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Abstract

The entropy conservative/stable algorithm of Friedrich et al. (2018) for hyperbolic conservation
laws on nonconforming p-refined/coarsened Cartesian grids, is extended to curvilinear grids for
the compressible Euler equations. The primary focus is on constructing appropriate coupling
procedures across the curvilinear nonconforming interfaces. A simple and flexible approach is
proposed that uses interpolation operators from one element to the other. On the element faces,
the analytic metrics are used to construct coupling terms, while metric terms in the volume are
approximated to satisfy a discretization of the geometric conservation laws. The resulting scheme
is entropy conservative/stable, elementwise conservative, and freestream preserving. The accuracy
and stability properties of the resulting numerical algorithm are shown to be comparable to those of
the original conforming scheme (∼ p+ 1 convergence) in the context of the isentropic Euler vortex
and the inviscid Taylor–Green vortex problems on manufactured high order grids.
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1 Introduction

High-order accurate finite-element methods (FEM) provide an efficient approach to achieve high
solution accuracy. Their computational kernels are arithmetically dense making them compatible
with the current and future highly concurrent hardware. In addition, they are amenable to h-, p-,
and r-refinement algorithms, thus facilitating the redistribution of the degrees of freedom to better
resolve multiscale physics.

High-order accurate methods are known to be more efficient than low-order methods for linear
wave propagation [32,55]. Although high-order discretizations have a long history of development,
their application to nonlinear partial differential equations (PDEs) for practical applications has
been limited by robustness issues. Thus, nominally second-order accurate discretization operators
are typically used in commercial and industrial software.

The summation-by-parts (SBP) framework provides a systematic and discretization-agnostic
methodology for constructing arbitrarily high-order accurate and provably stable numerical meth-
ods for linear and variable coefficient linear problems (see, for instance, the survey papers [18,54]).
SBP operators can be viewed as matrix difference operators that are mimetic of integration by
parts in that they have a telescoping property. Discrete stability over the whole domain is achieved
by combining the SBP mechanics with suitable interelement coupling procedures and boundary
conditions (e.g., the simultaneous approximation terms (SATs) [7, 40]).

For nonlinear problems, progress towards provably stable algorithms applicable to practical
problems has been much slower. However, a certain class of nonlinear conservation laws come
endowed with a complementary inequality statement (equality for smooth solutions) on the mathe-
matical entropy (see, for instance, Refs. [14]). Therefore, it is desirable for the numerical method to
satisfy a corresponding discrete analogue. This can then be used to prove nonlinear stability of the
numerical scheme [56, 57]. Along these lines, a productive trajectory was initiated by Tadmor [56]
who constructed entropy conservative low-order finite-volume schemes that achieve entropy con-
servation by using two-point flux functions that when contracted with the entropy variables result
in a telescoping entropy flux. Entropy stability was ensured by adding appropriate dissipation.
Through the telescoping property, the continuous L2 entropy stability analysis is mimicked by the
semidiscrete stability analysis (for a review of these ideas see Tadmor [57]). Tadmor’s basic idea
has led to the construction of a number of high-order and low-order entropy stable schemes (see, for
instance, Refs. [23, 46]). An alternative approach, developed by Olsson and Oliger [41], Gerritsen
and Olsson [26] and Yee et al. [65] (see also Refs. [47, 49]), relies on choosing entropy functions
that result in a homogeneity property on the Euler fluxes. By using this property, splittings of
the Euler fluxes are constructed such that when contracted with the entropy variables result in
stability estimates analogous in form to energy estimates obtained for linear PDEs. Thus, dis-
cretizing the resulting split form using SBP operators, the nonlinear stability analysis performed
at the continuous level is mimicked at the semidiscrete level.

A complementary extension of Tadmor’s ideas to finite domains was initiated by Fisher and
coworkers who combined the SBP framework, using classical finite-difference SBP operators, with
Tadmor’s two-point flux [20–22]. The resulting schemes follow the continuous entropy analysis
and can be shown to be entropy conservative and be made entropy stable by adding appropri-
ate interface dissipation. This nonlinearly stable approach inherits all the mechanics of linear
SBP schemes for the imposition of boundary conditions and interelement coupling and there-
fore gives a systematic methodology for discretizing problems on complex geometries [5, 43, 44].
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Moreover, by constructing schemes that are discretely mimetic of the continuous stability anal-
ysis, the need to assume exact integration in the stability proofs is eliminated (see for example
the work of Hughes et al. [27]). These ideas have been extended to include collocated spectral
elements [5], fully- and semistaggered spectral elements [9, 42], Cartesian, semistaggered, noncon-
forming p-refinement [9], WENO spectral collocation [64], multidimensional SBP operators [12,13],
multidimensional staggered SBP operators [17], modal decoupled SBP operators [10], and fully
discrete explicit entropy-stable schemes [24, 45], as well as to a number of PDEs besides the com-
pressible Euler and Navier–Stokes equations (for example the magnetohydrodynamics [62] and the
shallow water [63] equations).

A necessary constraint for entropy stability on curvilinear meshes is satisfaction of discrete
geometric conservation law (GCL) conditions [5, 20, 22, 42]. Well documented procedures exist
for generating discrete transformation metrics on conforming meshes that satisfy the GCL condi-
tions [58, 59]. These procedures extend immediately to the nonconforming case provided that the
polynomial order of the method is sufficient to analytically resolve the element surface transfor-
mation metrics; a condition that is naturally satisfied if the polynomial orders of the geometry,
pg and discretization, p, are related by the inequality pg ≤ p+1

2 . While it is possible to generate

body fitted meshes with full geometric surface order (pg = p) and reduced off body order pg ≤ p+1
2 ,

this forces undue complexity on the already complex task of grid generation. Enforcing the pg = p
grid constraint on near-body elements, while avoiding grid line crossover or negative Jacobians,
increases in complexity with mesh aspect ratio, and is virtually impossible to achieve in the high
Reynolds number limit of realistic aerodynamic configurations.

Herein, the primary objective is to construct entropy-stable discretizations suitable for the
mechanics of high-order FEM p-adaptivity, applicable for general meshes containing hexahedral
polynomial elements of full geometric order (i.e., pg ≤ p). Initial nonconforming efforts focused on
Cartesian, semistaggered spectral collocation operators [9], but identifying a curvilinear extension
has proven difficult. Thus, this work extends to curvilinear coordinates, the Cartesian grid work
previously reported by Friedrich et al. [25], and primarily focuses on constructing appropriate
coupling procedures across curvilinear nonconforming interfaces. We note that there has been
substantial previous work in the SBP community to deal with the nonconforming interface problem,
e.g., see Refs. [2, 3, 31,36,38,39,60,61].

Many novel contributions are included in this work. They are summarized as follows:

• A general, yet simple entropy-stable nonconforming algorithm is proposed in curvilinear co-
ordinates for the compressible Euler equations that

– Encapsulates and generalizes several approaches for coupling curvilinear nonconforming
interfaces

– Formalizes necessary conditions for entropy conservation at curvilinear nonconforming
interfaces

– Elegantly handles various mesh generation strategies including elements of full geometric
order (pg ≤ p)

– Extends the metric approximation approach of Crean et al. [13] to curvilinear noncon-
forming interfaces

– Satisfies the discrete GCL conditions, therefore ensuring freestream preservation
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– Exploits the generality of distinct surface and volume metrics that couple through the
GCL constraint

• Numerical evidence is provided that supports the assertion that the conforming [5, 42] and
nonconforming algorithms exhibit similar 1) nonlinear robustness properties and 2) L2-norm
convergence rates, (i.e., nominally p+ 1 for polynomials of degree p).

The paper is organized as follows: Section 2 delineates the notation used herein. The noncon-
forming algorithm is presented in the simple context of the convection equation in Section 3. This
is followed by an introduction to the construction of nonlinearly stable schemes by examining the
discretization of the Burgers’ equation (Section 4). The nonconforming algorithm presented in Sec-
tion 3 and the mechanics presented in Section 4 are combined in Section 5 to construct an entropy
conservative/stable nonconforming discretization for the compressible Euler equations. Numerical
experiments are are given in Section (7), while conclusions are drawn in Section 8.

2 Notation

PDEs are discretized on hexahedra having Cartesian computational coordinates denoted by the
triple (ξ1, ξ2, ξ3), where the physical coordinates are denoted by the triple (x1, x2, x3). Vectors are
represented by lowercase bold font, for example u, while matrices are represented using sans-serif
font, for example, B. Continuous functions on a space-time domain are denoted by capital letters
in script font. For example,

U (ξ1, ξ2, ξ3, t) ∈ L2 ([α1, β1]× [α2, β2]× [α3, β3]× [0, T ])

represents a square integrable function, where t is the temporal coordinate. The restriction of such
functions onto a set of mesh nodes is denoted by lower case bold font. For example, the restriction
of U onto a grid of N1 ×N2 ×N3 nodes is given by the vector

u =
[
U
(
ξ(1), t

)
, . . . ,U

(
ξ(N), t

)]T
,

where, N is the total number of nodes (N ≡ N1N2N3) square brackets ([]) are used to delineate
vectors and matrices as well as ranges for variables (the context will make clear which meaning
is being used). Moreover, ξ is a vector of vectors constructed from the three vectors ξ1, ξ2, and
ξ3, which are vectors of size N1, N2, and N3 and contain the coordinates of the mesh in the three
computational directions, respectively. Finally, ξ is constructed as

ξ(3(i− 1) + 1 : 3i) ≡ ξ(i) ≡ [ξ1(i), ξ2(i), ξ3(i)]T ,

where the notation u(i) means the ith entry of the vector u and u(i : j) is the subvector constructed
from u using the ith through jth entries (i.e., Matlab notation is used).

Oftentimes, monomials are discussed and the following notation is used:

ξjl ≡
[
(ξl(1))j , . . . , (ξl(Nl))

j
]T
,

and the convention that ξjl = 0 for j < 0 is used.
Herein, one-dimensional SBP operators are used to discretize derivatives. The definition of a

one-dimensional SBP operator in the ξl direction, l = 1, 2, 3, is [16, 18,54]
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Definition 1. Summation-by-parts operator for the first derivative: A matrix operator

with constant coefficients, D
(1D)
ξl
∈ RNl×Nl, is a linear SBP operator of degree p approximating the

derivative ∂
∂ξl

on the domain ξl ∈ [αl, βl] with nodal distribution ξl having Nl nodes, if

1. D
(1D)
ξl

ξjl = jξj−1
l , j = 0, 1, . . . , p;

2. D
(1D)
ξl
≡
(

P
(1D)
ξl

)−1
Q

(1D)
ξl

, where the norm matrix, P
(1D)
ξl

, is symmetric positive definite;

3. Q
(1D)
ξl
≡
(

S
(1D)
ξl

+ 1
2E

(1D)
ξl

)
, S

(1D)
ξl

= −
(

S
(1D)
ξl

)T
, E

(1D)
ξl

=
(

E
(1D)
ξl

)T
, E

(1D)
ξl

= diag (−1, 0, . . . , 0, 1) =

eNle
T
Nl
− e1le

T
1l

, e1l ≡ [1, 0, . . . , 0]T, and eNl ≡ [0, 0, . . . , 1]T.

Thus, a degree p SBP operator is one that differentiates exactly monomials up to degree p.

In this work, one-dimensional SBP operators are extended to multiple dimensions using tensor
products (⊗). The tensor product between the matrices A and B is given as A⊗B. When referencing
individual entries in a matrix the notation A(i, j) is used, which means the ijth entry in the
matrix A. The Hadamard product is also used in the construction of entropy conservative/stable
discretizations, where, the Hadamard product between the matrices A and B is denoted by A ◦ B.

The focus in this paper is exclusively on diagonal-norm SBP operators. Moreover, the same
one-dimensional SBP operator is used in each direction, each operating on N nodes. Specifically,
diagonal-norm SBP operators constructed on the Legendre–Gauss–Lobatto (LGL) nodes are used,
i.e., a discontinuous Galerkin collocated spectral element approach is utilized.

The physical domain Ω ⊂ R3, with boundary Γ ≡ ∂Ω is partitioned into K nonoverlapping
hexahedral elements. The domain of the κth element is denoted by Ωκ and has boundary ∂Ωκ.
Numerically, PDEs are solved in computational coordinates, where each Ωκ is locally transformed
to Ω̂κ, with boundary Γ̂ ≡ ∂Ω̂κ, under the following assumption:

Assumption 1. Each element in physical space is transformed using a local and invertible curvi-
linear coordinate transformation that is compatible at shared interfaces, meaning that points in
computational space on either side of a shared interface mapped to the same physical location, and
therefore, map back to the analogous location in computational space; this is the standard assump-
tion that the curvilinear coordinate transformation is water tight.

3 A p-nonconforming algorithm: Linear convection

The focus herein is on nonconformity arising from curvilinearly mapped elements that have conform-
ing interfaces but nonconforming nodal distributions, as would result from p-refinement interfaces
(see Fig. 1). The construction of entropy conservative/stable discretizations for the compressible
Euler equations on Cartesian grids is detailed in Friedrich et al. [25]. Extending the Cartesian
work involves developing a p-refinement, curvilinear, interface coupling technique that maintains
1) accuracy, 2) discrete entropy conservation/stability, and 3) elementwise conservation.

3.1 Scalar convection: continuous and semidiscrete analysis

Many of the salient difficulties encountered while constructing stable and conservative nonconform-
ing discretizations of the Euler equations, are also present in discretization of linear convection.
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Low element:

pL, uL, DL
ξl

,

+side

High element: pH,

uH, DH
ξl

, -side

ξ1

ξ3

ξ2

Figure 1. Nonconforming elements.

Consider the constant coefficient linear convection in Cartesian coordinates.

∂U
∂t

+

3∑

m=1

∂ (amU)

∂xm
= 0, (1)

where (amU) are the fluxes and am are the (constant) components of the convection speed. The
stability of (1) can be determined using the energy method which proceeds by multiplying (1) by
the solution (U), and after using the chain rule results in

1

2

∂U2

∂t
+

1

2

3∑

m=1

∂
(
amU2

)

∂xm
= 0. (2)

Integrating over the domain, Ω, using integration by parts, and Leibniz rule gives

d

dt

∫

Ω

U2

2
dΩ +

1

2

3∑

m=1

∮

Γ

(
amU2

)
nxmdΓ = 0, (3)

where nxm is the mth component of the outward facing unit normal. What Eq. (3) demonstrates is
that the time rate of change of the norm of the solution, ‖U‖2 ≡

∫
Ω U2dΩ, depends solely on surface

flux integrals. Imposing appropriate boundary conditions in Eq. (3) leads to an energy estimate on
the solution, and therefore, a proof of stability. The discretizations that are developed in this paper
mimic the above energy analysis in a one-to-one fashion and similarly lead to stability statements
on the semidiscrete equations.

The proposed algorithm is constructed from differentiation matrices that live in computational
space and for this purpose, Eq. (1) is transformed using the curvilinear coordinate transformation
xm = xm (ξ1, ξ2, ξ3). Thus, after expanding the derivatives as

∂

∂xm
=

3∑

l=1

∂ξl
∂xm

∂

∂ξl
,

and multiplying by the metric Jacobian (Jκ), (1) becomes

Jκ
∂U
∂t

+
3∑

l,m=1

Jκ
∂ξl
∂xm

∂ (amU)

∂ξl
= 0. (4)
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Herein, we refer to Eq. (4) as the chain rule form of Eq. (1) . Bringing the metric terms, Jκ ∂ξl
∂xm

,
inside the derivative and using the product rule gives

Jκ
∂U
∂t

+
3∑

l,m=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

amU
)
−

3∑

l,m=1

amU
∂

∂ξl

(
Jκ

∂ξl
∂xm

)
= 0. (5)

The last term on the left-hand side of (5) is zero via the GCL relations

3∑

l=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

)
= 0, m = 1, 2, 3, (6)

leading to the strong conservation form of the convection equation in curvilinear coordinates:

Jκ
∂U
∂t

+
3∑

l,m=1

∂

∂ξl

(
Jκ

∂ξl
∂xm

amU
)

= 0. (7)

Now, consider discretizing (7) by using the following differentiation matrices:

Dξ1 ≡ D(1D) ⊗ IN ⊗ IN , Dξ2 ≡ IN ⊗ D(1D) ⊗ IN , Dξ3 ≡ IN ⊗ IN ⊗ D(1D),

where IN is an N ×N identity matrix. The diagonal matrices containing the metric Jacobian and
metric terms along their diagonals, respectively, are defined as follows:

Jκ ≡ diag
(
Jκ(ξ(1)), . . . ,Jκ(ξ(Nκ))

)
,

[
J ∂ξl
∂xm

]

κ

≡ diag

(
Jκ

∂ξl
∂xm

(ξ(1)), . . . ,Jκ
∂ξl
∂xm

(ξ(Nκ))

)
.

where Nκ ≡ N3 is the total number of nodes in element κ. With this nomenclature, the discretiza-
tion of (7) on the κth element reads

Jκ
duκ
dt

+
3∑

l,m=1

Dξl

[
J ∂ξl
∂xm

]

κ

amuκ = SAT , (8)

where SAT is the vector of the SATs used to impose both boundary conditions and or interelement
connectivity. Unfortunately, the scheme (8) is not guaranteed to be stable. However, a well-known
remedy is to consider a canonical splitting that is arrived at by summing one half of (4) and one
half of (5), giving

Jκ
∂U
∂t

+
1

2

3∑

l,m=1

{
∂

∂ξl

(
Jκ

∂ξl
∂xm

amU
)

+ Jκ
∂ξl
∂xm

∂

∂ξl
(amU)

}

− 1

2

3∑

l,m=1

{
amU

∂

∂ξl

(
Jκ

∂ξl
∂xm

)}
= 0,

(9)
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where the last set of terms are zero by the GCL conditions (6). Then, a stable semidiscrete form
is constructed in the same manner as the split form (9) by discretizing (4) and (5) using Dξl , Jκ,

and
[
J ∂ξl
∂xm

]
κ
, and averaging the results. This procedure yields

Jκ
duκ
dt

+
1

2

3∑

l,m=1

am

{
Dξl

[
J ∂ξl
∂xm

]

κ

+

[
J ∂ξl
∂xm

]

κ

Dξl

}
uκ

− 1

2

3∑

l,m=1

{
am diag (uκ) Dξl

[
J ∂ξl
∂xm

]

κ

1κ

}
= SAT ,

(10)

where 1κ is a vector of ones of the size of the number of nodes on the κth element. As in the
continuous case, the semidiscrete form has a set of discrete GCL conditions

3∑

l=1

Dξl

[
J ∂ξl
∂xm

]

κ

1κ = 0, m = 1, 2, 3, (11)

that if satisfied, lead to the following telescoping (provably stable) semidiscrete form

Jκ
duκ
dt

+
1

2

3∑

l,m=1

am

{
Dξl

[
J ∂ξl
∂xm

]

κ

+

[
J ∂ξl
∂xm

]

κ

Dξl

}
uκ = SAT . (12)

Remark 1. The linear stability of semidiscrete operators for constant coefficient hyperbolic systems,
is not preserved by arbitrary design order approximations to the metric terms. Only approximations
to the metric terms that satisfy discrete GCL (11) conditions lead to stable semidiscrete forms.

