No. 2, 2015, p. 179–206. https://doi.org/10.1007/s10458-015-9318-0.

14

https://doi.org/10.1088/1742-6596/2311/1/012016
https://doi.org/https://doi.org/10.3390/su10093207
https://doi.org/10.1109/ICIT.2008.52
https://doi.org/10.1109/ICRE.1998.667820
https://doi.org/10.1109/ICRE.1998.667820
https://doi.org/10.46720/f2020-acm-096
https://doi.org/https://doi.org/10.48550/arXiv.2202.02215
https://doi.org/https://doi.org/10.48550/arXiv.2004.04293
https://doi.org/https://doi.org/10.48550/arXiv.2206.00910
https://doi.org/10.1109/DASC50938.2020.9256730
https://doi.org/10.1109/DASC.2015.7311450
https://doi.org/https://doi.org/10.1162/106365600568086
http://www.jstor.org/stable/2097071
https://doi.org/10.1109/TEVC.2018.2868770
https://doi.org/10.1109/TEVC.2018.2868770
https://doi.org/https://doi.org/10.1115/1.4038158
https://doi.org/https://doi.org/10.1145/2463372.2463525
https://doi.org/https://doi.org/10.1145/2463372.2463525
https://doi.org/10.1007/s10458-015-9318-0

[58] Ma, X., Li, X., Zhang, Q., Tang, K., Liang, Z., Xie, W., and Zhu, Z., “A Survey on Cooperative Co-Evolutionary Algorithms,”
IEEE Transactions on Evolutionary Computation, Vol. 23, No. 3, 2019, pp. 421–441. https://doi.org/10.1109/TEVC.2018.
2868770.

[59] Koren, M., Corso, A., and Kochenderfer, M. J., “The Adaptive Stress Testing Formulation,” , 2020. https://doi.org/10.48550/
ARXIV.2004.04293, URL https://arxiv.org/abs/2004.04293.

15

https://doi.org/10.1109/TEVC.2018.2868770
https://doi.org/10.1109/TEVC.2018.2868770
https://doi.org/10.48550/ARXIV.2004.04293
https://doi.org/10.48550/ARXIV.2004.04293
https://arxiv.org/abs/2004.04293

	Introduction
	Contribution

	Background
	Scenario Generation
	Cooperative Co-evolutionary Algorithm

	Methodology
	Problem Definition
	Algorithms
	Instantiation
	Permutation
	Evaluation
	Selection

	Demonstration
	Algorithm Performance Comparison
	Formulation 1: State-Space Distance
	Formulation 2: Result-Space Distance

	Discussion
	Conclusion
	Acknowledgement

