SMART MANUFACTURING E X P E R I E N C E

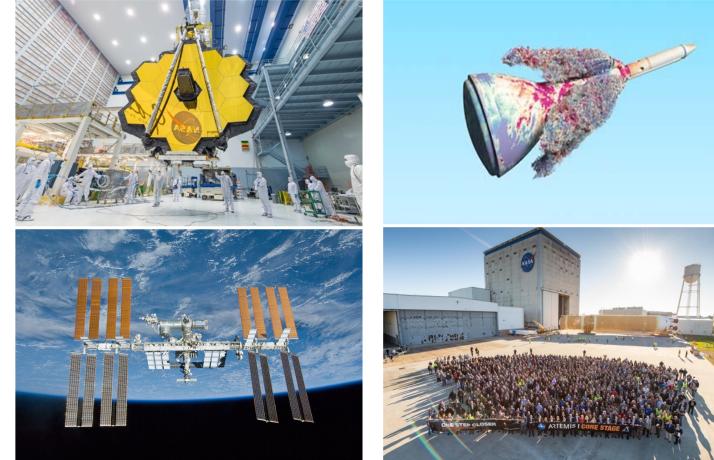
June 7-9, 2022 Pittsburgh, PA smartmanufacturingexperience.com

Digital Twins- An Imitation of Life

John Vickers

NASA

Principal Technologist, Advanced Manufacturing


"Somewhere, something incredible is waiting to be known." Carl Sagan

How We Explore... NASA Manufacturing

Digital Twin

Definition of *digital*

adjective: composed of data in the form of especially binary digits, of, relating to, or using calculation by numerical methods or by discrete units

noun: : media (such as a photograph) in a digital format

Definition of twin

adjective: made up of two similar, related, or connected members or parts, paired in a close or necessary relationship, having or consisting of two identical units

verb: to bring together in close association

"Technology that will Revolutionize the World"

What is a Digital Twin?

NASA

"Must a name mean something?" Alice asks Humpty Dumpty: "When I use a word... it means just what I choose it to mean, neither more nor less." - Lewis Carroll.

> A digital twin is a digital representation of a real-world entity or system. The implementation of a digital twin is an encapsulated software object or model that mirrors a unique physical object, process, organization, person or other abstraction. - Gartner

A Digital Twin is a set of virtual information constructs that fully describes a potential or actual physical manufactured product from the micro atomic level to the macro geometrical level. At its optimum, any information that could be obtained from inspecting a physical manufactured product can be obtained from its Digital Twin. – Grieves, Vickers

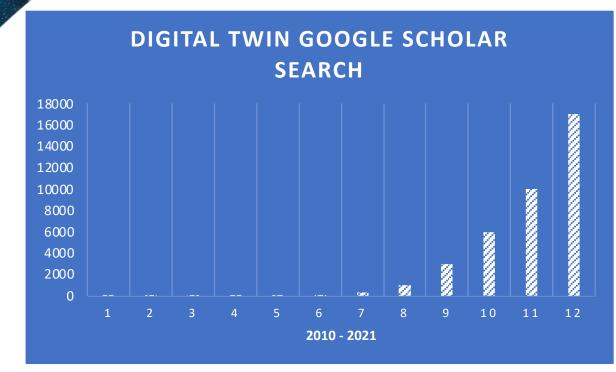
The ultimate vision for the digital twin is to create, test, build and operate our equipment in a virtual environment.