Remark 2. The satisfaction of the discrete GCL conditions (11) for tensor-product conforming
discretizations has well-known solutions (Vinokur and Yee [59] or Thomas and Lombard [58]) which
require that the differentiation matrices commute, i.e. Dξ1Dξ2 = Dξ2Dξ1, etc..

Remark 3. The discrete GCL conditions can alternatively be derived by inputting a constant
solution into (10).

3.2 Scalar convection and the nonconforming interface

The analysis and presentation of nonconforming semidiscrete algorithms is simplified by considering
a single interface between two adjoining elements as shown in Figure 1. The elements have aligned
computational coordinates and the shared interface is vertical. The nonconformity is assumed to
arise from local approximations with differing polynomial degrees. Specifically, the left element has
polynomial degree pL (low: subscript/superscript L) and the right element has polynomial degree
pH (high: subscript/superscript H) where pH > pL (see Figure 1). The first task is to construct
SBP operators that span both elements: i.e., macroelement operators composed of elements L and
H. A naive construction would be the following operators in the three coordinate directions:

D̃ξ1 ≡
[

DL
ξ1

DH
ξ1

]
; D̃ξ2 ≡

[
DL
ξ2

DH
ξ2

]
; D̃ξ3 ≡

[
DL
ξ3

DH
ξ3

]
. (13)

9



The D̃ξ2 and D̃ξ3 macroelement operators are by construction SBP operators; the action of their

differentiation is parallel to the interface, and they telescope out to the boundaries. The D̃ξ1

is not by construction an SBP operator, despite the individual matrices composing D̃ξ1 being
SBP operators. In addition, and more critically, there is no coupling between the two elements.
Thus, interface coupling must be introduced between the two elements that render the operators
on the macroelement as SBP operators. For this purpose, interpolation operators are needed that
interpolate information from element H to element L and vice versa. For simplicity, the interpolation
operators use only tensor product surface information from the adjoining interface surface.

With this background, general matrix difference operators between the two elements are con-
structed as

D̃ξl = P̃−1Q̃ξl = P̃−1

(
S̃ξl +

1

2
Ẽξl

)
. (14)

Focusing on the direction orthogonal to the interface (ξ1) the relevant matrices are given by

P̃ ≡ diag

[
PL

PH

]
,

S̃ξ1 ≡
 SL

ξ1
1
2

(
eNL

eT
1H
⊗ P

(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

)

−1
2

(
e1He

T
NL
⊗ P

(1D)
H I

(1D)
LtoH ⊗ P

(1D)
H I

(1D)
LtoH

)
SH
ξ1


 ,

Ẽξ1 ≡[
−e1Le

T
1L
⊗ P

(1D)
L ⊗ P

(1D)
L

eNH
eT
NH
⊗ P

(1D)
H ⊗ P

(1D)
H

]
,

(15)

and I
(1D)
HtoL and I

(1D)
LtoH are one-dimensional interpolation operators from the H element to the L element

and vice versa.
A necessary constraint the SBP formalism places on D̃ξ1 , is skew-symmetry of the S̃ξ1 matrices.

The block-diagonal matrices in S̃ξ1 are already skew-symmetric but the of diagonal blocks are not.
Thus, it is necessary to satisfy the following condition:

(
eNL

eT
1H
⊗ P

(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

)
=
{(
e1He

T
NL
⊗ P

(1D)
H I

(1D)
LtoH ⊗ P

(1D)
H I

(1D)
LtoH

)}T
.

This implies that the interpolation operators are related to each other as follows:

I
(1D)
HtoL =

(
P

(1D)
L

)−1 (
I
(1D)
LtoH

)T
P

(1D)
H .

This property is denoted as the SBP preserving property because it leads to a macroelement differ-

entiation matrix that is an SBP operator. The optimal interpolation operator, I
(1D)
LtoH, is constructed

to exactly interpolate polynomial of degree pL and can be easily constructed as follows:

I
(1D)
LtoH =

[
ξ0

H, . . . , ξ
pL
H

] [
ξ0

L, . . . , ξ
pL
L

]−1
,

where ξL and ξH are the one-dimensional nodal distributions in computational space of the two

elements. The companion interpolation operator I
(1D)
HtoL is suboptimal by one degree (pL − 1), a

10



consequence of satisfying the necessary SBP-preserving property (see Friedrich et al. [25] for a
complete discussion).

The semidiscrete skew-symmetric split operator given in Eq. (10), discretized using the macroele-

ment operators D̃ξl , and metric information J,
[
J ∂ξl
∂xm

]
, leads to the following:

J
dũ

dt
+

1

2

3∑

l,m=1

am

(
D̃ξl

[
J ∂ξl
∂xm

]
+

[
J ∂ξl
∂xm

]
D̃ξl

)
ũ

− 1

2

3∑

l,m=1

am diag (ũ) D̃ξl

[
J ∂ξl
∂xm

]
1̃ = 0,

(16)

where

ũ ≡
[
uT

L ,u
T
H

]T
, J ≡ diag

[
JL

JH

]
,

[
J ∂ξl
∂xm

]
≡



[
J ∂ξl
∂xm

]
L [
J ∂ξl
∂xm

]
H


 . (17)

As was the case in Eq. (10), a necessary condition for stability is that the metric terms satisfy the
following discrete GCL conditions:

3∑

l=1

D̃ξl

[
J ∂ξl
∂xm

]
1̃ = 0. (18)

Recognizing that D̃ξ1 is not a tensor product operator, discrete metrics constructed using the
analytic formalism of Vinokur and Yee [59] or Thomas and Lombard [58] will not in general satisfy
the discrete GCL condition required in Eq. (18). The only viable alternative is to solve for discrete
metrics that directly satisfy the GCL constraints.

Remark 4. Note that metric terms are assigned colors; e.g., the time-term Jacobian: J or the

volume metric terms:
[
J ∂ξl
∂xm

]
. Metric terms with common colors form a clique and must be

formed consistently. For example, the time-term Jacobian and the volume metric Jacobian need
not be equivalent. Another important clique: the surface metrics, will be introduced in the next
subsection.

3.3 Isolating the metrics

The system (18) is a highly underdetermined system that couples the approximation of the metrics
in both elements. Worse still, whole clouds of nonconforming elements would in general need
to be solved simultaneously, making the approach undesirable and even impracticable! A close

11



examination of the volume terms provides insight on how to overcome this issue:

P̃

(
D̃ξ1

[
J ∂ξ1

∂xm

]
+

[
J ∂ξ1

∂xm

]
D̃ξ1

)
=

[
A11 A12

−AT
12 A22

]
+

(
Ẽξ1

[
J ∂ξ1

∂xm

]
+

[
J ∂ξ1

∂xm

]
Ẽξ1

)
,

A11 ≡
{

SL
ξ1

[
J ∂ξ1

∂xm

]

L

+

[
J ∂ξ1

∂xm

]

L

SL
ξ1

}
,

A12 =
1

2





[
J ∂ξ1
∂xm

]
L

(
eNL

eT
1H
⊗ P

(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

)

+
(
eNL

eT
1H
⊗ P

(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

) [
J ∂ξ1
∂xm

]
H




,

A22 ≡
{

SH
ξ1

[
J ∂ξ1

∂xm

]

H

+

[
J ∂ξ1

∂xm

]

H

SH
ξ1

}
.

(19)

Replacing the highlighted off-diagonal metric terms in (19) with known metrics data, by construc-
tion preserves the skew-symmetry of the operator S̃ξl , but decouples the discrete GCL conditions
(18). The highlighted off-diagonal surface metric terms: L and H become forcing data for the GCL
condition. Note that L and H need not be equivalent, provided they are design order close.

Remark 5. More generally, A12 can be composed of any terms that are design order interpolations
from one element to the other and these can be constructed in a very general way, for example,
one might consider first interpolating data to an intermediate set of Gauss nodes on which the
metric terms are specified. The theoretical results in this paper apply to any such approach that is
design order, satisfied the structural requirements presented above, and that uses specified metric
information in the coupling terms.

With this approach, the discrete GCL conditions become (where contributions from the bound-
ary SATs have been ignored)

2PL
3∑

l=1

DL
ξl

[
J ∂ξl
∂xm

]

L

1L =

{(
eNL

eT
NL
⊗ P

(1D)
L ⊗ P

(1D)
L

)[
J ∂ξ1

∂xm

]

L

+

[
J ∂ξ1

∂xm

]

L

(
eNL

eT
NL
⊗ P

(1D)
L ⊗ P

(1D)
L

)}
1L

−
{

(eNL
⊗ INL

⊗ INL
)

[
J ∂ξ1

∂xm

]Γ̂

L

(
P

(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

) (
eT

1H
⊗ INH

⊗ INH

)
}

1H

−
{

(eNL
⊗ INL

⊗ INL
)
(

P
(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

)[
J ∂ξ1

∂xm

]Γ̂

H

(
eT

1H
⊗ INH

⊗ INH

)
}

1H,

(20)
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2PL
3∑

l=1

DH
ξl

[
J ∂ξl
∂xm

]

H

1H =

−
{(
e1He

T
1H
⊗ P

(1D)
H ⊗ P

(1D)
H

)[
J ∂ξ1

∂xm

]

H

+

[
J ∂ξ1

∂xm

]

H

(
e1Le

T
1H
⊗ P

(1D)
H ⊗ P

(1D)
H

)}
1H

+

{
(e1H ⊗ INH

⊗ INL
)

[
J ∂ξ1

∂xm

]Γ̂

H

(
P

(1D)
H I

(1D)
LtoH ⊗ P

(1D)
H I

(1D)
LtoH

) (
eT
NL
⊗ INL

⊗ INL

)
}

1L

+

{
(e1H ⊗ INH

⊗ INH
)
(

P
(1D)
H I

(1D)
LtoH ⊗ P

(1D)
H I

(1D)
LtoH

)[
J ∂ξ1

∂xm

]Γ̂

L

(
eT
NL
⊗ INL

⊗ INL

)
}

1L.

(21)

The matrix
[
J ∂ξ1
∂xm

]Γ̂

L
is of size N2

L×N2
L (NL is the number of nodes in each computational direction

on element L) and its diagonal elements are approximations to the metrics on the surface nodes

of element L at the shared interface. An analogous definition holds for
[
J ∂ξ1
∂xm

]Γ̂

H
. In order to

decouple the two systems of equations in (20) and (21) the terms in
[
J ∂ξ1
∂xm

]Γ̂

L
and

[
J ∂ξ1
∂xm

]Γ̂

H
need

to be specified, for example, using the analytic metrics, which is the approach used in this paper.
For later use, we introduce notation for the macroelement D̃l,m that is the macroelement operator

constructed as descried above for the metric terms Jκ ∂ξl
∂xm

.
The next section details how to construct the metrics so that the remaining discrete GCL

conditions are satisfied.

3.4 Metric solution mechanics

In this section, to demonstrate the proposed approach for approximating the metric terms, the
discrete GCL conditions associated with the element L (20) are used.

Note that for an arbitrary interior element, the discrete GCL system that needs to be solved
includes the coupling terms on all six faces, while for the simplified problem considered above only
the (nonconforming) coupling on the vertical interface appears.

Eq. (20) can be algebraically manipulated into a form that is more convenient for constructing a
solution procedure for the metric terms. This form is derived by multiplying Eq. (20) by −1, using

the SBP property Q
(1D)
L = −

(
Q

(1D)
L

)T
+ E

(1D)
L , and canceling common terms. Doing so results in

2

3∑

l=1

(
QL
ξl

)T
[
J ∂ξl
∂xm

]

L

1L =

−
{

(eNL
⊗ INL

⊗ INL
)

[
J ∂ξ1

∂xm

]Γ̂

L

(
P

(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

) (
eT

1H
⊗ INH

⊗ INH

)
}

1H

−
{

(eNL
⊗ INL

⊗ INL
)
(

P
(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

)[
J ∂ξ1

∂xm

]Γ̂

H

(
eT

1H
⊗ INH

⊗ INH

)
}

1H,

m = 1, 2, 3,

(22)

where QL
ξ1
≡ Q

(1D)
L ⊗P

(1D)
L ⊗P

(1D)
L , QL

ξ2
≡ P

(1D)
L ⊗Q

(1D)
L ⊗P

(1D)
L , QL

ξ3
≡ P

(1D)
L ⊗P

(1D)
L ⊗Q

(1D)
L . Note

that the contributions from the Eξl from the left-hand side (i.e., coming from the step Q = −QT+E)
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related to the boundaries of the macroelement are ignored. This contributions interact with the
boundary SATs in the same way as the interface does.

The metric terms in Eq. (22) are determined by solving a strictly convex quadratic optimization
problem, following the algorithm given in Crean et al. [13]:

min
am

1

2

(
aL
m − aL

m,target

)T (
aL
m − aL

m,target

)
, subject to MLaL

m = cL
m,

m = 1, 2, 3,
(23)

where aL
m and aL

m,target are the optimized and targeted metric terms, respectively, and

(
aL
m

)T ≡ 1T
L

[[
J ∂ξ1

∂xm

]

L

,

[
J ∂ξ2

∂xm

]

L

,

[
J ∂ξ3

∂xm

]

L

]
, ML ≡

[(
QL
ξ1

)T
,
(
QL
ξ2

)T
,
(
QL
ξ3

)T]
,

2cL
m ≡

−
{

(eNL
⊗ INL

⊗ INL
)

[
J ∂ξ1

∂xm

]Γ̂

L

(
P

(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

) (
eT

1H
⊗ INH

⊗ INH

)
}

1H

−
{

(eNL
⊗ INL

⊗ INL
)
(

P
(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL

)[
J ∂ξ1

∂xm

]Γ̂

H

(
eT

1H
⊗ INH

⊗ INH

)
}

1H,

with aL
m of size 3(NL)3 × 1, ML of size (NL)3 × 3(NL)3 and cL

m of size (NL)3 × 1. The optimal
solution, in the Cartesian 2-norm, is given by (see Proposition 1 in Crean et al. [13])

aL
m = aL

m,target −
(
ML
)† (

MLaL
m,target − cL

m

)
, (24)

with
(
ML
)†

the Moore-Penrose pseudoinverse of ML. The pseudoinverse is computed using a
singular value decomposition (SVD) of ML

ML = ULΣL
(
VL
)T
,
(
ML
)†

= VL
(
ΣL
)† (

UL
)T
,

with UL an (NL)3 × (NL)3 unitary matrix, ΣL an (NL)3 × (NL)3 diagonal matrix containing the

singular values of ML, and
(
VL
)T

an (NL)3 × 3(NL)3 matrix with orthonormal rows. Although
the solution (aL

m given by Eq. (24)) is optimal, it is not guaranteed to exactly satisfy Eq. (23)
(i.e., machine precision). The following theorem establishes an additional constrain on the surface
metrics.

Theorem 1. The surface metrics, cL
m, must satisfy the additional constraint

1T
Lc

L
m = 0 , (25)

to guarantee an exact solution of the discrete GCL condition given in Eq. (23).

Proof. The matrix ML is constructed from the transposes of three derivative operators:
(

DL
ξl

)T
PL =

(
QL
ξl

)T
, with the constant vector 1L, in its null space, i.e., 1T

L

(
QL
ξl

)T
= 0T. Thus, the matrix ML

has a row rank of (NL)3 − 1 and one zero singular value.
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Assemble the singular values in the diagonal matrix
(
ΣL
)

in descending order. This implies that
i) the final singular value is zero, Σ((NL)3, (NL)3) = 0, ii) the final orthonormal column vector in UL

is a constant multiple of the vector, 1L, and iii) the pseudoinverse is given by
(
ΣL
)†

(i, i) = 1
ΣL(i,i)

,

i = 1, . . . , (NL)3 − 1.
The optimal solution given in Eq. (24) can thus be expressed as

aL
m = aL

m,target − VL
(
ΣL
)† (

ΣL
(
VL
)T
aL
m,target − (UL)TcL

m

)
.

Since the diagonal matrices
(
ΣL
)†

and ΣL are rank deficient in their ((NL)3, (NL)3) positions,
a zero solution exists only if the final constant vector, dotted with the metric data is zero, i.e.,
(UL)TcL

m = 1T
Lc

L
m = 0. The proof is established.

