Extended Wear Testing of the 12-kW Advanced Electric Propulsion System Engineering Test Unit Hall Thruster

37th International Electric Propulsion Conference June 19-23, 2022

Jason D. Frieman, Hani Kamhawi, Jon Mackey, and Peter Y. Peterson NASA Glenn Research Center

James H. Gilland *Ohio Aerospace Institute*

Richard Hofer Jet Propulsion Laboratory

Derek Inaba, Hoang Dao, Nicholas A. Branch, and Benjamin Welander *Aerojet Rocketdyne*

Introduction

- High-power (40-kW) SEP capability has been identified as enabling for near term and future NASA exploration architectures
 - Example: Maxar Power and Propulsion Element of NASA's Gateway
- Since 2012, NASA has been developing the Hall Effect Rocket with Magnetic Shielding (HERMeS) to serve as a SEP capability building block
- Technology development transitioned to Aerojet Rocketdyne (AR) via Advanced Electric Propulsion System (AEPS) contract
 - AR has produced two AEPS Engineering Test Unit (ETU) thrusters and is leading a detailed test campaign to assess design compliance with AEPS requirements
 - NASA continues to support AEPS development by leveraging in-house expertise, plasma modeling capability, and world-class test facilities

HERMeS Technology Demonstration Units (TDUs)

- 2016 TDU-1 Wear Test: AIAA Paper 2016-5025
 - Provided first quantitative insights into wear and performance trends over an extended period of operation
 - \circ $\,$ 1700 h of operation at 600 V/12.5 kW $\,$
- 2017 TDU-3 Short Duration Wear Test: IEPC Paper 2017-207
 - Quantified thruster life at a range of operating conditions
 - 200 h segments (7x) each performed at a different operating condition
- 2017-2018 TDU-3 Long Duration Wear Test: AIAA Paper 2019-3895
 - Pathfinder test for the planned AEPS life qualification campaign
 - 3,570 h of operation split between six test segments

Previous HERMeS/AEPS Wear Tests

HERMeS Technology Demonstration Units (TDUs)

- 2016 TDU-1 Wear Test: AIAA Paper 2016-5025
 - Provided first quantitative insights into wear and performance trends over an extended period of operation
 - 1700 h of operation at 600 V/12.5 kW
- 2017 TDU-3 Short Duration Wear Test: IEPC Paper 2017-207
 - Quantified thruster life at a range of operating conditions
 - 200 h segments (7x) each performed at a different operating condition
- 2017-2018 TDU-3 Long Duration Wear Test: AIAA Paper 2019-3895
 - Pathfinder test for the planned AEPS life qualification campaign
 - 3,570 h of operation split between six test segments

AEPS Engineering Test Units (ETUs)

- 2019-2020 ETU-2 Wear Test: AIAA Paper 2020-3625
 - Quantified performance and wear trends of the AEPS ETU design to assess compliance with requirements and provide a comparison to the HERMeS Technology Demonstration Units (TDUs)
 - 730 h of operation split between six test segments
- 2021: ETU-2 Extended Wear Test
 - Goal: acquire wear data at discharge currents other than 20.83 A
 - Three test segments:
 - 294 h at 600 V/11 kW
 - 302 h at 600 V/12 kW
 - 267 h at 600 V/9 kW

Previous HERMeS/AEPS Wear Tests

HERMeS Technology Demonstration Units (TDUs)

- 2016 TDU-1 Wear Test: AIAA Paper 2016-5025
 - Provided first quantitative insights into wear and performance trends over an extended period of operation
 - 1700 h of operation at 600 V/12.5 kW
- 2017 TDU-3 Short Duration Wear Test: IEPC Paper 2017-207
 - Quantified thruster life at a range of operating conditions
 - 200 h segments (7x) each performed at a different operating condition
- 2017-2018 TDU-3 Long Duration Wear Test: AIAA Paper 2019-3895
 - Pathfinder test for the planned AEPS life qualification campaign
 - 3,570 h of operation split between six test segments

AEPS Engineering Test Units (ETUs)

- 2019-2020 ETU-2 Wear Test: AIAA Paper 2020-3625
 - Quantified performance and wear trends of the AEPS ETU design to assess compliance with requirements and provide a comparison to the HERMeS Technology Demonstration Units (TDUs)
 - 730 h of operation split between six test segments
- 2021: ETU-2 Extended Wear Test
 - Goal: acquire wear data at discharge currents other than 20.83 A
 - Three test segments:
 - 294 h at 600 V/11 kW
 - 302 h at 600 V/12 kW
 - 267 h at 600 V/9 kW