– Economist: John Vickers (2015)

A digital twin is a virtual representation of real-world entities and processes, synchronized at a specified frequency and fidelity. – Digital Twin Consortium

An integrated multiphysics, multiscale, probabilistic simulation of an as-built system, enabled by the Digital Thread, that uses the best available models, sensor information, and input data to mirror and predict activities and performance over the life of its corresponding physical twin. – Defense Acquisition University A Digital Twin is a virtual representation of an object or system that spans its lifecycle, is updated from real-time data, and uses simulation, machine learning, and reasoning to help decision-making. – IBM

Chronology and Origins



Next-Generation Manufacturing	"Conceptual Ideal for PLM"
A Framework for Action	Product Lifecycle Management (PLM) Center
1997	University of Michigan
	2002
Intelligent and Integrated Manufacturing Systems (IIMS)	
National Science and Technology Council	Product Lifecycle Management: Driving the Next
Interagency Working Group on Manufacturing Research	Generation of Lean Thinking: 2006
and Development 2004 Vickers/Grieves intro	uction 2007
	Product Lifecycle Management and the
Manufacturing the Future	Quest for Sustainable Space Exploration
National, Interagency Working Group on Manufacturing	AIAA SPACE Conference & Exposition
R&D	2010
2008	
	Virtually Perfect: Driving Innovative and Lean Products
Radical Innovation in Design and Manufacturing	through Product Lifecycle Management
A workshop – Disneyland	2011 ** Digital Twin
2009	
	Digital Twin: Mitigating Unpredictable,
NASA Materials and Manufacturing Technology Roadmap	Undesirable Emergent Behavior in
2010 **Digital Twin	Complex Systems
	2017
SME Magazine - Where the 'Digital Universe' Is Going 2021	

Digital Twin Expansion

*Google Scholar about 38,800 results vs Google about 9,240,000 results

Expanding the Digital Twin EconomyDigital Twin ConsortiumASME Digital Twin SummitMxD/DMDII, CESMII, IACMI, America MakesCentre for Digital Built Britain, European
Space Agency (ESA)IBM, Siemens, Dassault, PTC, NVIDIA,
Autodesk

The first direct consequence of the IoT is the generation of huge quantities of data, where every physical or virtual object may have a digital twin in the cloud... European Research Cluster, WP on the Internet of Things, December 2010

"Tomorrow's winners will have very different characteristics than today's winners." Lester C. Thurow "The Future of Capitalism"

What Digital Twins Are and Not about!

- Interdisciplinary analyzes, synthesizes and harmonizes links between disciplines into a coordinated and coherent whole
- Model Based Model of Models (MBx model based everything)
- Collaborative--Predictive--Descriptive--Investigative--Cognitive—Corrective
- As-Designed As-Built As-Operated

S Digital Twin requires a physical asset (apologies to my AIAA friends)

- S Multidisciplinary draws on knowledge from different disciplines but stays within their boundaries
- Senaming other technology MBSE, Digital Thread
- Siloed environments "throwing it over the wall"

Aligning Artificial Intelligence and U.S.

NASA

Advanced Manufacturing Competitiveness

Strategy for Resilient Manufacturing Ecosystems through Artificial Intelligence

Strategy for Realiset Maunfacturing Ecosystems Through Artificial Intelligence	Strategy for Rouliser Manufacturing Ecosystems Through Artificial Intelligence
Symposium: Strategy for Resilient Manufacturing Ecosystems Through Artificial Intelligence	Symposium: Strategy for Resilient Manufacturing Ecosystems Through Artificial Intelligence
Report from the First Symposium Workshop Aligning Artificial Intelligence and U.S. Advanced Manufacturing Competitiveness	Report from the Second Symposium Workshop R&D Strategies to Scale the Adoption of Artificial Intelligenc for Manufacturing Competitiveness
December 2 and 4, 2020	Facilitated by UCLA
Facilitated by UCLA	Supported by
	National Science Foundation
Supported by the National Science Foundation and the National Institute of Standards and Technology	and National Institute of Standards and Technology
March 2021	October 2021
12 - C	4

- Goal 1: Support small and medium-sized manufactures (SMMs) to digitalize their operations
 - Layer 1: Factory floor machine/process asset management
- Goal 2: Incentivize large companies to work within their established supplier networks to implement AI methods
 - Layer 2: Entire factory and supply chain interoperability
- Goal 3: Enable new business models
 - Layer 3: Supply chain ecosystem resilience as a result of scaled access to US manufacturing capabilities

Materials Genome Initiative Strategic Plan

The Materials Genome Initiative was launched to accelerate the discovery, design, development, and deployment of new materials, at a fraction of the cost, by harnessing the power of data and computational tools in concert with experiment.