Inspection of the definition for cL
m given in Eq. (25), reveals that the constraint 1T

Lc
L
m = 0,

may be interpreted as the discrete integral of surface metric data. This integral must be zero as is
motivated by the following derivation.

Integrate the continuous GCL equations over the domain Ω̂L, and apply Gauss’ divergence
theorem to the integral. The resulting expressions are

∫

Ω̂L

3∑

l=1

∂

∂ξl

(
J ∂ξl
∂xm

)
dΩ̂L =

∮

Γ̂L

3∑

l=1

(
J ∂ξl
∂xm

)
nξldΓ̂L ≈ 1T

Lc
L
m = 0.

Thus, the constraint 1T
Lc

L
m = 0 is the discrete surface metric equivalent of the analytic surface

integral consistency constraint.
There are at least two convenient ways of enforcing this constraint: 1) polynomially exact

(analytic) surface metrics or 2) metrics constructed using conventional FD approaches [58,59]. The
adequacy of these approaches is demonstrated by a careful investigation of the surface metrics
arising from tensor-product transformations.

Consider a degree p tensor-product curvilinear coordinate transformation. The surface metrics
and the coupling terms constructed on the joint surface are of degree 2p−1 in the surface orthogonal
directions. Thus, a surface mass matrix with quadrature strength 2p−1, (e.g., LGL) integrates the
surface terms exactly and immediately satisfies the constraint: 1T

Lc
L
m = 0. The following theorem

establishes that the resulting coupling terms satisfy the required integral constraints.

Theorem 2. The coupling terms constructed on a conforming face between a conforming element
and an element that has at least one other face that is nonconforming satisfy the condition (25)
if either 1) analytic or 2) standard FD approaches (e.g., Vinokur and Yee [59] or Thomas and
Lombard), are used to seed the metric terms.

Proof. This proof follows by inserting the approximation of the metric terms using 1) analytic, or
2) either Vinokur or Yee [59] or Thomas and Lombard [58], and the polynomial exactness of the
differentiation matrices and the norm matrices, see Appendix F.

Remark 6. The 1) GCL optimized volume metrics on all faces of a nonconforming element, and
the 2) surface metrics specified in the coupling matrices, are both surface normal approximations
but in general differ by a design order term. They are weakly coupled through the GCL constraint
given in equation (22).

15



The following theorem summarizes the properties of the proposed coupling approach.

Theorem 3. The proposed coupling procedure results in a scheme that has the following properties:

• The scheme is discretely entropy conservative (i.e., neutral discrete L2 stability under the
assumption of positive temperature and density)

• The scheme is discretely elementwise conservative and preserves freestream

• The scheme is of order pL + d− 1 where pL is the lowest degree used (the +d comes from the
fact that the PDE and therefore the discretization have been multiplied by the metric Jacobian
which scales as hd)

Proof. The proof of entropy conservation is given in Section (5.2) while appropriate interface dissi-
pation leading to entropy stability is discussed in Section 6. Element-wise conservation is proven in
Appendix E. The order of the scheme results from the fact that one of the interpolation operators
is suboptimal (pL − 1).

4 Nonlinearly stable schemes: Burgers’ equation

The nonconforming interface coupling mechanics presented in the previous section will be general-
ized for the compressible Euler equations in Section 5. Proving stability of nonlinear conservation
laws, in general requires elaborate techniques well beyond simply discretizing the derivatives of the
fluxes directly with SBP operators. Next, the Hadamard derivative formalisem is introduced in the
context of one-dimensional inviscid Burgers’ equation, which has the desirable property of being
amenable to either 1) a canonical derivative splitting, or 2) the Hadamard derivative approach.
The equivalence between the two approaches for Burgers’ equation, is established elsewhere [8,22].

Inviscid Burgers’ equation, and its well-known canonical splitting, are of the form

∂U
∂t

+
∂

∂x1

(U2

2

)
= 0 ;

∂U
∂t

+
1

3

∂

∂x1

(
U2
)

+
U
3

∂U
∂x1

= 0. (26)

Performing an energy analysis on the split form of (26) gives (see, for instance, Ref, [8] for details)

1

2

d‖U‖2
dt

+

∮

Γ

U3

3
nx1dΓ = 0, ‖U‖2 ≡

∫

Ω
U2dΩ. (27)

In order to prove stability, the semidiscrete scheme needs to mimic (27) in the sense that when
contracted with uTP (the discrete analogue of multiplying by the solution and integrating in space)
the result is given by the sum of spatial terms that telescope to the boundaries.

The discretization of (26) with SBP operators (ignoring the SATs) is given as

du

dt
+

1

3
Dx1 diag (u)u+

1

3
diag (u) Dx1u = 0. (28)

Multiplying (28) by uTP results in

1

2

duTPu

dt
+

1

3

(
u3(N)− u3(1)

)
= 0, (29)
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for which each term mimics (27) and has the telescoping property, i.e., the remaining terms are at
the boundaries.

Now the discretization (28) is recast using the Hadamard derivative formalism. The Hadamard
derivative operator and the equivalent split form operators are given as follows

2Dx1 ◦ Fx1 (u,u) 11 ↔ 1

3
Dx1 diag (u)u+

1

3
diag (u) Dx1u . (30)

The Hadamard operator is capable of compactly representing various split forms, and more
importantly, extends to nonlinear equations for which a canonical split form is inappropriate.

The Hadamard derivative operator is constructed from two components: 1) an SBP derivative
operator, and 2) a two point flux function specific to the physics being modeled. Two point fluxes
are constructed between the center point and all other points of dependency within the SBP stencil.
The SBP telescoping property [22] that results from precise local cancellation of spatial terms, can
then be extended directly to nonlinear operators. A simple example is now presented.

Consider the two point Burgers’ flux function defined by [8, 57]

f scxm

(
u(i),u(j)

)
≡

{(
u(i)

)2
+ u(i)u(j) +

(
u(j)

)2}

6
,

where u(i) and u(j) are the ith and jth components of u, and for the purpose of demonstration, a
simple SBP operator constructed on the LGL nodes (−1, 0, 1)

Dx1 =




−3
2 2 −1

2

−1
2 0 1

2

1
2 −2 3

2


 .

The two argument Hadamard matrix flux, Fxm (u,u) is given as

Fxm (u,u) =



(u(1))
2

2
(u(1))

2
+u(1)u(2)+(u(2))

2

6
(u(1))

2
+u(1)u(3)+(u(3))

2

6

(u(2))
2
+u(2)u(1)+(u(1))

2

6
(u(2))

2

2
(u(2))

2
+u(2)u(3)+(u(3))

2

6

(u(3))
2
+u(3)u(1)+(u(1))

2

6
(u(3))

2
+u(3)u(2)+(u(2))

2

6
(u(3))

2

2



.

Thus,

Dx1 ◦ Fxm (u,u) 1 =



− 3
2
(u(1))

2

2 2
(u(1))

2
+u(1)u(2)+(u(2))

2

6 − 1
2
(u(1))

2
+u(1)u(3)+(u(3))

2

6

− 1
2
(u(2))

2
+u(2)u(1)+(u(1))

2

6 0 1
2
(u(2))

2
+u(2)u(3)+(u(3))

2

6

1
2
(u(3))

2
+u(3)u(1)+(u(1))

2

6 −2
(u(3))

2
+u(3)u(2)+(u(2))

2

6
3
2
(u(3))

2

2







1

1

1



.
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The equivalence between the two approaches is evident by inspection.

Now the general notation applicable to the compressible Euler equations is described. Assume
that what is required is the discretization of the derivative of a flux vector Fxm in the xm Cartesian
direction. The essential ingredients used above are an SBP matrix difference operator, Dxm , and
a two argument matrix flux function, Fxm (uκ,ur), which is composed of diagonal matrices and is
defined blockwise as

(Fxm (uκ,ur)) (e(i− 1) + 1 : ei, e(j − 1) + 1 : ej) ≡ diag
(
f scxm

(
u(i)
κ ,u

(j)
r

))
,

u(i)
κ ≡ uκ (e(i− 1) + 1 : ei) , u(j)

r ≡ ur (e(j − 1) + 1 : ej) ,

i = 1 . . . , N3
κ , j = 1, . . . , N3

r ,

where e is the number of equations in the system of PDEs. For example, for the compressible
Euler equations, e = 5 and the two argument matrix flux function is of size

(
eN3

κ

)
×
(
eN3

r

)
,

where eN3
κ and eN3

r are the total number of entries in the vectors uκ and ur corresponding the

solution variables in elements κ and r, respectively. Thus, u
(i)
κ is the vector of the e solution

variables evaluated at the ith node. The vectors f scxm

(
u

(i)
κ ,u

(j)
r

)
are constructed from two-point

flux functions that are symmetric in their arguments,
(
u

(i)
κ ,u

(j)
r

)
, and consistent. Thus,

f scxm

(
u(i)
κ ,u

(j)
r

)
= f scxm

(
u(j)
r ,u(i)

κ

)
, f scxm

(
u(i)
κ ,u

(i)
κ

)
= Fxm

(
u(i)
κ

)
,

where Fxm is the flux vector in the xth
m Cartesian direction. Using these ingredients, an approxi-

mation to the derivative ∂Fxm
∂xm

is constructed as

2Dxm ◦ Fxm (qκ, qκ) 1κ ≈
∂Fxm

∂xm
(ξκ) ,

where ξκ is the vector of vectors containing the nodal locations. The resulting approximation has
the same order properties as differentiating directly with the SBP operator Dxm (see Theorem 1 in
Crean et al. [13]).

5 Application to the compressible Euler equations

In this section, the nonconforming algorithm presented in Section 3 is combined with the mechanics
presented in Section 4 to construct an entropy conservative discretization of the compressible Euler
equations on p-nonconforming meshes. First, in Section 5.1 the continuous equations and the
continuous entropy analysis are reviewed, then in Section 5.2 the semidiscrete algorithm for the
Euler equations is presented and analyzed.
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5.1 Review of the continuous entropy analysis

The strong form of the compressible Euler equations in Cartesian coordinates are given as

∂Q
∂t

+

3∑

m=1

∂Fxm

∂xm
= 0, ∀ (x1, x2, x3) ∈ Ω, t ≥ 0,

Q (x1, x2, x3, t) = G(B) (x1, x2, x3, t) , ∀ (x1, x2, x3) ∈ Γ, t ≥ 0,

Q (x1, x2, x3, 0) = G(0) (x1, x2, x3, 0) , ∀ (x1, x2, x3) ∈ Ω.

(31)

The vectors Q and Fx , respectively, denote the conserved variables and the inviscid fluxes. The
boundary data, G(B), and the initial condition, G(0), are assumed to be in L2(Ω), with the further
assumption that G(B) will be set to coincide with linear well-posed boundary conditions and such
that entropy conservation or stability is achieved.

It is well-known that the compressible Euler equations (31) possess a convex extension that,
when integrated over the physical domain Ω, only depends on the boundary data on Γ. Such an
extension yields the entropy function

S = −ρs, (32)

where ρ and s are the density and the thermodynamic entropy, respectively. The entropy function,
S, is convex if the thermodynamic variables are positive and is a useful tool for proving stability
in the L2 norm [14]. Following the analysis described in [5, 9, 44], the system (31) is multiplied by
the (local) entropy variables WT = ∂S/∂Q and by using the fact that

∂S
∂Q

∂Fxm

∂xm
=
∂S
∂Q

∂Fxm

∂Q
∂Q
∂xm

=
∂Fxm
∂Q

∂Q
∂xm

=
∂Fxm
∂xm

, m = 1, 2, 3, (33)

gives that

∂S
∂t

+

3∑

m=1

∂Fxm
∂xm

= 0, (34)

where the scalars Fxm(Q) are the entropy fluxes in the xm-direction. Then, integrating over the
domain, Ω, and using integration by parts yields

∫

Ω

∂S
∂t

dΩ ≤
∮

Γ

(
3∑

m=1

Fxmnxm

)
dΓ, (35)

where nxm is the mth component of the outward facing unit normal. Note that the equality in (35)
holds for smooth flows; conversely, the inequality is valid for non smooth flow since the mathematical
entropy decreases across shocks.

To obtain a bound on the solution, the inequality (35) is integrated in time and assuming
boundary conditions and an initial condition that are nonlinearly well posed, and positivity of
density and temperature, the result can be turned into a bound on the solution in terms of the data
of the problem (see Refs. [14, 52]). Example of fully-discrete explicit entropy conservative/stable
algorithms are presented, for instance, in Refs. [24, 45].
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5.2 A p-nonconforming algorithm

As for the convection equation, a skew-symmetrically split form of the compressible Euler equations
is used to construct an entropy conservative/stable algorithm:

Jκ
∂Qκ

∂t
+

3∑

l,m=1

1

2

{
∂

∂ξl

(
Jκ

∂ξl
∂xm

Fxm

)
+ Jκ

∂ξl
∂xm

∂Fxm

∂ξ1

}

− 1

2

3∑

l,m=1

Fxm

∂

∂ξl

(
Jκ

∂ξl
∂xm

)
= 0,

(36)

where the last term on the left-hand side is zero as a result of the GCL conditions (6).
The discretization is developed using the same macroelement SBP operator as in Section 3.

Thus, the discretization of (36) over the macroelement is given as

J
dq̃

∂t
+

3∑

l,m=1

D̃l,m ◦ Fxm (q̃, q̃) 1̃− 1

2

3∑

l,m=1

diag (fxm) D̃ξl

[
J ∂ξl
∂xm

]
1̃ = 0,

q̃ ≡
[
qT

L , q
T
H

]T
,

(37)

where fxm is a vector of vectors constructed by evaluating Fxm at the mesh nodes. That the factor
of 1

2 on the skew-symmetric volume terms disappears as a result of using the nonlinear operator, e.g.,

2Dξl ◦ Fxm (qκ, qκ) 1κ ≈ ∂Fxm
∂ξl

(ξκ). Moreover, the flux function matrix, Fxm (q̃, q̃), is constructed

using a two point flux function, f scxm
(
q̃(i), q̃(i)

)
, that satisfies the Tadmor shuffle condition [57]

(
w̃(i) − w̃(j)

)T
f scxm

(
q̃(i), q̃(i)

)
= ψ̃(i)

xm − ψ̃(j)
xm . (38)

The D̃l,m operators are constructed as in Section (3) by tensoring the contributing matrices with
an identity matrix I5 to accommodate the system of 5 equations. For example,

DL
ξ1 ≡ Dξ1 ⊗ I5, D

L
ξ1 ≡ D

(1D)
L ⊗ INL

⊗ INL
.

Nonlinear stability requires that the last set of terms on the left-hand side of (37) be zero.
This requirement leads to discrete GCL conditions which are identical to those obtained for the
convection equation (with Dξl replaced with Dξl), i.e., conditions (20) and (21).

The procedure to demonstrate that the proposed scheme is entropy conservative (i.e., it tele-
scopes to the element boundaries) follows the continuous analysis in a one-to-one fashion (see
Section 5.1). To simplify the derivation, the following matrices are introduced:

D̂m ≡
3∑

l=1

D̃l,m, Q̂m ≡ P̃D̂m, Êm ≡ Q̂m + Q̂T
m.

Thus, assuming that the discrete GCL conditions are satisfied, (37) becomes

J
dq̃

∂t
+

3∑

m=1

D̂m ◦ Fxm (q̃, q̃) 1̃ = 0. (39)
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The first step is to contract (39), pointwise, with the entropy variables (at the continuous level this

was the step W ∂Fxm
∂xm

= ∂Fxm
∂xm

). This is accomplished by multiplying (39) by IÑ ⊗ 1T
5 diag (wκ),

which results in

J IÑ ⊗ 1T
5 diag (wκ)

dq̃

∂t
+ IÑ ⊗ 1T

5 diag (wκ)

3∑

m=1

D̂m ◦ Fxm (q̃, q̃) 1̃ = 0, (40)

where Ñ is the total number of nodes in the macroelement. Adding and subtracting terms to (40)
gives

J
ds̃

∂t
+IÑ ⊗ 1T

5

3∑

m=1

{
1

2
diag (wκ) D̂m ◦ Fxm (q̃, q̃) 1̃ +

1

2
D̂m diag (wκ) ◦ Fxm (q̃, q̃) 1̃

+
1

2
diag (wκ) D̂m ◦ Fxm (q̃, q̃) 1̃− 1

2
D̂m diag (wκ) ◦ Fxm (q̃, q̃) 1̃

}
= 0.