Over 8,000 hours of wear testing performed at the development level

Thruster and Facility

Aerojet Rocketdyne AEPS ETU-2

- ETU design derived from and preserves key features of the HERMeS TDUs, but includes modifications to improve manufacturability and ability to meet environmental and spacecraft interface requirements
- Thruster electrically configured per recommendations from Peterson et al. (AIAA Paper 2016-5027)
 - o Thruster body electrically tied to cathode
 - \circ $\;$ Dielectric coating on all surfaces within 1 m of exit plane
- Power and propellant supplied using calibrated commercial laboratory systems
 - Flow rate uncertainty: 0.6-1.3 sccm
 - Voltage uncertainty: ±0.06 V
 - Current uncertainty: ±0.03 A

NASA Vacuum Facility 5

- Nominal pumping speed: ~700 kl/s on xenon
- Nominal operating pressure: ~4.0 µTorr at 12 kW throttle point
- Facility includes an inverted pendulum thrust stand with ± 0.8% uncertainty used extensively in previous TDU and ETU testing (AIAA Paper 2018-4516)

Wear Measurement Approach

- Wear measurements obtained using the same approach as during previous TDU and ETU wear tests
- Inner front pole cover (IFPC) and outer front pole cover (OFPC) modified to enable wear measurements
 - Graphite components polished pre-test to maximize surface uniformity
 - \circ $\,$ Graphite masks installed to provide unexposed reference surfaces:
 - IFPC: series of graphite strips covering approximately 95% of radius
 - OFPC: series of graphite strips covering approximately 95% of radius
- Erosion measurements made with a chromatic, white-light, noncontact profilometer
 - \circ $\,$ Data analyzed per ISO 5436-1 guidance for a type A1 step $\,$
 - $\circ~$ Typical uncertainties on the order of ±2 μm accounting for:
 - Instrument error
 - Surface roughness
 - Non-flat surface geometry

Performance Results

• Thruster performance and stability characterized before and after each wear block at 9 Reference Firing Conditions (RFCs)

Discharge Voltage (V)	Discharge Current (A)	Discharge Power (W)	Inclusion Rationale	
300	10.00	3000	Low-power	
300	15.00	4500	performance	
300	20.00	6000	characterization	
300	20.83	6250	Point-of-comparison	
600	20.83	12500	to prior testing	
600	15.00	9000		
600	16.67	10000	Wear test conditions	
600	18.33	11000	of interest	
600	20.00	12000		
Cathode Flow Fraction, All Conditions		1.0 CFF _{nominal}		
Magnetic Field Strength, All Conditions		1.0 B _{nominal}		

Performance Results

- Thruster performance and stability characterized before and after each wear block at 9 Reference Firing Conditions (RFCs)
- Thrust of ETU-2 matched historical means to within the empirical uncertainty for all RFCs and did not vary with operating time

DEC	Thrust (mN)		
RFC	Mean	Wear	
300 V/3.00 kW	184	184	
300 V/6.25 kW	395	396	
600 V/9.00 kW	446	446	
600 V/12.00 kW	591	590	
600 V/12.50 kW	611	613	
Uncertainty	± 5 mN		

Performance Results

- Thruster performance and stability characterized before and after each wear block at 9 Reference Firing Conditions (RFCs)
- Thrust of ETU-2 matched historical means to within the empirical uncertainty for all RFCs and did not vary with operating time
- Specific impulse and total efficiency followed similar trends to thrust

RFC	Thrust (mN)		Specific Impulse (s)		Total Efficiency (%)	
	Mean	Wear	Mean	Wear	Mean	Wear
300 V/3.00 kW	184	184	1785	1781	52.2	52.4
300 V/6.25 kW	395	396	1945	1944	59.6	59.8
600 V/9.00 kW	446	446	2674	2668	64.5	64.4
600 V/12.00 kW	591	590	2795	2789	67.0	66.8
600 V/12.50 kW	611	613	2802	2810	66.8	67.2
Uncertainty	± 5 mN		± 0.9%		± 1.7%	

Discharge Current Oscillation Results

Invariance with operating time also observed in ETU-2 discharge oscillation characteristics