Significant advances have been made from academia, industry, and government in both expanding understanding and building the foundation of the required infrastructure of models, computational and experimental tools, and data.

Three primary goals for the next five years:

- **1. Unify the Materials Innovation Infrastructure**
- 2. Harness the Power of Materials Data
- 3. Educate, Train, and Connect the Materials R&D Workforce

MATERIALS GENOME INITIATIVE STRATEGIC PLAN

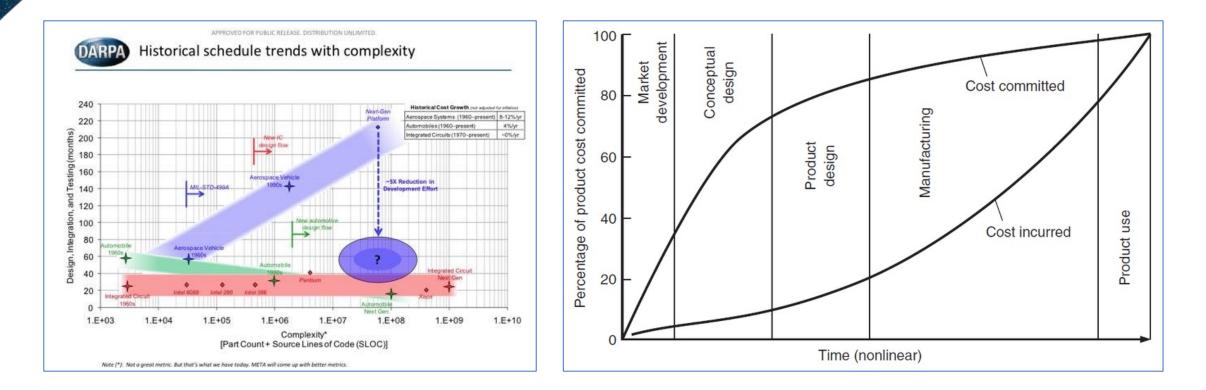
A Report by the SUBCOMMITTEE ON THE MATERIALS GENOME INITIATIVE COMMITTEE ON TECHNOLOGY