(41)

Consider the ith term of the spatial terms of (41) (denoted Vol(i) where i = 1, . . . , Ñ),

Vol(i) ≡
Ñ∑

j=1

D̂m(i, j)

{(
w̃(i) + w̃(j)

)

2
fsc
xm

(
q̃(i), q̃(j)

)
+

(
w̃(i) − w̃(j)

)

2
fsc
xm

(
q̃(i), q̃(j)

)}
, (42)

where D̂m = D̂m⊗ I5. Using the Tadmor shuffle condition (38) on the second set of terms results in

Vol(i) =

Ñ∑

j=1

D̂m(i, j)





(
w̃(i) + w̃(j)

)

2
fsc
xm

(
q̃(i), q̃(j)

)
+

(
ψ̃

(i)
xm − ψ̃(j)

xm

)

2



 . (43)

Adding and subtracting terms to (43) gives

Vol(i) =

Ñ∑

j=1

D̂m(i, j)





(
w̃(i) + w̃(j)

)

2
f scxm

(
q̃(i), q̃(j)

)
−

(
ψ̃

(i)
xm + ψ̃

(j)
xm

)

2





+
Ñ∑

j=1

D̂m(i, j)ψ̃(i)
xm

. (44)

The last set of terms can be expanded into matrix form as (i.e., the vector constructed from Vol(i)
for i = 1, .., Ñ)

(
ψ̃xm

)T
3∑

l=1

{
Dξl

[
J ∂ξl
∂xm

]
+

[
J ∂ξl
∂xm

]
Dξl

}
1 = 0, (45)

where the equality follows from the assumption that the discrete GCL conditions and consistency
of the first derivative operator, i.e., Dξl1 = 0. Eq. (44) can now be recast in terms of a new flux
function matrix, F̃xm (q̃, q̃) constructed from the two-point flux function

f̃ scxm

(
q̃(i), q̃(i)

)
≡
(
w̃(i) + w̃(j)

)

2
f scxm

(
q̃(i), q̃(j)

)
−

(
ψ̃

(i)
xm + ψ̃

(j)
xm

)

2
.
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Note that f̃ scxn is symmetric and consistent with Fxm ; thus, (40) reduces to

J
ds̃

∂t
+

3∑

m=1

D̂m ◦ F̃xm (q̃, q̃) 1 = 0, (46)

where (see Appendix A for details on the approximation properties of the nonlinear operators)

D̂m ◦ F̃xm (q̃, q̃) 1 ≈ 1

2

3∑

l=1

{
∂

∂ξl

(
Jκ

∂ξl
∂xm
Fxm

)
+ Jκ

∂ξl
∂xm

∂Fxm
∂ξl

}(
ξ̃
)
.

Next, (46) is discretely integrated over the domain by left multiplying by 1
T

P and rearranging,
results in

1
T

PJ
ds̃

∂t
= −

3∑

m=1

1
T

Q̂m ◦ F̃xm (q̃, q̃) 1,

= −1

2

3∑

m=1

{
1

T
Q̂m ◦ F̃xm (q̃, q̃) 1 + 1

T
Q̂

T

m ◦ F̃xm (q̃, q̃) 1

}

= −1

2

3∑

m=1

{
1

T
Q̂m ◦ F̃xm (q̃, q̃) 1 − 1

T
Q̂m ◦ F̃xm (q̃, q̃) 1 + 1

T
Êm ◦ F̃xm (q̃, q̃) 1

}

= −1

2

3∑

m=1

1
T

Êm ◦ F̃xm (q̃, q̃) 1

= −1

2

3∑

m=1

N∑

i,j=1

Êm(i, j)





(
w̃(i) + w̃(j)

)

2
f scxm

(
q̃(i), q̃(j)

)
−

(
ψ̃

(i)
xm + ψ̃

(j)
xm

)

2





= −1

2

3∑

m=1

w̃TÊm ◦ Fxm (q̃, q̃) 1̃ +
1

2
1

T
Êmψ̃m.

(47)

Thus,

1
T

PJ
ds̃

∂t
= −1

2

3∑

m=1

w̃TÊm ◦ Fxm (q̃, q̃) 1̃ +
1

2
1

T
Êmψ̃m. (48)

The right-hand side of (48) contains terms constructed from the E matrices. As a result, these terms
can be decomposed into the contributions of the separate surfaces of the element (nodewise). For
periodic problems, these terms would cancel out with the contributions from face SATs coupling
terms leading to entropy conservation. For nonperiodic problems appropriate SATs need to be
constructed so that an entropy inequality or equality is attained (this is an active area of research;
see, for example, Refs. [15, 44, 53]). It is important to highlight that when nonlinear systems of
PDEs are considered, it is not possible to attain the telescoping property (41) by simply using SBP
operators to discretely differentiate fluxes.
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This section is finished by presenting the discretization for each element separately. Therefore,
for the element L the semidiscrete form reads

JL
dqL

dt
+

3∑

l,m=1

(
DL
ξl

[
J ∂ξl
∂xm

]

L

+

[
J ∂ξm
∂xl

]

L

DL
ξl

)
◦ Fxm (qL, qL) 1L =

(
PL
)−1

3∑

m=1

{(
eNL

eT
NL

P
(1D)
L ⊗ P

(1D)
L ⊗ I5

)[
J ∂ξ1

∂xm

]

L

}
◦ Fxm (qL, qL) 1L

(
PL
)−1

3∑

m=1

{[
J ∂ξ1

∂xm

]

L

(
eNL

eT
NL

P
(1D)
L ⊗ P

(1D)
L ⊗ I5

)}
◦ Fxm (qL, qL) 1L

−
(
PL
)−1

3∑

m=1

{
(eNL

⊗ INL
⊗ INL

⊗ I5)

[
J ∂ξ1

∂xm

]Γ̂

L

(
P

(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL ⊗ I5

)

(
eT

1H
⊗ INH

⊗ INH
⊗ I5

)}
◦ Fxm (qL, qH) 1H

−
(
PL
)−1

3∑

m=1

{
(eNL

⊗ INL
⊗ INL

⊗ I5)
(

P
(1D)
L I

(1D)
HtoL ⊗ P

(1D)
L I

(1D)
HtoL ⊗ I5

)[
J ∂ξ1

∂xm

]Γ̂

H(
eT

1H
⊗ INH

⊗ INH
⊗ I5

)}
◦ Fxm (qL, qH) 1H,

(49)

whereas for the element H the semidiscrete form reads

JH
dqH

dt
+

3∑

l,m=1

(
DH
ξl

[
J ∂ξl
∂xm

]

H

+

[
J ∂ξm
∂xl

]

H

DH
ξl

)
◦ Fxm (qH, qH) 1L =

−
(
PH
)−1

3∑

m=1

{(
e1He

T
1H

P
(1D)
H ⊗ P

(1D)
H ⊗ I5

)[
J ∂ξ1

∂xm

]

H

}
◦ Fxm (qH, qH) 1H

−
(
PH
)−1

3∑

m=1

{[
J ∂ξ1

∂xm

]

H

(
e1He

T
1H

P
(1D)
H ⊗ P

(1D)
H ⊗ I5

)}
◦ Fxm (qH, qH) 1H

+
(
PH
)−1

3∑

m=1

{
(e1H ⊗ INH

⊗ INH
⊗ I5)

[
J ∂ξ1

∂xm

]Γ̂

H

(
P

(1D)
H I

(1D)
LtoH ⊗ P

(1D)
H I

(1D)
LtoH ⊗ I5

)

(
eT
NL
⊗ INL

⊗ INL
⊗ I5

)}
◦ Fxm (qH, qL) 1L

+
(
PH
)−1

3∑

m=1

{
(e1H ⊗ INH

⊗ INH
⊗ I5)

(
P

(1D)
H I

(1D)
LtoH ⊗ P

(1D)
H I

(1D)
LtoH ⊗ I5

)[
J ∂ξ1

∂xm

]Γ̂

L(
eT
NL
⊗ INL

⊗ INL
⊗ I5

)}
◦ Fxm (qH, qL) 1L.

(50)

The algorithm presented above leads to an entropy conservative discretization (modulo what
boundary conditions are imposed). However, the main interest is in entropy stable algorithms and
the approach used herein to achieve this is to augment the entropy conservative scheme with an
appropriate interface dissipation. How this is accomplished is discussed in the next section.
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6 Inviscid interface dissipation and boundary SATs

To make the inviscid entropy conservative scheme entropy stable, an interface dissipation needs
to be added. Herein, as in the conforming algorithms [5, 9, 42, 44], the numerical dissipation is
motivated by the upwinding used in a Roe approximate Riemann solver which has the form

F∗ =
F+ + F−

2
− 1

2
Y |Λ|Y−1

(
Q+ −Q−

)
, (51)

where + and − refer to quantities evaluated on the side of the interface in the positive and negative
face normal directions, respectively (see Figure 1).

The original Roe flux: F∗ is composed of an inviscid flux average: (F+ + F−)/2 and a dissi-
pation term. The flux average term is not in general entropy conservative, and is replaced with an
entropy conservative two-point flux, e.g., Chandrashekar [11] or Ismail and Roe [28]. The remaining
dissipation term, is reformulated in quadratic form to facilitate an entropy stability proof. This
step is accomplished by using the flux Jacobian with respect to the entropy variables, W , rather
than the conservative variables, Q. A unique scaling of the eigenvectors of the conservative variable
flux Jacobian facilitates the reformulation [37].

∂Q
∂W = YYT ;

∂Fξl

∂W =
∂Fξl

∂Q
∂Q
W = YΛξlY

−1 YYT = YΛξlY
T

A full description of the various required matrices appears in Fisher [20].
The interface dissipation term: Y|Λ|Y−1

(
Q+ −Q−

)
is replaced with the equivalent quadratic

dissipation term: Y|Λ|YT
(
W+ −W−). The final form of the interface flux is

F∗ = f scxm
(
W+,W−)− 1

2
Y |Λ|YT

(
W+ −W−) . (52)

and leads to an entropy stable scheme. The extension to the curvilinear case follows immediately
by constructing all three computational fluxes followed by the dot product with the outward facing
normal.

Therefore, the dissipation on element L is given as

dissL ≡−
1

2

(
PL
)−1

RT
L PL
⊥ξ1

∣∣∣∣
∂Fξ1

∂W

∣∣∣∣
L

(RLwL − IHtoLRHwH)

− 1

2

(
PL
)−1

RT
L PL
⊥ξ1 IHtoL

∣∣∣∣
∂Fξ1

∂W

∣∣∣∣
H

(ILtoHRLwL − RHwH) ,

(53)

and on element H takes the following form

dissH ≡−
1

2

(
PH
)−1

RT
HPH
⊥ξ1

∣∣∣∣
∂Fξ1

∂W

∣∣∣∣
H

(RHwH − ILtoHRLwL)

− 1

2

(
PH
)−1

RT
HPH
⊥ξ1 ILtoH

∣∣∣∣
∂Fξ1

∂W

∣∣∣∣
L

(IHtoLRHwH − RLwL) ,

(54)

where
∣∣∣∂Fξ1
∂W

∣∣∣
L

is constructed from the Roe average of the states wL and IHtoLwH, and
∣∣∣∂Fξ1
∂W

∣∣∣
H

is

constructed from the Roe average of the stateswH and ILtoHwL. Furthermore, the various operators
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which appear in (53) and (54) are defined as follows:

RL ≡ eT
NL
⊗ INL

⊗ INL
⊗ I5, RH ≡ eT

1H
⊗ INH

⊗ INH
⊗ I5,

PL
⊥ξl ≡ P

(1D)
L ⊗ P

(1D)
L ⊗ I5, PH

⊥ξl ≡ P
(1D)
H ⊗ P

(1D)
H ⊗ I5,

IHtoL ≡ I
(1D)
HtoL ⊗ I

(1D)
HtoL ⊗ I5, ILtoH ≡ I

(1D)
LtoH ⊗ I

(1D)
LtoH ⊗ I5.

All the theorems regarding the accuracy and the entropy stability are presented (elementwise con-
servation is discussed in Appendix E while it is straightforward to see that free-stream preservation
is attained if the discrete GCL are satisfied).

Theorem 4. The dissipation term dissL is a term of order pL + d − 1 and the dissipation term
dissH is a term of order pL + d− 1.

Proof. This follows from the accuracy of the interpolation operators.

Theorem 5. The dissipation terms (53) and (54) lead to an entropy stable scheme.

Proof. Contracting the global dissipation operator with the entropy variables results in contractions
of the interface dissipation terms dissL and dissH by wT

L PL and wT
HPH, respectively. Summing the

interface contributions wT
L PLdissL and wT

HPHdissH, using the property IHtoL =
(
PL
)−1

ITLtoHPH

and rearranging terms, results in

wT
L PLdissL +wT

HPHdissH =

− 1

2
(RLwL − IHtoLRHwH)T PL

⊥ξ1

∣∣∣∣
∂Fξ1

∂W

∣∣∣∣
L

(RLwrmL − IHtoLRHwrmH)

− 1

2
(RHwrmH − ILtoHRLwL)T PH

⊥ξ1

∣∣∣∣
∂Fξ1

∂W

∣∣∣∣
H

(RHwH − ILtoHRHwL) ,

which is a negative semidefinite term. Therefore, the added interface terms are entropy dissipative.

In Section 7, two problems are used to characterize the nonconforming algorithms: 1) the
propagation of an isentropic vortex and 2) the inviscid Taylor-Green vortex problem. For all of
them, the boundary conditions are weakly imposed by reusing the interface SAT mechanics (see,
for instance, Refs. [15, 44]).

7 Numerical experiments

This section presents numerical evidence that demonstrates that the proposed p-nonconforming
algorithm retains the accuracy and robustness of the spatial conforming discretization reported
in [5, 9, 42,44].

Herein, the conforming [5, 9, 42, 44] and p-adaptive solver for unstructured grids developed at
the Extreme Computing Research Center (ECRC) at KAUST is used to perform numerical exper-
iments. This parallel solver is built on top of the Portable and Extensible Toolkit for Scientific
computing (PETSc) [4], its mesh topology abstraction (DMPLEX) [30] and scalable ordinary dif-
ferential equation (ODE)/differential algebraic equations (DAE) solver library [1]. The systems
of ordinary differential equations arising from the spatial discretizations are integrated using the
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fourth-order accurate Dormand–Prince method [19] endowed with an adaptive time stepping tech-
nique based on digital signal processing [50,51]. To make the temporal error negligible, a tolerance
of 10−8 is always used for the time-step adaptivity. The two-point entropy consistent flux of Chan-
drashekar [11] is used for all the test cases.

The errors are computed using volume scaled (for the L1 and L2 norms) discrete norms as
follows:

‖u‖L1 = Ω−1
c

K∑

κ=1

1T
κPκJκabs (uκ) , ‖u‖2L2 = Ω−1

c

K∑

κ=1

uκPκJκuκ,

‖u‖L∞ = max
κ=1...K

abs (uκ) ,

where Ωc indicates the volume of Ω computed as Ωc ≡
K∑
κ=1

1T
κPκJκ1κ.

7.1 Isentropic Euler vortex propagation

For verification and characterization of the inviscid components of the algorithm, the propagation
of an isentropic vortex is used. This benchmark problem has an analytical solution, which is given
by

G (x1, x2, x3, t) = 1−
{

[(x1 − x1,0)− U∞ cos (α) t]2 + [(x2 − x2,0)− U∞ sin (α) t]2
}
,

ρ = T
1

γ−1 ,

U1 = U∞ cos(α)− εν
(x2 − x2,0)− U∞ sin (α) t

2π
exp

(G
2

)
,

U2 = U∞ sin(α)− εν
(x1 − x1,0)− U∞ cos (α) t

2π
exp

(G
2

)
,

U3 = 0,

T =

[
1− ε2νM2

∞
γ − 1

8π2
exp (G)

]
,

where U∞, M∞, and (x1,0, x2,0, x3,0) are the modulus of the freestream velocity, the freestream
Mach number, and the vortex center, respectively. In this paper, the following values are used:
U∞ = M∞c∞, εν = 5, M∞ = 0.5, γ = 1.4, α = 45

◦
, and (x1,0, x2,0, x3,0) = (0, 0, 0). The

computational domain is x1 ∈ [−5, 5], x2 ∈ [−5, 5], x3 ∈ [−5, 5], and t ∈ [0, 2]. The analytical
solution is used to furnish data for the initial condition.

First, results aimed at validating the entropy conservation properties of the interior domain
SBP-SAT algorithm are reported. Thus, periodic boundary conditions are used on all six faces of
the computational domain. Furthermore, all the dissipation terms used for the interface coupling
are turned off. The discrete integral over the computational domain of the time rate of change of

the entropy function,

∫

Ω

∂S
∂t

dΩ in Eq. (35), is monitored at every time step.

The computational domain is subdivided using ten hexahedrons in each coordinate direction
and the solution polynomial degree in each element is assigned a random integer chosen uniformly
from the set ps = {2, 3, 4, 5} (i.e., each member in the set has an equal probability of being chosen).
To test the conservation of entropy and therefore the freestream condition when curved element
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interfaces are used, the LGL collocation point coordinates at element interfaces are constructed1

as follows:

• Construct a mesh by describing the element interfaces with a second-order polynomial rep-
resentation. Note that many mesh generators use a uniform distribution of points (or nodes)
to construct such a geometrical representation.

• Perturb the nodes that are used to define the second-order polynomial approximation of the
element interfaces as follows:

x1 = x1,∗ +
1

15
L1 cos (a) cos (3b) sin (4c) , x2 = x2,∗ +

1

15
L2 sin (4a) cos (b) cos (3c) ,

x3 = x3,∗ +
1

15
L3 cos (3a) sin (4b) cos (c) ,

where

a =
π

L1

(
x1,∗ −

x1,H + x1,L

2

)
, b =

π

L2

(
x2,∗ −

x2,H + x2,L

2

)
,

c =
π

L3

(
x3,∗ −

x3,H + x3,L

2

)
.

The lengths L1, L2 and L3 are the dimensions of the computational domain in the three
coordinate directions and the sub-script ∗ indicates the unperturbed coordinates of the nodes.
This step yields a “perturbed” second-order interface polynomial representation.

• Compute the coordinate of the LGL points at the element interface by evaluating the “per-
turbed” second-order polynomial at the tensor-product LGL points used to define the cell
solution polynomial of order ps.

Figure 2 shows a cut of the mesh and the polynomial order distribution used for this first test
case. The propagation of the vortex is simulated for two time units. Figure 3 plots the integral
of the time derivative of the entropy function. It is seen that the global variation of the time rate
of the of S is practically zero. This implies that the spatially nonconforming algorithm is entropy
conservative.

Second, a grid convergence study is performed to investigate the order of convergence of the
nonconforming algorithm. The base grid (i.e., the coarsest grid) is constructed as follows:

• Divide the computational domain with four hexahedral elements in each coordinate direction.

• Assign the solution polynomial degree in each element to a random integer chosen uniformly
from the set {ps, ps + 1}.