Wear Results: Inner Front Pole Cover

- The erosion rates measured at 9 kW, 11 kW, and 12 kW were equal to within the empirical uncertainty at all normalized radii and matched previous results obtained at 12.5 kW
 - Outlier near the discharge channel at 12.5 kW likely an artifact of increased uncertainty due to edge effects

Wear Results: Inner Front Pole Cover

- The erosion rates measured at 9 kW, 11 kW, and 12 kW were equal to within the empirical uncertainty at all normalized radii and matched previous results obtained at 12.5 kW
 - Outlier near the discharge channel at 12.5 kW likely an artifact of increased uncertainty due to edge effects
- Consistent with previous TDU and ETU results, IFPC wear at 9 kW and 11 kW demonstrated azimuthal symmetry to within the empirical uncertainty

Wear Results: Inner Front Pole Cover

50

40

Erosion Rate (µm/kh)

20

10

- The erosion rates measured at 9 kW, 11 kW, and 12 kW were equal to within the empirical uncertainty at all normalized radii and matched previous results obtained at 12.5 kW
 - Outlier near the discharge channel at 12.5 kW likely an artifact of increased uncertainty due to edge effects
- Consistent with previous TDU and ETU results, IFPC wear at 9 kW and 11 kW demonstrated azimuthal symmetry to within the empirical uncertainty

Minimal differences in IFPC wear between the extensively characterized 12.5 kW condition and the new 9 kW, 11 kW, and 12 kW conditions

Wear Results: Outer Front Pole Cover

 The erosion rates measured at 9 kW, 12 kW, and 12.5 kW were equal to within the empirical uncertainty at all normalized radii

Wear Results: Outer Front Pole Cover

- The erosion rates measured at 9 kW, 12 kW, and 12.5 kW were equal to within the empirical uncertainty at all normalized radii
- The erosion rates measured at 11 kW were approximately 200% greater, on average, than those at the other 600 V conditions
 - OFPC erosion rates at 11 kW were comparable to those measured on the IFPC
 - This result is unique as all other tested conditions show the IFPC as the wear life-limited component

Wear Results: Outer Front Pole Cover

- The erosion rates measured at 9 kW, 12 kW, and 12.5 kW were equal to within the empirical uncertainty at all normalized radii
- The erosion rates measured at 11 kW were approximately 200% greater, on average, than those at the other 600 V conditions
 - OFPC erosion rates at 11 kW were comparable to those measured on the IFPC
 - This result is unique as all other tested conditions show the IFPC as the wear life-limited component
- Consistent with previous TDU and ETU results:
 - OFPC wear at 12 kW and 11 kW demonstrated azimuthal symmetry to within the empirical uncertainty
 - No measurable erosion detected on unpolished section of all OFPCs

Wear Results: Outer Front Pole Cover

- The erosion rates measured at 9 kW, 12 kW, and 12.5 kW were equal to within the empirical uncertainty at all normalized radii
- The erosion rates measured at 11 kW were approximately 200% greater, on average, than those at the other 600 V conditions
 - OFPC erosion rates at 11 kW were comparable to those measured on the IFPC
 - This result is unique as all other tested conditions show the IFPC as the wear life-limited component
- Consistent with previous TDU and ETU results:
 - OFPC wear at 12 kW and 11 kW demonstrated azimuthal symmetry to within the empirical uncertainty
 - No measurable erosion detected on unpolished section of all OFPCs

Minimal differences in OFPC wear between the extensively characterized 12.5 kW condition and the new 9 kW, 11 kW, and 12 kW conditions

- Conclusions
- The AR AEPS ETU-2 thruster was successfully operated for approximately 900 hours split across three wear test segments (600 V/9 kW, 600V/11 kW, and 600 V/12 kW)
- ETU-2 performance and stability were invariant with operating time and were equivalent to values measured in previous ETU-2 and HERMeS TDU testing
- Erosion rates of the IFPC at the 9 kW, 11 kW, and 12 kW conditions were equivalent to within the empirical uncertainty and matched rates previously measured at 600 V/12.5 kW
 - $\circ~$ Same trends observed for OFPC erosion at 9 kW and 12 kW
- Elevated OFPC erosion rates were observed at 11 kW that were similar in magnitude to those observed on the IFPC
- Overall, all measurements indicate that the AEPS thruster has a high probability of meeting lifetime and performance requirements at all tested operating conditions as the design moves forward to flight production and qualification