of the NATIONAL SCIENCE AND TECHNOLOGY COUNCIL

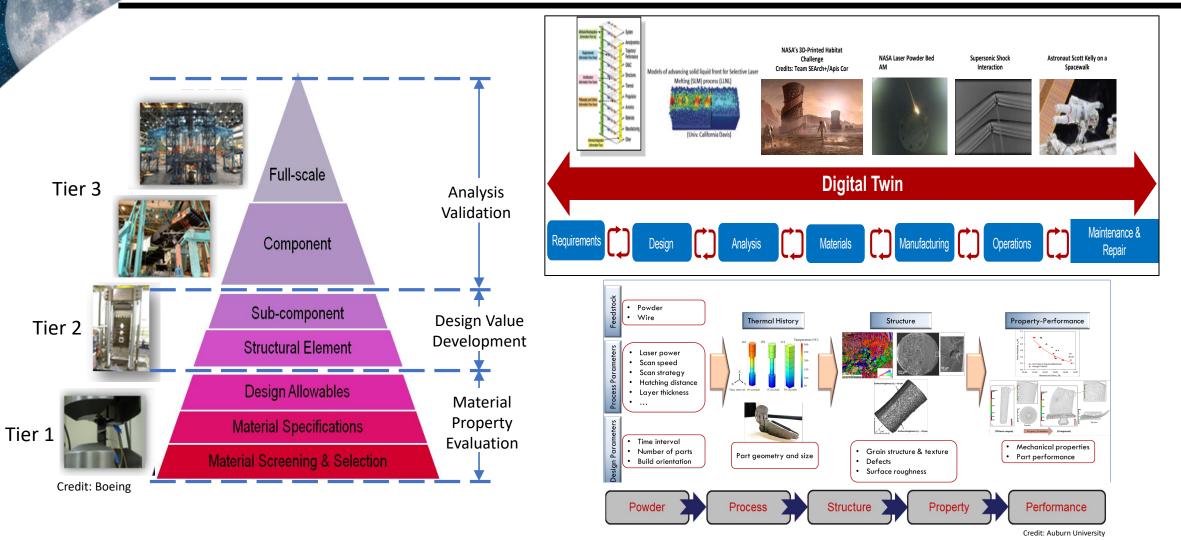
November 2021

Digital Twins Creating a Next Generation Capability for NASA's Michoud Assembly Facility

Digital Transformation @ NASA



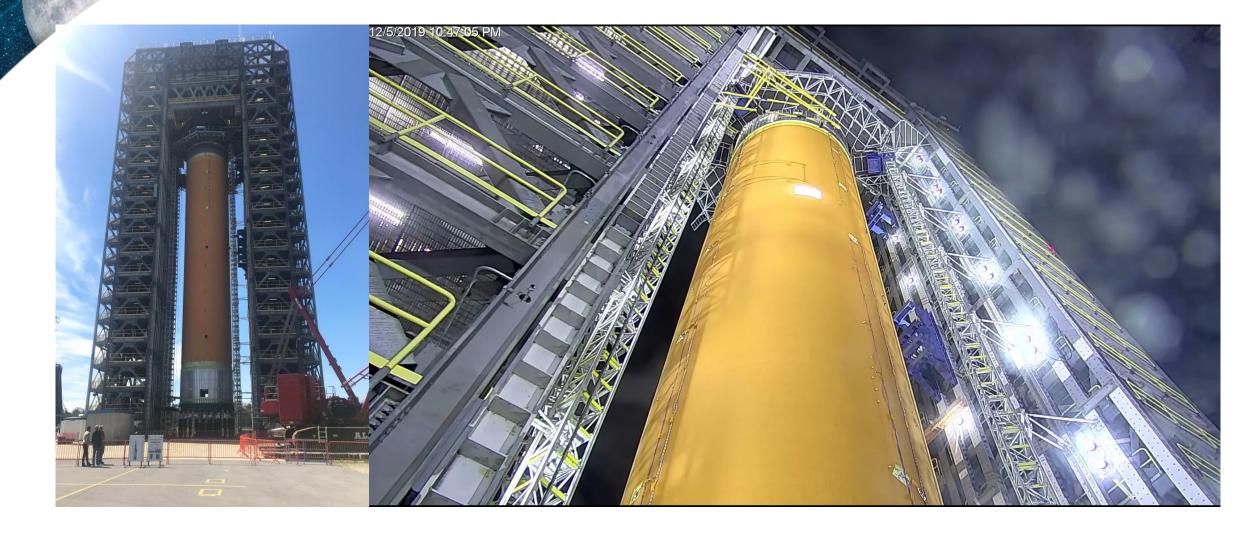
Faster, Better, Cheaper


Faster, Better, Cheaper: A maligned era of NASA's history... Elizabeth Frank

"The largest obstacle to low-cost innovation is the belief that it cannot be done" ... Howard McCurdy

Digital Twin! "A Little Less Conversation

A Little More Action Please"



Product Development, Testing and Certification Today

Exhaustive testing done to support analysis - "takes too long and costs too much to certify aerospace structures"

Testing and Certification, Today

Past is Prologue

Linkages between Science, Technology, and Commerce

A nation which depends upon others for its new basic scientific knowledge will be slow in its industrial progress and weak in its competitive position in world trade, regardless of its mechanical skill. *Vannevar Bush, head of the U.S. Office of Scientific Research and Development during World War II*

Technology Drives Exploration

Thank You!

john.h.vickers@nasa.gov