• Approximate with a psth-order accurate polynomial the element interfaces.

• Construct the perturbed elements and their corresponding LGL points as described previously.

From the base grid, which is similar to the one depicted in Figure 2, a sequence of nested grids is
then generated to perform the convergence study. The results are reported in Tables 7.1 through
6 for the error on the density. The number listed in the first column denoted by“Grid” indicates
the number of hexahedrons in each coordinate direction.
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Figure 2. Isentropic vortex: mesh cut and
polynomial order distribution.
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Figure 3. Isentropic vortex: time rate of
change of the entropy function.

Table 1: Convergence study of the isentropic vortex propagation: p = 1 with p = 2; density error.

Conforming, p = 1 Nonconforming, p = 1 and p = 2
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 2.74E-02 - 1.32E-03 - 1.55E-01 - 1.87E-02 - 9.48E-04 - 1.20E-01 -
8 1.14E-02 -1.26 6.61E-04 -1.00 1.12E-01 -0.47 1.02E-02 -0.87 5.87E-04 -0.69 1.23E-01 +0.04
16 5.13E-03 -1.16 3.31E-04 -1.00 7.29E-02 -0.62 4.55E-03 -1.17 2.99E-04 -0.97 7.06E-02 -0.80
32 1.70E-03 -1.59 1.15E-04 -1.52 3.01E-02 -1.28 1.52E-03 -1.58 1.07E-04 -1.49 3.97E-02 -0.83
64 4.76E-04 -1.84 3.24E-05 -1.83 8.53E-03 -1.82 4.36E-04 -1.81 3.15E-05 -1.76 2.15E-02 -0.88
128 1.23E-04 -1.96 8.33E-06 -1.96 2.13E-03 -2.00 1.14E-04 -1.93 8.72E-06 -1.85 1.05E-02 -1.03
256 3.08E-05 -1.99 2.09E-06 -1.99 5.24E-04 -2.02 2.91E-05 -1.98 2.46E-06 -1.83 5.10E-03 -1.05
512 7.68E-06 -2.00 5.23E-07 -2.00 1.30E-04 -2.01 7.23E-06 -2.01 6.17E-07 -2.00 2.26E-03 -1.17

.

Table 2: Convergence study of the isentropic vortex propagation: p = 2 with p = 3; density error.

Conforming, p = 2 Nonconforming, p = 2 and p = 3
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 9.75E-03 - 5.32E-04 - 1.24E-01 - 8.57E-03 - 5.05E-04 - 1.21E-01 -
8 3.18E-03 -1.61 2.09E-04 -1.35 6.97E-02 -0.83 2.70E-03 -1.67 1.84E-04 -1.46 8.55E-02 -0.50
16 5.18E-04 -2.62 3.88E-05 -2.43 2.51E-02 -1.47 4.25E-04 -2.67 3.58E-05 -2.36 3.23E-02 -1.40
32 6.38E-05 -3.02 5.50E-06 -2.82 7.23E-03 -1.79 4.99E-05 -3.09 5.14E-06 -2.80 7.20E-03 -2.17
64 7.61E-06 -3.07 7.23E-07 -2.93 1.21E-03 -2.58 5.78E-06 -3.11 7.05E-07 -2.87 1.42E-03 -2.35
128 9.48E-07 -3.00 9.95E-08 -2.86 2.75E-04 -2.14 7.14E-07 -3.02 1.06E-07 -2.74 3.52E-04 -2.01
256 1.23E-07 -2.94 1.43E-08 -2.83 3.41E-05 -3.01 9.46E-08 -2.92 1.52E-08 -2.80 9.16E-05 -1.94

.
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Table 3: Convergence study of the isentropic vortex propagation: p = 3 with p = 4; density error.

Conforming, p = 3 Nonconforming, p = 3 and p = 4
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 5.22E-03 - 3.38E-04 - 9.16E-02 - 4.58E-03 - 3.07E-04 - 8.90E-02 -
8 6.84E-04 -2.93 5.30E-05 -2.67 4.71E-02 -0.96 5.81E-04 -2.98 4.94E-05 -2.63 5.26E-02 -0.76
16 5.50E-05 -3.64 4.54E-06 -3.55 6.61E-03 -2.83 4.51E-05 -3.69 4.15E-06 -3.58 5.04E-03 -3.38
32 3.48E-06 -3.98 3.33E-07 -3.77 5.47E-04 -3.59 2.88E-06 -3.97 3.06E-07 -3.76 4.98E-04 -3.34
64 2.10E-07 -4.05 2.45E-08 -3.76 4.93E-05 -3.47 1.78E-07 -4.01 2.34E-08 -3.71 5.42E-05 -3.20
128 1.39E-08 -3.92 1.87E-09 -3.71 6.32E-06 -2.96 1.24E-08 -3.85 1.90E-09 -3.63 7.96E-06 -2.77

.

Table 4: Convergence study of the isentropic vortex propagation: p = 4 with p = 5; density error.

Conforming, p = 4 Nonconforming, p = 4 and p = 5
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 2.34E-03 - 1.56E-04 - 9.92E-02 - 2.10E-03 - 1.48E-04 - 9.28E-02 -
8 1.70E-04 -3.78 1.43E-05 -3.45 2.32E-02 -2.09 1.48E-04 -3.82 1.37E-05 -3.43 2.30E-02 -2.01
16 6.07E-06 -4.81 6.41E-07 -4.48 1.27E-03 -4.19 5.17E-06 -4.85 6.00E-07 -4.51 1.26E-03 -4.19
32 1.99E-07 -4.93 2.25E-08 -4.83 5.13E-05 -4.64 1.64E-07 -4.98 2.07E-08 -4.86 5.50E-05 -4.52
64 7.11E-09 -4.81 8.60E-10 -4.71 3.01E-06 -4.09 6.36E-09 -4.69 7.95E-10 -4.70 2.99E-06 -4.20

.

Table 5: Convergence study of the isentropic vortex propagation: p = 5 with p = 6; density error.

Conforming, p = 5 Nonconforming, p = 5 and p = 6
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 1.01E-03 - 6.88E-05 - 4.53E-02 - 9.14E-04 - 6.63E-05 - 4.45E-02 -
8 3.81E-05 -4.73 3.80E-06 -4.18 6.37E-03 -2.83 3.26E-05 -4.81 3.61E-06 -4.20 6.44E-03 -2.79
16 7.23E-07 -5.72 7.95E-08 -5.58 2.23E-04 -4.84 5.93E-07 -5.78 7.30E-08 -5.63 1.63E-04 -5.30
32 1.24E-08 -5.87 1.59E-09 -5.65 4.99E-06 -5.48 1.05E-08 -5.82 1.46E-09 -5.65 4.99E-06 -5.03

.

Table 6: Convergence study of the isentropic vortex propagation: p = 6 with p = 7; density error.

Conforming, p = 6 Nonconforming, p = 6 and p = 7
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 4.28E-04 - 3.14E-05 - 2.17E-02 - 3.84E-04 - 3.03E-05 - 2.35E-02 -
8 8.58E-06 -5.64 9.16E-07 -5.10 1.57E-03 -3.78 7.27E-06 -5.72 8.72E-07 -5.12 1.58E-03 -3.89
16 7.97E-08 -6.75 1.02E-08 -6.49 2.20E-05 -6.16 6.58E-08 -6.79 9.41E-09 -6.53 2.37E-05 -6.06
32 5.95E-10 -7.07 8.17E-11 -6.96 2.55E-07 -6.43 6.05E-10 -6.76 7.71E-11 -6.93 3.55E-07 -6.06

.
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For all the degrees tested (i.e., p = 1 to p = 7), the order of convergence of the conforming
algorithm is very close to that of the nonconforming. However, note that in the L1 and L2 norms
the nonconforming algorithm is more accurate than the conforming one. In the discrete L∞ norm,
the nonconforming scheme is sometimes slightly worse than the conforming scheme; this results
from the interpolation matrices being suboptimal at nonconforming interfaces.

7.2 Inviscid Taylor–Green vortex propagation

The purpose of this section is to numerically demonstrate the robustness of the nonconforming
entropy stable algorithm. To do so, the inviscid Taylor–Green vortex problem is solved using a
coarse grid with four elements in each coordinate direction.

The test case is solved on a periodic cube [−πL ≤ x, y, z ≤ πL], where the initial condition
is given by the initial condition used for the simulation of the standard (viscous) Taylor–Green
problem:

U1 = V0 sin
(x1

L

)
cos
(x2

L

)
cos
(x3

L

)
, U2 = −V0 cos

(x1

L

)
sin
(x2

L

)
cos
(x3

L

)
,

U3 = 0, P = P0 +
ρ0V2

0

16

[
cos

(
2x1

L
+ cos

(
2x2

L

))][
cos

(
2x3

L
+ 2

)]
.

The flow is initialized using P/ρ = P0/ρ0 = RT0, and P0 = 1, T0 = 1, L = 1, and V0 = 1. In order
to obtain results that are reasonably close to those found for the incompressible equations, a Mach
number of M = 0.05 is used.

The problem is simulated for twenty time units using an unstructured grid constructed as
follows:

• Divide the computational domain with four hexahedral elements in each coordinate direction.

• Assign the solution polynomial degree in each element to a random integer chosen uniformly
from a set {pmin, pmax}.

• Approximate the element interfaces with a pminth accurate polynomial.

• Construct the perturbed elements and their corresponding LGL points as described in Section
7.1.

Figure 4 shows the time rate of change of the kinetic energy, dke/dt, for the nonconforming
algorithm using a random distribution of solution polynomial order between i) pmin = 2 and
pmax = 7 and ii) pmin = 2 and pmax = 10. The main takeaway from the figure is that all
simulations are stable. This is numerical evidence that the p-nonconforming scheme inherits the
stability characteristics of the conforming and fully staggered algorithms [5, 6, 9, 42,44].

8 Conclusions

In this paper, the entropy conservative p−refinement/coarsening nonconforming algorithm of

Friedrich et al. [25] is extended to curvilinear coordinates applicable to the compressible Euler
equations. The coupling between nonconforming interfaces is achieved using SBP preserving in-
terpolation operators and prescribed metric terms. To maintain entropy conservation/stability,

1In a general setting, element interfaces can also be boundary element interfaces.
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Figure 4. Evolution of the time derivative of the kinetic energy for the inviscid Taylor–Green vortex
at M = 0.05.

elementwise conservation, and the order of the parent element, the procedure of Crean et al. [13] is
used to approximate grid metrics. Finally, the accuracy and stability characteristics of the resulting
numerical schemes are shown to be comparable to those of the original conforming scheme [5, 44],
in the context of two canonical tests.
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Zürich, Birkhäuser, 1992.
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Appendix A

Generalized notation and nonlinear analysis

The various proofs presented in these appendices are greatly simplified (and also generalized)
by using notation appropriate for multidimensional SBP operators. In this section, the notation
that will be used in the appendices is presented and linked to the tensor-product notation used
in the paper. Furthermore, the nonlinear approximation used to construct entropy conservative
discretizations will be analyzed in detail.

A.1 Generalized notation

The derivative operators that are used are constructed using tensor-products. For a system of e
PDEs they read

Dξ1 ≡ Dξ1 ⊗ Ie, Dξ1 ≡ D
(1D)
ξ1
⊗ IN2 ⊗ IN3 ,

Dξ2 ≡ Dξ2 ⊗ Ie, Dξ2 ≡ IN1 ⊗ D
(1D)
ξ2
⊗ IN3 ,

Dξ3 ≡ Dξ3 ⊗ Ie, Dξ3 ≡ IN1 ⊗ IN2 ⊗ D
(1D)
ξ3

.

The above tensor-product SBP operators can be recast as multidimensional SBP operators as
follows:

Dξ1 = P−1Qξ1 , Qξ1 ≡ Qξ1 ⊗ Ie, Qξ1 ≡ Q
(1D)
ξ1
⊗ P

(1D)
ξ2
⊗ P

(1D)
ξ3

,

Dξ2 = P−1Qξ2 , Qξ2 ≡ Qξ2 ⊗ Ie, Qξ2 ≡ P
(1D)
ξ1
⊗ Q

(1D)
ξ2
⊗ P

(1D)
ξ3

,

Dξ3 = P−1Qξ3 , Qξ3 ≡ Qξ3 ⊗ Ie, Qξ3 ≡ P
(1D)
ξ1
⊗ P

(1D)
ξ2
⊗ Q

(1D)
ξ3

,

P ≡ P⊗ Ie, P ≡ P
(1D)
ξ1
⊗ P

(1D)
ξ2
⊗ P

(1D)
ξ3

.

The resulting recast of the tensor-product SBP operators as multidimensional SBP operators
respects the SBP property, i.e., Qξl + QT

ξl
= Eξl , where the surface matrices Eξl are given as

Eξ1 = Eξ1 ⊗ Ie, Eξ1 ≡
(
eN1e

T
N1
− e11e

T
11

)
⊗ P

(1D)
ξ2
⊗ P

(1D)
ξ3

,

Eξ2 = Eξ2 ⊗ Ie, Eξ2 ≡ P
(1D)
ξ1
⊗
(
eN2e

T
N2
− e12e

T
12

)
⊗ P

(1D)
ξ3

,

Eξ3 = Eξ3 ⊗ Ie, Eξ3 ≡ P
(1D)
ξ1
⊗ P

(1D)
ξ2
⊗
(
eN3e

T
N3
− e13e

T
13

)
.

In precisely the same way that the one-dimensional E can be decomposed into separate surface
contributions, i.e., E = eNe

T
N − e1e

T
1 , the multidimensional E given above can be decomposed into

contributions to the faces of the hexahedral element. Thus, Eξ1 is decomposed as

Eξ1 = Eβ1 − Eα1 , Eβ1 ≡ RT
β1

P⊥ξ1Rβ1 , Eα1 ≡ RT
α1

P⊥ξ1Rα1 ,

Rβ1 ≡ Rβ1 ⊗ Ie, Rβ1 ≡ eT
1N1
⊗ IN2 ⊗ IN3 ,

Rα1 ≡ Rα1 ⊗ Ie, Rα1 ≡ eT
11
⊗ IN2 ⊗ IN3 ,

P⊥ξ1 ≡ P⊥ξ1 ⊗ Ie, P⊥ξ1 ≡ P
(1D)
ξ2
⊗ P

(1D)
ξ3

,
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Eξ2 is decomposed as

Eξ2 = Eβ2 − Eα2 , Eβ2 ≡ RT
β2

P⊥ξ2Rβ2 , Eα2 ≡ RT
α2

P⊥ξ2Rα2 ,

Rβ2 ≡ Rβ2 ⊗ Ie, Rβ2 ≡ IN1 ⊗ eT
1N2
⊗ IN3 ,

Rα2 ≡ Rα2 ⊗ Ie, Rα2 ≡ IN1 ⊗ eT
11
⊗ IN3 ,

P⊥ξ2 ≡ P⊥ξ2 ⊗ Ie, P⊥ξ2 ≡ P
(1D)
ξ1
⊗ P

(1D)
ξ3

,

and Eξ3 is decomposed as

Eξ3 = Eβ3 − Eα3 , Eβ2 ≡ RT
β3

P⊥ξ3Rβ3 , Eα3 ≡ RT
α3

P⊥ξ3Rα3 ,

Rβ3 ≡ Rβ3 ⊗ Ie, Rβ3 ≡ IN1 ⊗ IN2 ⊗ eT
1N3

,

Rα3 ≡ Rα3 ⊗ Ie, Rα3 ≡ IN1 ⊗ IN2 ⊗ eT
13
,

P⊥ξ3 ≡ P⊥ξ3 ⊗ Ie, P⊥ξ3 ≡ P
(1D)
ξ1
⊗ P

(1D)
ξ2

.

To give further insight into the properties of the above operators, a connection to various bilinear
forms is given:

vTPu ≡
∫

Ω̂ VUdΩ̂, vTQξlu ≡
∫

Ω̂ V ∂U∂ξldΩ̂,

vTEξlu ≈
∮

Γ̂ VUnξldΓ̂,

vTĒβlu ≈
∮

Γ̂βl
VUnξldΓ̂, vTĒαlu ≈

∮
Γ̂αl
VUnξldΓ̂,

where Γ̂βl is the surface of the hexahedral element where ξl is at a maximum and Γ̂αl is the surface
where ξl is at a minimum. Furthermore, the operators Rβl and Rαl interpolate to the nodes of the

Γ̂βl and Γ̂αl surfaces, respectively.

A.2 Analysis of the nonlinear discretization

SBP operators are constructed so that the continuous stability proofs can be mimicked at the
semidiscrete and fully-discrete levels. The critical property that is needed is that, like the continuous
analysis, the spatial (and temporal in the fully discrete case) terms telescope to the boundaries.
Then, if appropriate numerical boundary closures can be found, discrete stability statements can be
constructed. Often times this is linked to the schemes mimicking integration by parts (this is what
is used at the continuous level). However, any combination of differentiation matrix D and norm
matrix P is mimetic of integration by parts. It is the fact that SBP operators result into (nodewise)
separable approximations to surface integrals that allows stability estimates to be constructed.

The telescoping notion is best explained by carefully examining how SBP operators mimic
integration by parts. In multiple dimensions, integration by parts on a hexahedral element is given
as ∮

Ω̂

(
V ∂U
∂ξl

+ U ∂V
∂ξl

)
dΩ̂ =

∮

Γ̂
(VUnξl) dΓ̂ =

∮

Γ̂βl

(VUnξl) dΓ̂ +

∮

Γ̂αl

(VUnξl) dΓ̂. (A1)

Discretizing the left-hand side of (A1) using SBP operators and their properties results in the
following equality:

vTPDξlu+ uPDξlv = vTEξlu. (A2)
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Each term in (A2) is a high-order approximation to the analogous term in integration by parts
formula (A1). Notice, though, that this would also occur for a discretization of (A1) constructed
for any combination of a high-order norm matrix, that approximates the inner product, and a
high-order derivative operator.

However, the SBP operator has an E matrix that can be further decomposed into separate con-
tributions from opposing surfaces (this property does not in general hold for arbitrary combinations
of P and D), namely

vTPDξlu+ uPDξlv = vTĒβlu− vTĒαlu. (A3)

Now the right-hand side of (A2) has been decomposed in terms of contributions to the Γ̂βl and
Γ̂αl surfaces; this is still insufficient unless one is happy with imposing the same boundary condition
over the entire face. What is needed is the ability to impose boundary conditions pointwise. The
next decomposition demonstrates that a pointwise interpretation of the telescoping property is
possible:

vTPDξlu+ uPDξlv =
(
Rβlv

)T
P⊥ξlRβlu−

(
Rαlv

)T
P⊥ξlRαlu. (A4)

To see why the right-hand side is separable, pointwise, consider the term
(
Rβlv

)T
P⊥ξlRβlu. The

action of Rαl is to interpolate v or u to the Γ̂βl boundary. Defining the vectors vΓ̂βl
≡ Rβlv and

uΓ̂βl
≡ Rβlu gives

(
Rβlv

)T
P⊥ξlRβlu = vT

Γ̂βl
P⊥ξluΓ̂βl

. (A5)

Since P⊥ξl is diagonal, this means that the surface nodes can be traversed and at each node an
appropriate boundary condition can be imposed.

The nonlinear approximations used in this paper, constructed from SBP operators and two-point
flux function matrices, poses the same type of properties as the above SBP operators. Namely, the
result has the telescoping property and is mimetic of the following (nonlinear) form of integration
by parts

1

2

3∑

l,m=1

∫

Ω̂
WT

{
∂

∂ξl

(
Jκ

∂ξl
∂xm

Fxm

)
+ Jκ

∂ξl
∂xm

∂Fxm

∂ξl

}
dΩ̂ =

3∑

l,m=1

∮

Γ̂

(
Jκ

∂ξl
∂xm
Fxmnξl

)
dΓ̂. (A6)

The steps that will be taken to demonstrate that the nonlinear approximation has the telescoping
property and is mimetic of (A6) are as follows:

1. Characterize the error properties of the nonlinear approximations to the derivatives, i.e., the

terms
(

2Dκ
ξl

[A]κ

)
◦ Fxm (qκ, qκ) 1κ and

(
2 [A]κ Dκ

ξl

)
◦ Fxm (qκ, qκ) 1κ.

2. Contract the spatial terms with the entropy variables and discretely integrate over an ele-
ment/macroelement, discretely mimicking the same steps at the continuous level, and demon-
strate that the result telescopes.
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3. Characterize the error properties of the discrete bilinear forms induced by the on-volume
contributions to the SATs, i.e., the terms

vT
κ

(
E
κ
ξl

[
J ∂ξl
∂xm

]
κ

)
◦ F

[i]
xm (qκ, qκ) 1κ and vT

κ

([
J ∂ξl
∂xm

]
κ

E
κ
ξl

)
◦ F

[i]
xm (qκ, qκ) 1κ

and therefore demonstrate that the telescoping form is discretely mimetic of (A6).

The starting point is to demonstrate that the nonlinear approximation is both telescoping and
mimetic of (A6) is to analyze the error properties of the nonlinear approximation. The following is
a general result on the accuracy of the nonlinear approximations and is an extension of the proof
give in Crean et al. [13].

Theorem 6. Let Dκ
ξl

be any degree p finite-difference approximation to the first derivative ∂/∂ξl,
on a set of nodes ξ. Consider a PDE whose fluxes in the xm, m = 1, 2, 3, coordinate directions
are continuously differentiable functions Fxm : R5 → R5 and a variable coefficient Aκ that is
sufficiently smooth. If f scxm (u,v) : R5 × R5 → R5 are dyadic functions that are continuously

differentiable, symmetric in their arguments, and satisfy f scxm

(
q

(i)
κ , q

(i)
κ

)
= Fxm

(
q

(i)
κ

)
, then for

sufficiently smooth solutions Q

(
2Dκ

ξl
[A]κ

)
◦ Fxm (qκ, qκ) 1κ =

(
∂ (AFxm)

∂ξl

)
(ξκ) +

(
Fxm

∂A
∂ξl

)
(ξκ) +O

(
hp+1

)
,

(
2 [A]κ Dκ

ξl

)
◦ Fxm (qκ, qκ) 1κ =

(
A∂Fxm

∂ξl

)
(ξκ) +O

(
hp+1

)
,

(A7)

where [A]κ is a diagonal matrix containing, along its diagonal, the evaluation of the variable co-
efficient at the mesh nodes ξκ, and h is some appropriate measure of the mesh spacing within the
element.

Proof. The proof is given in B

Theorem 6 implies that

(
2Dκ

ξl

[
J ∂ξl
∂xm

]

κ

)
◦ Fxm (qκ, qκ) 1κ =



∂
(
Jκ ∂ξl

∂xm
Fxm

)

∂ξl


 (ξκ) +

(
Fxm

∂Jκ ∂ξl
∂xm

∂ξl

)
(ξκ) +O

(
hp+d

)
,

(
2

[
J ∂ξl
∂xm

]

κ

Dκ
ξl

)
◦ Fxm (qκ, qκ) 1κ =

(
Jκ

∂ξl
∂xm

∂Fxm

∂ξl

)
(ξκ) +O

(
hp+d

)
,

(A8)

where the change in the truncation terms comes from the fact that Jκ ∂ξl
∂xm
∝ hd−1, i.e., the variable

coefficient A in Theorem 6 is treated as a dimensionless quantity. Notice that summing the first
equality in the three computational directions and using the continuous GCL gives that

3∑

l=1

(
2Dκ

ξl

[
J ∂ξl
∂xm

]

κ

)
◦ Fxm (qκ, qκ) 1κ =

3∑

l=1



∂
(
Jκ ∂ξl

∂xm
Fxm

)

∂ξl


 (ξκ) +O

(
hp+d

)
. (A9)

In order to demonstrate the telescoping flux form, the following general result is necessary
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Theorem 7. Consider the matrix of A of size Nκ × Nr with a tensor extension A ≡ A ⊗ I5,
and a two argument matrix flux function Fxm (qκ, qr) constructed from the two point flux function

f scxm

(
q

(i)
κ , q

(j)
r

)
that satisfies the Tadmor shuffle condition

(
w(i)
κ −w(j)

r

)T
f scxm

(
q(i)
κ , q(j)

r

)
=
(
ψκxm

)(i) −
(
ψrxm

)(j)

and is symmetric, i.e., f scxm

(
q

(i)
κ , q

(j)
r

)
= f scxm

(
q

(j)
r , q

(i)
κ

)
, then

wT (A) ◦ Fxm (qκ, qr) 1r − 1T
κA ◦ Fxm (qκ, qr)wr =

(
ψκxm

)T
A1r − 1

T
κAψrxm .

Proof.

wT (A) ◦ Fxm (qκ, qr) 1r − 1T
κA ◦ Fxm (qκ, qr)wr =

Nκ∑

i=1

Nr∑

j=1

{
A(i, j)

(
w(i)
κ

)T
Fxm

(
q(i)
κ , q(i)

r

)
− A(i, j)

(
w(j)
r

)T
Fxm

(
q(i)
κ , q(i)

r

)}
=

Nκ∑

i=1

Nr∑

j=1

{
A(i, j)

(
w(i)
κ −w(j)

r

)T
Fxm

(
q(i)
κ , q(i)

r

)}
=

Nκ∑

i=1

Nr∑

j=1

{
A(i, j)

((
ψκxm

)(i) −
(
ψrxm

)(j))}
=
(
ψκxm

)T
A1r − 1

T
κAψrxm .

Now it is demonstrated, using (A8), (A9), and Theorem 7, that the nonlinear approximation
results in a telescoping form. Discretizing the left-hand side of (A6) using the nonlinear operator
gives

lhs ≡
3∑

l,m=1

wT
κ

(
Qξl

[
J ∂ξl
∂xm

]

κ

+

[
J ∂ξl
∂xm

]

κ

Qξl

)
◦ Fxm (qκ, qκ) 1k, (A10)

where for a nonconforming element the macroelement is considered. Using (A8), (A9), then it can
be shown that Eq. (A10) is an approximation of the left-hand side of (A6), i.e.,

3∑

l,m=1

wT
κ

(
Qξl

[
J ∂ξl
∂xm

]

κ

+

[
J ∂ξl
∂xm

]

κ

Qξl

)
◦ Fxm (qκ, qκ) 1k ≈

1

2

3∑

l,m=1

∫

Ω̂
WT

{
∂

∂ξl

(
Jκ

∂ξl
∂xm

Fxm

)
+ Jκ

∂ξl
∂xm

∂Fxm

∂ξl

}
dΩ̂.

(A11)

Next, we demonstrate that Eq. (A10) reduces to a telescoping form. Transposing the second
term in (A10) and using the symmetry of Fxm (qκ, qκ) gives

lhs =
3∑

l,m=1

{
wT
κ

(
Qξl

[
J ∂ξl
∂xm

]

κ

)
◦ Fxm (qκ, qκ) 1k + 1T

k

(
QT
ξl

[
J ∂ξl
∂xm

]

κ

)
◦ Fxm (qκ, qκ)wκ

}
.

(A12)
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Using the SBP property QT
ξl

= −Qξl + Eξl yields

lhs =

{
wT
κ

(
Qξl

[
J ∂ξl
∂xm

]

κ

)
◦ Fxm (qκ, qκ) 1k − 1T

k

(
Qξl

[
J ∂ξl
∂xm

]

κ

)
◦ Fxm (qκ, qκ)wκ

}

+
3∑

l,m=1

wT
κ Eξl

[
J ∂ξl
∂xm

]

κ

◦ Fxm (qκ, qκ) 1k

(A13)

Applying Theorem 7 on the first set of terms results in

lhs =
3∑

l,m=1

{
(
ψκxm

)T
Qξl

[
J ∂ξl
∂xm

]

κ

1κ − 1
T
κQξl

[
J ∂ξl
∂xm

]

κ

ψκxm

}

+
3∑

l,m=1

wT
κ Eξl

[
J ∂ξl
∂xm

]

κ

◦ Fxm (qκ, qκ) 1k.

(A14)

The first set of terms on the right-hand side are the discrete GCL conditions and are therefore zero.

The second set of terms is reduced by using the SBP property Qξl = −Q
T
ξl

+Eξl and the consistency

of the derivative operator which implies that Qξl1κ = 0. Therefore, (A14) reduces to

lhs =
3∑

l,m=1

{
wT
κ Eξl

[
J ∂ξl
∂xm

]

κ

◦ Fxm (qκ, qκ) 1k − 1
T
κEξl

[
J ∂ξl
∂xm

]

κ

ψκxm

}
. (A15)

In order to demonstrate that (A15) is mimetic of A6, like in the analysis of integration by parts,

the accuracy of the on element surface matrix terms such as ,Eξl

[
J ∂ξl
∂xm

]
κ
◦ Fxm (qκ, qκ) 1κ, need

to be determined.
For generality and so that the results of this section can be utilized for the elementwise con-

servation analysis, the considered bilinear forms are products of continuous scalar functions, V,
against one of the components of the derivative of the flux vector Fxm . For this purpose, the scalar
version of the flux function matrix is introduced as follows:

F[i]
xm (qκ, qr) ≡




(
f scxm

(
q

(1)
κ , q

(1)
r

))
(i) . . .

(
f scxm

(
q

(1)
κ , q

(Nr)
r

))
(i)

...
...(

f scxm

(
q

(Nκ)
κ , q

(1)
r

))
(i) . . .

(
f scxm

(
q

(Nκ)
κ , q

(Nr)
r

))
(i)


 , i = 1, . . . , 5. (A16)

Theorem 8. Under the same conditions as in Thrm. 6 and considering the constituent matrices
of a degree p SBP operator, D

κ
ξl

, with a norm matrix P of degree pP and R matrices of degree r, for
all smooth functions V

vT
κ

(
E
κ
ξl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ =

∮

Γ̂κ

VAFxm(i)nξldΓ̂ + max
[
O
(
hpP+1

)
,O
(
hr+1

)]
,

vT
κ

(
[A]κE

κ
ξl

)
◦ F[i]

xm (qκ, qκ) 1κ =

∮

Γ̂κ

VAFxm(i)nξldΓ̂ + max
[
O
(
hpP+1

)
,O
(
hr+1

)]
,

i = 1, . . . , 5.

(A17)
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Proof. The proof is given in Appendix D.

Theorem 8 implies that

vT
κ

(
E
κ
ξl

[
J ∂ξl
∂xm

]

κ

)
◦ F[i]

xm (qκ, qκ) 1κ =

∮

Γ̂κ

VJκ
∂ξl
∂xm

Fxm(i)nξldΓ̂ + max
[
O
(
hpP+d

)
,O
(
hr+d

)]
,

vT
κ

([
J ∂ξl
∂xm

]

κ

E
κ
ξl

)
◦ F[i]

xm (qκ, qκ) 1κ =

∮

Γ̂κ

VJκ
∂ξl
∂xm

Fxm(i)nξldΓ̂ + max
[
O
(
hpP+d

)
,O
(
hr+d

)]
,

i = 1, . . . , 5.

(A18)

By (A18) and the exactness properties of Eξl , the right-hand side of (A10) is an approximation
to the right-hand side of (A6), i.e.,

lhs =

3∑

l,m=1

(
wT
κ Eξl

[
J ∂ξl
∂xm

]

κ

◦ Fxm (qκ, qκ) 1κ − 1
T
κEξl

[
J ∂ξl
∂xm

]

κ

ψκxm

)
≈

3∑

l,m=1

∮

Γ̂

{(
WTFxm − ψxm

)
Jκ

∂ξl
∂xm

nξl

}
dΓ̂ =

3∑

l,m=1

∮

Γ̂

(
Jκ

∂ξl
∂xm
Fxmnξl

)
dΓ̂.

(A19)

Finally, and of critical importance, the right-hand side of (A10) is in a telescopic form, which when
combined with appropriate interface SATs, telescopes to the boundaries of the domain.

The accuracy of the coupling terms in the SATs is necessary to prove that the scheme is
elementwise conservative and is given below.

Theorem 9. The coupling matrices constructed using the mortar-element approach satisfy the
following accuracy conditions:

vT
κ E

HtoL
([
J ∂ξ1

∂xm

])
◦ F[i]

xm (qL, qH) 1NH
=

∮

Γ̂L

VFxm(i)Jκ
∂ξ1

∂xm
nξ1dΓ̂ +O

(
hpL+d

)

vT
κ E

LtoH
([
J ∂ξ1

∂xm

])
◦ F[i]

xm (qL, qH) 1L =

∮

Γ̂H

VFxm(i)Jκ
∂ξ1

∂xm
nξ1dΓ̂ +O

(
hpL+d

)
,

(A20)

where in the current context

E
HtoL

([
J ∂ξ1

∂xm

])
≡ 1

2




(

R
L
β1

)T
[
J ∂ξ1

∂xm

]Γ̂L

L

P
L
⊥ξ1 IHtoLRH

α1
+
(

R
L
β1

)T
P

L
⊥ξ1 IHtoL

[
J ∂ξ1

∂xm

]Γ̂H

H

RH
α1





E
LtoH

([
J ∂ξ1

∂xm

])
≡ −1

2




(

R
H
α1

)T
[
J ∂ξ1

∂xm

]Γ̂H

H

P
H
⊥ξ1 ILtoHRL

β1
+
(

R
L
β1

)T
P

H
⊥ξ1 IHtoL

[
J ∂ξ1

∂xm

]Γ̂H

H

RL
β1





Proof. The proof follows identically to that given in Thrm. 8.
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Appendix B

Proof of Theorem. 6

In this appendix, we prove that the nonlinear approximations have the following error properties:

(
2Dκ

ξl
[A]κ

)
◦ Fxm (qκ, qκ) 1κ =

(
∂ (AFxm)

∂ξl

)
(ξκ) +

(
Fxm

∂A
∂ξl

)
(ξκ) +O

(
hp+1

)
,

(
2 [A]κ Dκ

ξl

)
◦ Fxm (qκ, qκ) 1κ =

(
A∂Fxm

∂ξl

)
(ξκ) +O

(
hp+1

)
,

where we note that the variable coefficient A is taken as a dimensionless quantity.

The first error estimate is not intuitive and is the focus of this appendix, while the second error
estimate follows directly from the error estimate of the nonlinear approximation Dξl◦Fxm (qκ, qκ) 1κ,
which has been derived by several authors (for example see Ref. [13] Theorem 1). The approach
that is taken is to examine, pointwise, what the action of the derivative operator is. Then a careful
examination of the derivative of the two-point flux function, taking advantage of its consistency
and symmetry, reveals the final error estimate.

Note that the dyadic flux vector is a function of two vector valued arguments, which is repre-
sented in a generic fashion as f scxm (QL,QR) (note that the Tadmor shuffle condition (38) is not
required here). Starting with the first equality,

((
2Dκ

ξl
[A]κ

)
◦ Fxm (qκ, qκ) 1κ

)
(i) =

Nκ∑

j=1

2Dκ
ξl

(i, j)A(j)f scxm

(
q(i)
κ , q(j)

κ

)

= 2

(
∂
(
Af scxm (QL,QR)

)

∂ξl

)
(QL = QR = q(i)

κ ) +O
(
hp+1

)

= 2

(
A∂f

sc
xm (QL,QR)

∂ξl

)(
QL = QR = q(i)

κ

)
+ 2

(
f scxm (QL,QR)

∂A
∂ξl

)(
QL = QR = q(i)

κ

)

+O
(
hp+1

)

= 2

(
Af

sc
xm (QL,QR)

∂QR

∂QR

∂ξl

)(
QL = QR = q(i)

κ

)
+ 2

(
Fxm

∂A
∂ξl

)(
QL = QR = q(i)

κ

)

+O
(
hp+1

)

(B1)

where the following are used: 1) Dκ
ξl

is a degree p differentiation operator, and therefore, of order
p+ 1 (note that this occurs because the derivative that is being approximated is in computational
space, see Appendix C for a thorough discussion), and 2) f scxm (Q,Q) = Fxm . Now,

∂Fxm (Q)

∂ξl
=
∂f scxm (Q,Q)

∂ξl
=

(
∂f scxm (QL,QR)

∂ξl

)
(QL = QR = Q)

=

(
∂f scxm (QL,QR)

∂QL

∂QL

∂ξl
+
∂f scxm (QL,QR)

∂QR

∂QR

∂ξl

)
(QL = QR = Q) .

(B2)
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It is now shown that
(
∂f scxm (QL,QR)

∂QL

)
(QL = QR = Q) =

(
∂f scxm (QL,QR)

∂QR

)
(QL = QR = Q) .

For the term on the left of the equality,

∂f scxm (QL,QR)

∂QL
(QL = QR = Q) =

(
lim

∆Q→0

f scxm (Q + ∆Q,QR)

∆Q

)
(QL = QR = Q)

= lim
∆Q→0

f scxm (Q + ∆Q,Q)

∆Q .

For the term on the right of the equality,

(
∂f scxm (QL,QR)

∂QR

)
(QL = QR = Q) =

(
lim

∆Q→0

f scxm (QL,QR + ∆Q)

∆Q

)
(QL = QR = Q)

= lim
∆Q→0

f scxm (Q,Q + ∆Q)

∆Q

= lim
∆Q→0

f scxm (Q + ∆Q,Q)

∆Q ,

where the last equality results from the symmetry of f scxm ; thus, (B2) becomes

∂Fxm (Q)

∂ξl
=
∂f scxm (Q,Q)

∂ξl
=

(
∂f scxm (QL,QR)

∂ξl

)
(QL = QR = Q)

=2

(
∂f scxm (QL,QR)

∂QL

∂QL

∂ξl

)
(QL = QR = Q) = 2

(
∂f scxm (QL,QR)

∂QR

∂QR

∂ξl

)
(QL = QR = Q) .

(B3)

Therefore, by (B3), (B1) reduces to

(
2Dκ

ξl
[A]◦ Fxm (qκ, qκ) 1κ

)
(i) =

(
A∂Fxm

∂ξl

)(
Q = q(i)

κ

)
+

(
2Fxm

∂A
∂ξl

)(
Q = q(i)

κ

)
+O

(
hp+1

)

=

(
∂AFxm

∂ξl

)(
Q = q(i)

κ

)
+

(
Fxm

∂A
∂ξl

)(
Q = q(i)

κ

)
+O

(
hp+1

)
.

(B4)

The second equality in (A7) follows in a similar manner.
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Appendix C

On order of polynomial exactness

In this section, a careful analysis is undertaken of the relation between polynomial exactness
and order. This analysis is necessary in order to explain error estimates on quantities such as the
plain derivative in computational space, i.e., Dξlf versus error estimates on quantities involving

metric terms, i.e., Dξl

[
J ∂ξl
∂xm

]
f . To do so, it is convenient to examine the accuracy of a degree p

approximation of the ξ derivative in one dimension using a degree p one-dimensional SBP operator

D
(1D)
ξ1

on the N nodes ξ1 generated by a linear transformation

x1(ξ1) =
h

2
ξ1 +

xR + xL

2
, (C1)

where h ≡ xR − xL and ξ11 ∈ [−1, 1]. The approximation at the ith node of the derivative of the
function F is given by

∂F
∂ξ

(
ξ(i)
)
≈
(

D
(1D)
ξ1

f
)

(i) =
N∑

j=1

D
(1D)
ξ1

(i, j)f(j).

The error at the ith node is found by taking the difference between the approximation and the
exact derivative, giving

error(ξ(i)) =

n∑

j=1

D
(1D)
ξl

(i, j)f(j)− ∂F
∂ξ1

(
ξ(i)
)
.

Expanding F and its derivative about ξ1 = 0 via Taylor series, inserting the result into the above,

and using the fact that D
(1D)
ξl

is degree p, after some algebra, results in

error(ξ(i)) =
N∑

j=1

D
(1D)
ξ1

(i, j)
∞∑

k=0

∂kF
∂ξk1

(ξ1 = 0)

(
ξ(j)
)k

k!
−
∞∑

k=0

∂k+1F
∂ξk+1

1

(ξ1 = 0)

(
ξ(i)
)k

k!

=

∞∑

k=p

∂k+1F
∂ξk+1

1

(ξ1 = 0)




N∑

j=1

D
(1D)
ξ1

(i, j)

(
ξ(j)
)k+1

(k + 1)!
−
(
ξ(i)
)k

k!


 .

(C2)

To obtain an error estimate from (C2), it is necessary to introduce the element size, h, and expand
the partials in terms of the physical coordinate x1. This is accomplished by take take advantage of
the Faá di Bruno formula [29]

∂kF (x1 (ξ1))

∂ξk1
=

k∑

m=1

∂mF
∂xm1

Bk,m
(
∂x1

∂ξ1
, . . . ,

∂k−m+1x1

∂ξk−m+1
1

)
.
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The Bell polynomials, Bk,m, are given by

Bk,m
(
∂x1

∂ξ1
, . . . ,

∂k−m+1x1

∂ξk−m+1
1

)
≡

∑ k!

j1!j2! . . . jk−m+1!

(
∂x1

∂ξ1

1

1!

)j1 (∂2x1

∂ξ2
1

1

2!

)j2
· · ·
(
∂k−m+1x1

∂ξk−m+1
1

1

(k −m+ 1)!

)jk−m+1

,

where the sum is over all positive solutions to

k−m+1∑

i=1

ji = m,

k−m+1∑

i=1

iji = k.

By (C1) and the definition of the Bell polynomials, (C2) reduces to

error(ξ(i)) =
∞∑

k=p

∂k+1F
∂xk+1

1

(ξ1 = 0)

(
h

2

)k+1



n∑

j=1

D
(1D)
ξ1

(i, j)

(
ξ(j)
)k+1

(k + 1)!
−
(
ξ(i)
)k

k!


 .

The leading truncation error is of order O(hp+1), which is a natural result since the PDE itself
is scaled by the Jacobian J ∝ O(h). Extrapolating, for problems in d dimensions, a degree p
differentiation operator has the following error properties:

Dξ1f =
∂F
∂ξ1

(ξ) +O
(
hp+1

)
.

Using a similar analysis, it can be concluded that the degree r interpolation operators that for
general R (the ones used in the main paper are exact) have error properties

Rαlf = F
(
ξΓ̂αl

)
+O

(
hr+1

)
, Rβlf = F

(
ξΓ̂βl

)
+O

(
hr+1

)

where ξΓ̂αl and ξΓ̂βl are the face nodes on the αl and βl surfaces, respectively. From the above
discussion, it is now possible to relate polynomial exactness to order and these relations are used
in developing error estimates for the nonlinear approximations.

In addition, it is necessary to understand the scaling effect on order of the metric Jacobian and
the metric terms; these can be characterized as

J ∝ O
(
hd
)
, Jκ

∂ξl
∂xm

∝ O
(
hd−1

)
. (C3)

Remark 7. One way of seeing how the scaling in the Jacobian and the metric terms arises in
a proper mesh refinement sequence, is to break the curvilinear coordinate transformation into two
steps. In the first, there is an affine transformation from the child element to the parent element
(this is where the scaling shows up); the second transformation is a curvilinear transformation from
the parent element to physical space.
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Appendix D

Proof of Theorem 8

It is shown how to construct the first estimate, as the second follows in a similar manner. Using
the decomposition of the surface matrix gives

vT
κ

{(
E
κ
ξl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}
= vT

κ

{((
R
κ
βl

)T
P
κ
⊥ξlR

κ
βl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}

− vT
κ

{((
R
κ
αl

)T
P
κ
⊥ξlR

κ
αl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}
.

(D1)

Concentrating on the first term in the right-hand side of (D1)

vT
κ

{((
R
κ
βl

)T
P
κ
⊥ξlR

κ
βl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}
=

=

Nκ∑

a=1

Nκ∑

b=1

vκ(a)

((
R
κ
βl

)T
P
κ
⊥ξlR

κ
βl

[A]κ

)
(a, b)f scxm

(
q(a)
κ , q(b)

κ

)
(i)

=

Nκ∑

a=1

N
Γ̂βl∑

c=1

vκ(a)

((
R
κ
βl

)T
P
κ
⊥ξl

)
(a, c)

Nκ∑

b=1

R
κ
αl

(c, b)[A]κ(b, b)f scxm

(
q(a)
κ , q(b)

κ

)
,

with NΓ̂βl the number of nodes on face Γ̂βl .

The interpolation operator is of degree r, and therefore, of order r + 1, thus,

vT
κ

{((
R
κ
βl

)T
P
κ
⊥ξlR

κ
βl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}
=

Nκ∑

a=1

N
Γ̂βl∑

c=1

vκ(a)

((
R
κ
αl

)T
P
κ
⊥ξl

)
(a, c)A(ξ(c))f scxm

(
q(a)
κ ,Q

(
ξ(c)
))

+O
(
hr+1

)
,

where A (ξc) and Q
(
ξ(c)
)

are A and Q evaluated at the cth node on surface Γ̂βl of element κ.
Continuing,

vT
κ

{((
R
κ
βl

)T
P
κ
⊥ξlR

κ
βl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}
=

Γ̂βl∑

c=1

Γ̂βl∑

d=1

P
κ
⊥ξl(d, c) (A)

(
ξ(c)
) Nκ∑

a=1

Rβl(d, a)vκ(a)f scxm

(
q(a)
κ ,Q

(
ξ(c)
))

+O
(
hr+1

)
.

By the accuracy of the interpolation operator (i.e., in the general case R is assumed to be of
degree r and therefore order r + 1), noting that P

κ
⊥ξl is a diagonal matrix, and using the fact that
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f scxm

(
q

(j)
κ , q

(j)
κ

)
= Fxm

(
q

(j)
κ

)
, i.e., the jth entry in Fxm evaluated at q

(j)
κ ,

vT
κ

{((
R
κ
βl

)T
P
κ
⊥ξlR

κ
βl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}
=

N
Γ̂βl∑

c=1

P⊥ξl(c, c)vκ(c)A
(
ξ(c)
)(

Fxm

(
Q
(
ξ(c)
)))

(i) +O
(
hr+1

)
.

Noting that P⊥ξl is a degree pP approximation to the L2 inner product over planes orthogonal to
ξl,

vT
κ

{((
R
κ
βl

)T
P
κ
⊥ξlR

κ
βl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}
=

∮

Γ̂
βl
κ

VA(Fxm)(i)nξldΓ̂ + max
[
O
(
hpP+1

)
,O
(
hr+1

)]
.

Similarly,

vT
κ

{((
R
κ
αl

)T
P
κ
⊥ξlR

κ
αl

[A]κ

)
◦ F[i]

xm (qκ, qκ) 1κ

}
=

∮

Γ̂
αl
κ

VA(Fxm)(i)nξldΓ̂ + max
[
O
(
hpP+1

)
,O
(
hr+1

)]
.

Therefore, via the additive property of integrals, the first equality in (D1) is obtained.
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Appendix E

Elementwise conservation

The nonlinear hyperbolic nature of the Euler equations means that in finite, time nonsmooth
solutions can result despite being closed with smooth data. To allow for nonsmooth solutions, it is
necessary to consider the weak form of the conservation law

∫ T

t=0

∫

Ω̂κ


Q∂V

∂t
Jκ +

3∑

l,m=1

Jκ
∂ξl
∂xm

Fxm

∂V
∂ξl


 dΩ̂dt−

∫

Ω̂κ

VQJκ|Tt=0 dΩ̂

−
∫ T

t=0

∮

Γ̂κ

V
3∑

l,m=1

Jκ
∂ξl
∂xm

FxmnξldΓ̂dt = 0,

t > 0, κ = 1, 2, . . . ,K,

(E1)

for all smooth test functions V with compact support.
The weak form supports a restricted class of discontinuous solutions which satisfy the jump

conditions [33]

v[[Q]] = [[Fn]],

where v is the speed of the discontinuity, Fn is the flux normal to the discontinuity, and [[V ]] is
the jump in V across the discontinuity. The interest is in numerically approximating this restricted
set of discontinuous solutions satisfying the above jump conditions. Thus, the class of schemes
that are of interest are those that are a consistent approximation to (E1) for nonsmooth solutions
almost everywhere (consistent for smooth solutions everywhere); this is an essential property for
demonstrating that if the numerical solution converges then it converges to a solution satisfying
the weak form almost everywhere [34].

In this paper, a method of lines approach is used and the focus is on the analysis of the
semidiscrete equations; thus, rather than use (E1), conservation is discussed in the context of the
following:

∫

Ω̂κ

V ∂Q
∂t
JκdΩ̂−

∫

Ω̂κ

3∑

l,m=1

Jκ
∂ξl
∂xm

Fxm

∂V
∂ξl

dΩ̂ +

∮

Γ̂κ

V
3∑

l,m=1

Jκ
∂ξl
∂xm

FxmnξldΓ̂ = 0. (E2)

Conservation of the fully discrete scheme can always be achieved with an appropriate choice of
time integration scheme, e.g., Euler implicit or explicit.

At its core, the analysis that is used relies on a semidiscrete version of the Lax-Wendroff
Thrm. [34]. To use this theorem, it is necessary to express the scheme in telescoping flux form,

which in one dimension, at node j over a control volume
[
xj− 1

2
, xj+ 1

2

]
is given as

dqj
dt

= −

(
fj+ 1

2
− fj− 1

2

)

∆x
,
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where f is a general flux function at the boundaries of the control volume. The importance of
this form can be seen by viewing it as a finite-volume discretization and the link to the integral
form is immediate, recalling that the integral and weak forms are equivalent. The Lax-Wendroff
Thrm. [34] proceeds instead by multiplying by a continuous test function and using summation-
by-parts. Assuming that the general flux function is reasonably well-behaved, one can show that
the limit solution is a solution to the weak form almost everywhere [34,35]. It is clear then that an
essential feature of the analysis is to demonstrate that the scheme can be algebraically manipulated
into a form that is a consistent approximation to the weak form (E2).

For the purpose of analysis, a general form of the semidiscrete equations for the κth element is
introduced,

Jκ
dqκ
dt

+

3∑

l,m=1

(
Dκ
ξl

[
J ∂ξl
∂xm

]

κ

+

[
J ∂ξl
∂xm

]

κ

Dκ
ξl

)
◦ Fxm (qκ, qκ) 1κ =

(Pκ)−1





3∑

l,m=1

(
Eκξl

[
J ∂ξl
∂xm

]

κ

)
◦ Fxm (qκ, qκ) 1κ +

6∑

f=1

3∑

m=1

Eftoκ

([
J ∂ξf
∂xm

])
◦ Fxm (qκ, qf ) 1f



 ,

(E3)

where Eftoκ
([
J ∂ξf
∂xm

])
are the coupling matrices acting on the six faces, (f) with orthogonal

coordinate direction ξf , of the hexahedral element in the three Cartesian directions (m), and qf is
the solution from the element touching face f . In the simple example in the paper, these are the

matrices −ELtoH
([
J ∂ξ1
∂xm

])
and EHtoL

([
J ∂ξ1
∂xm

])
(note that the nξl component of the unit normal

has been absorbed into the definition of Eftoκ
([
J ∂ξf
∂xm

])
).

Moreover, for the conservation proofs it is convenient to introduce the scalar version of the
semidiscrete equations for the κth element is introduced,

Jκ
dq

[i]
κ

dt
+

3∑

l,m=1

(
D
κ
ξl

[
J ∂ξl
∂xm

]

κ

+

[
J ∂ξl
∂xm

]

κ

D
κ
ξl

)
◦ F[i]

xm (qκ, qκ) 1κ =

(
P
κ
)−1





3∑

l,m=1

(
E
κ
ξl

[
J ∂ξl
∂xm

]

κ

)
◦ F[i]

xm (qκ, qκ) 1κ +

6∑

f=1

3∑

m=1

E
ftoκ

([
J ∂ξf
∂xm

])
◦ F[i]

xm (qκ, qf ) 1f



 , i = 1, . . . , 5.

(E4)

In this paper, elementwise conservation is proven by demonstrating that the scheme has a telescop-
ing flux form at the element level. Recently, Shi and Shu [48] have presented an extension of the
Lax-Wendroff Thrm. to consider elementwise conservation for general multidimensional discretiza-
tions. We rely on the proofs in that paper and therefore need only show that the semidiscrete
equations satisfy the following:

• Telescoping form: That the scheme can be algebraically manipulated into a general telescoping
flux form at the element level given as

dq̄κ
dt

+
6∑

f=1

gκf = 0, (E5)
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where q̄κ is a generalized locally conserved quantity and gκf is a generalized flux on the f face

of the κth hexahedral element. In order to telescope, the fluxes must be uniquely defined at
each surface. Thus, for the two element example, gL = −gH.

• Consistency: For a constant flow Q = Qc,

q̄κ =

(∫

Ω̂κ

JκdΩ̂ +O (h)

)
Qc,

gκf =

(
3∑

m=1

∮

Γ̂fκ

Jκ
∂ξl
∂xm

nξldΓ̂ +O (h)

)
Fxm (Qc)

(E6)

where Γ̂fκ is the f th face of element κ, and where in contrast to Shi and Shu [48], error terms
have been added to account for the curvilinear coordinate transformation (this results because,
in general, the curvilinear coordinate transformation bumps terms in the discretization outside
of the polynomial space that can be resolved by the discrete integrals); this addition has no
impact on the proofs presented in [48].

• Boundedness: the generalized conserved quantity and fluxes are bounded in terms of the L∞

norm of the numerical solution:

|q̄κ(i)− v̄κ(i)| ≤ Chd‖qh − vh‖L∞(Bκ),∣∣(gκf (qh))(i)− (gκf (vh))(i)
∣∣ ≤ Chd−1‖qκ − vκ‖L∞(Bκ),

(E7)

where qh and vh are numerical solutions over the entire mesh and C is some positive con-
stant. Moreover, Bκ ≡

{
x ∈ Rd : |x− xc| < ch

}
, xc is the element center, and c (> 1) is

independent of the mesh size. Note that the hd and hd−1 scaling originate from the metric
Jacobian and metric terms, respectively.

• Global conservation:

K∑

κ=1

q̄κ(i) =

∫

Ω
Q(i)dΩ +O (h) , i = 1, . . . , 5, (E8)

where again, a discretization error has been introduced for the above stated reasons and again
this has no impact on the proofs in Shi and Shu [48].

Now, a theorem is presented that delineates the conditions that need to be satisfied by the semidis-
crete equations so that elementwise conservation is obtained.

Theorem 10. If the coupling matrices, for example EHtoL
([
J ∂ξ1
∂xm

])
, in the SATs on either side

of a given interface are the negative transpose of each other, e.g.,

EHtoL

([
J ∂ξ1

∂xm

])
= −

(
ELtoH

([
J ∂ξ1

∂xm

]))T

,
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then the semidiscrete form (E3) can be algebraically manipulated into the general elementwise
telescoping form (E5) where

q̄κ(i) ≡ 1
T
κPJκq

[i]
κ

gκf (i) ≡
3∑

m=1

E
ftoκ

([
J ∂ξf
∂xm

])
◦ F[i]

xm (qκ, qf ) 1f ,

i = 1, . . . , 5.

The scheme is elementwise conservative if, in addition, for a constant state Qc the coupling terms
satisfy

1
T
κE

ftoκ

([
J ∂ξf
∂xm

])
◦ ◦F[i]

xm (qκ, qf ) 1f =

(∮

Γ̂fκ

Jκ
∂ξl
∂xm

nξldΓ̂ +O (h)

)
Fxm(i) (Qc) ,

i = 1, . . . , 5.

(E9)

Proof. The proof is given in Appendix E.1.

E.1 Proof of Theorem 10

In the subsections that follow, the various requirements for elementwise conservation given in
Section E are proven under the assumptions in Thrm. 10.

E.1.1 Consistency

Coupling terms are assumed to satisfy the consistency conditions. The remaining task is to prove
the generalized conservative quantity satisfies the consistency condition. However, this is immediate
since P

κ
is at least a degree 2p−1 approximation to the L2 inner product, that is for scalar functions

V and U
vT
κ P

κ
uκ =

∫

Ω̂κ

VUdΩ̂ +O
(
h2p
)
.

For a constant state Qc, q
[i]
κ = 1κQc(i) thus,

q̄κ(i) = 1
T
κP

κ
Jκ1κQc(i) =

(∫

Ω̂κ

JκdΩ̂ +O
(
h2p
))

Qc(i).

E.1.2 Telescoping flux form

To obtain the telescoping flux form, the semidiscrete form of each of the scalar conservation laws is
discretely integrated over each element. This is accomplished by multiplying the scalar semidiscrete

forms obtained from (E4) by 1
T
κP

κ
, which gives

1
T
κP

κ
Jκ

dq
[i]
κ

dt
+ 1

T
κ

3∑

l,m=1

(
Q
κ
ξl

[
J ∂ξl
∂xm

]

κ

+

[
J ∂ξl
∂xm

]

κ

Q
κ
ξl

)
◦ F[i]

xm (qκ, qκ) 1κ =

1
T
κ

3∑

l,m=1

E
κ
ξl

[
J ∂ξl
∂xm

]

κ

◦ F[i]
xm (qκ, qκ) 1κ − 1

T
κCT .

(E10)
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where CT are the coupling terms. By the symmetry of F
[i]
xm (qκ, qκ), E

κ
ξl

, and
[
J ∂ξl
∂xm

]
κ
, (E10)

reduces to

1
T
κP

κ
Jκ

dq
[i]
κ

dt
+ 1

T
κ

3∑

l,m=1

(
S
κ
ξl

[
J ∂ξl
∂xm

]

κ

+

[
J ∂ξl
∂xm

]

κ

S
κ
ξl

)
◦ F[i]

xm (qκ, qκ) 1κ =

− 1
T
κCT ,

The matrix

((
S
κ
ξl

[
J ∂ξl
∂xm

]
κ

+
[
J ∂ξl
∂xm

]
κ

S
κ
ξl

)
◦ F

[i]
xm (qκ, qκ)

)
is skew-symmetric and therefore,

when contracted from the left and right by the same vector, its contribution is zero. Rearrangement
and explicitly writing out the coupling terms, yields

1
T
κP

κ
Jκ

dq
[i]
κ

dt
+ 1

T
κ

6∑

f=1

3∑

m=1

E
ftoκ

([
J ∂ξf
∂xm

])
◦ F[i]

xm (qκ, qf ) 1f . = 0, (E11)

which is in the form of (E5) with

q̄κ(i) ≡ 1
T
κP

κ
Jκq

[i]
κ ,

gκf ≡ 1
T
κ

3∑

m=1

E
ftoκ

([
J ∂ξf
∂xm

])
◦ F[i]

xm (qκ, qf ) 1f ,

i = 1, . . . , 5.

What remains to be shown is that the flux at the element boundaries is unique, or equivalently that
the contributions from two abutting elements; this can be readily demonstrated by considering the
coupling terms on the simple two element example and using the SBP preserving property of the
interpolation operators.

E.1.3 Boundedness

The boundedness estimate on the generalized conserved quantity can be shown as follows:

|q̄κ(i)− v̄κ(i)| =
∣∣∣1T
κP

κ
Jκ
(
q[i]
κ − v[i]

κ

)∣∣∣

=

∣∣∣∣∣∣

Nκ∑

j=1

P
κ
(j, j)Jκ(j, j)

(
q[i]
κ (j)− v[i]

κ (j)
)
∣∣∣∣∣∣

≤ hd
Nκ∑

j=1

P
κ
(j, j)

∣∣∣q[i]
κ (j)− v[i]

κ (j)
∣∣∣

≤ Chd max
(∣∣∣q[i]

κ (j)− v[i]
κ (j)

∣∣∣
)

= Chd‖q[i]
κ − v[i]

κ ‖L∞ ≤ Chd‖qh − vh‖L∞(Bκ),

where the scaling comes from the fact that Jκ ∝ hd.
The generalized flux is constructed from linear combinations of the two-point flux function, for

which the Ishmael-Roe flux has been shown to be continuously differentiable with respect to its
arguments (see Crean et al. [13]) and therefore the generalized flux is bounded in the L∞ norm,
where the scaling in the inequalities comes from the fact that Jκ ∂ξl

∂xm
∝ hd−1.
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E.1.4 Global conservation

The matrix norm is an L2 discrete inner product and naturally leads to global conservation; thus,

k∑

κ=1

q̄κ(i) =
K∑

κ=1

1
T
κP

κ
Jκq

[i]
κ

=
K∑

κ=1

∫

Ω̂κ

Q(i)JκdΩ̂ +O
(
h2p
)

=

∫

Ω
Q(i)dΩ +O

(
h2p
)
.

55



Appendix F

Proof of Theorem. 2

For simplicity, the proof given here is in terms of the Thomas and Lombard [58] approximate
metrics; the proof for the symmetric metrics of Vinokur and Yee [59], follows identically.

The Thomas Lombard approximate metrics as well as what they approximate are given below.

[
J ∂ξ1

∂x1

]

κ

= Dξ3 diag(x3)Dξ2x2 − Dξ2 diag(x3)Dξ3x2

≈
(
∂x3

∂ξ3

∂x2

∂ξ2
− ∂x3

∂ξ2

∂x2

∂ξ3

)
(ξ) =

(
∂

∂ξ3

(
x3
∂x2

∂ξ2

)
− ∂

∂ξ2

(
x3
∂x2

∂ξ3

))
(ξ),

[
J ∂ξ1

∂x2

]

κ

= Dξ3 diag(x1)Dξ2x3 − Dξ2 diag(x1)Dξ3x3

≈
(
∂x1

∂ξ3

∂x3

∂ξ2
− ∂x1

∂ξ2

∂x3

∂ξ3

)

Cκ

=

(
∂

∂ξ3

(
x1
∂x3

∂ξ2

)
− ∂

∂ξ2

(
x1
∂x3

∂ξ3

))
(ξ),

[
J ∂ξ1

∂x3

]

κ

= Dξ3 diag(x2)Dξ2x1 − Dξ2 diag(x2)Dξ3x1

≈
(
∂x2

∂ξ3

∂x1

∂ξ2
− ∂x2

∂ξ2

∂x1

∂ξ3

)
(ξ) =

(
∂

∂ξ3

(
x2
∂x1

∂ξ2

)
− ∂

∂ξ2

(
x2
∂x1

∂ξ3

))
(ξ),

[
J ∂ξ2

∂x1

]

κ

= Dξ1 diag(x3)Dξ3x2 − Dξ3 diag(x3)Dξ1x2

≈
(
∂x3

∂ξ1

∂x2

∂ξ3
− ∂x3

∂ξ3

∂x2

∂ξ1

)
(ξ) =

(
∂

∂ξ1

(
x3
∂x2

∂ξ3

)
− ∂

∂ξ3

(
x3
∂x2

∂ξ1

))
(ξ),

[
J ∂ξ2

∂x2

]

κ

= Dξ1 diag(x1)Dξ3x3 − Dξ3 diag(x1)Dξ1x3

≈
(
∂x1

∂ξ1

∂x3

∂ξ3
− ∂x1

∂ξ3

∂x3

∂ξ1

)
(ξ) =

(
∂

∂ξ1

(
x1
∂x3

∂ξ3

)
− ∂

∂ξ3

(
x1
∂x3

∂ξ1

))
(ξ),

[
J ∂ξ2

∂x3

]

κ

= Dξ1 diag(x2)Dξ3x1 − Dξ3 diag(x2)Dξ1x1

≈
(
∂x2

∂ξ1

∂x1

∂ξ3
− ∂x2

∂ξ3

∂x1

∂ξ1

)
(ξ) =

(
∂

∂ξ1

(
x2
∂x1

∂ξ3

)
− ∂

∂ξ3

(
x2
∂x1

∂ξ1

))
(ξ),

[
J ∂ξ3

∂x1

]

κ

= Dξ2 diag(x3)Dξ1x2 − Dξ1 diag(x3)Dξ2x2

≈
(
∂x3

∂ξ2

∂x2

∂ξ1
− ∂x3

∂ξ1

∂x2

∂x2

)
(ξ) =

(
∂

∂ξ2

(
x3
∂x2

∂ξ1

)
− ∂

∂ξ1

(
x3
∂x2

∂ξ2

))
(ξ),
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[
J ∂ξ3

∂x2

]

κ

= Dξ2 diag(x1)Dξ1x2 − Dξ1 diag(x1)Dξ2x2

≈
(
∂x1

∂ξ2

∂x2

∂ξ1
− ∂x1

∂ξ1

∂x2

∂x2

)
(ξ) =

(
∂

∂ξ2

(
x1
∂x2

∂ξ1

)
− ∂

∂ξ1

(
x1
∂x2

∂ξ2

))
(ξ),

[
J ∂ξ3

∂x3

]

κ

= Dξ2 diag(x2)Dξ1x1 − Dξ1 diag(x2)Dξ2x1

≈
(
∂x2

∂ξ2

∂x1

∂ξ1
− ∂x2

∂ξ1

∂x1

∂x2

)
(ξ) =

(
∂

∂ξ2

(
x2
∂x1

∂ξ1

)
− ∂

∂ξ1

(
x2
∂x1

∂ξ2

))
(ξ).

In order for the condition 1T
κ c

κ
m = 0 to be met, the coupling terms need to match the analytical

terms in the integration of the GCL conditions for example

1
T
κE

ftoκ

([
J ∂ξf
∂xm

])
1f =

∮

Γ̂f
Jκ

∂ξf
∂xm

nξfdΓ̂.

Consider the κth element as having at least one nonconforming interface but a conforming interface
on the face perpendicular to where ξ1 is maximum, abutting a fully conforming element (this
face will be denoted face 2). The contribution of the coupling elements to the discrete GCL for
m = 1, 2, 3, listed in that order, are

1
T
κE

2toκ

([
J ∂ξ1

∂x1

])
= 1

T
κR

T
β1

P⊥ξ1Rα1

[
J ∂ξ1

∂x1

]
, 1

T
κE

2toκ

([
J ∂ξ1

∂x2

])
= 1

T
κR

T
β1

P⊥ξ1Rα1

[
J ∂ξ1

∂x2

]
,

1
T
κE

2toκ

([
J ∂ξ1

∂x3

])
= 1

T
κR

T
β1

P⊥ξ1Rα1

[
J ∂ξ1

∂x3

]
,

where the metric terms, for example
[
J ∂ξ1
∂x1

]
, are those computed in the fully conforming element

using the Thomas and Lombard [58] approach. What needs to be shown is that each term is exact,
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i.e.,

1
T
κE

2toκ

([
J ∂ξ1

∂x1

])
=

∮

Γ̂2

J ∂ξ1

∂x1
dΓ̂ =

∮

Γ̂2

(
∂x3

∂ξ3

∂x2

∂ξ2
− ∂x3

∂ξ2

∂x2

∂ξ3

)
dΓ̂

=

∮

Γ1

(
∂

∂ξ3

(
x3
∂x2

∂ξ2

)
− ∂

∂ξ2

(
x3
∂x2

∂ξ3

))
dΓ̂

=

∫ 1

ξ2=−1

(
x3
∂x2

∂ξ2

∣∣∣∣
1

ξ3=−1

)
dξ2 −

∫ 1

ξ3=−1

(
x3
∂x2

∂ξ3

∣∣∣∣
1

ξ2=−1

)
dξ3,

1
T
κE

2toκ

([
J ∂ξ1

∂x2

])
=

∮

Γ̂2

J ∂ξ1

∂x2
dΓ̂ =

∮

Γ̂2

(
∂

∂ξ3

(
x1
∂x3

∂ξ2

)
− ∂

∂ξ2

(
x1
∂x3

∂ξ3

))
dΓ̂

=

∫ 1

ξ2=−1

(
x1
∂x3

∂ξ2

∣∣∣∣
1

ξ3=−1

)
dξ2 −

∫ 1

ξ3=−1

(
x1
∂x3

∂ξ3

∣∣∣∣
1

ξ2=−1

)
dξ3,

1
T
κE

2toκ

([
J ∂ξ1

∂x3

])
=

∮

Γ̂2

J ∂ξ1

∂x3
dΓ̂ =

∮

Γ̂2

(
∂

∂ξ3

(
x2
∂x1

∂ξ2

)
− ∂

∂ξ2

(
x2
∂x1

∂ξ3

))
dΓ̂

=

∫ 1

ξ2=−1

(
x2
∂x1

∂ξ2

∣∣∣∣
1

ξ3=−1

)
dξ2 −

∫ 1

ξ3=−1

(
x2
∂x1

∂ξ3

∣∣∣∣
1

ξ2=−1

)
dξ3.

Inserting the Thomas Lombard approximation in the first coupling term

1
T
κE

2toκ

([
J ∂ξ1

∂x1

])
= 1

T
κR

T
β1

P⊥ξ1Rα1

(
Dξ3 diag(x3)Dξ2x2 − Dξ2 diag(x3)Dξ3x2

)

= 1
T
κ

{(
eN1e

T
11
⊗ P

(1D)
ξ ⊗ Q

(1D)
ξ

)
diag(x3)Dξ2x2 −

(
eN1e

T
11
⊗ Q

(1D)
ξ ⊗ P

(1D)
ξ

)
diag(x3)Dξ3x2

}

=
{

1T
(
eN1e

T
11
⊗ 1TP

(1D)
ξ ⊗ 1TQ

(1D)
ξ

)
diag(x3)Dξ2x2

−
(
1TeN1e

T
11
⊗ 1TQ

(1D)
ξ ⊗ 1TP

(1D)
ξ

)
diag(x3)Dξ3x2

}

=
{

1T
(
eN1e

T
11
⊗ 1TP

(1D)
ξ ⊗ 1TE

(1D)
ξ

)
diag(x3)Dξ2x2

−
(
1TeN1e

T
11
⊗ 1TE

(1D)
ξ ⊗ 1TP

(1D)
ξ

)
diag(x3)Dξ3x2

}

From the last equality, it can be concluded that

1
T
κE

2toκ

([
J ∂ξ1

∂x1

])
=

∮

Γ1

(
∂

∂ξ3

(
x3
∂x2

∂ξ2

)
− ∂

∂ξ2

(
x3
∂x2

∂ξ3

))
dΓ̂,

because the projection operators pick off the functions at the boundary and the E matrices are at
least degree 2p − 1, which is the degree of the terms that they are integrating if the curvilinear
coordinate transformation is constructed from degree p tensor products. The remaining coupling
terms are shown to exactly equal the required surface/line integrals.
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