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Abstract

Landslides triggered by extreme rainfall can be devastating, resulting in loss of life, property, and
infrastructure. Landslide forecasting systems provide an opportunity to build awareness of potential
hazards and ultimately take preemptive measures. There is currently a dearth of forecasting systems
that provide regional or global coverage, but these systems can offer important situational awareness
in data-sparse, ungauged, or large-scale catchments. A near global, primarily satellite-based system
called the Landslide Hazard Assessment for Situational Awareness (LHASA) provides near real-time
estimates of potential landslide hazard and exposure around the world. In this work, a precipitation
forecast module is introduced into LHASA to complement the existing LHASA framework and
provide an estimate of landslide hazard up to three days in advance at 1km resolution. The model-
based Goddard Earth Observing System-Forward Processing (GEOS-FP) precipitation forecast
product is used as the forcing input for the model in place of the satellite-based Integrated Multi-
satellitE Retrievals for Global Precipitation Mission product. Soil moisture and snow depth from the
GEOS-FP assimilated product are also incorporated. The study period January 2020-January 2021 is
used to test the model performance against the LHASA near real-time estimates at multiple
spatiotemporal scales. Validation of the model is carried out using a collection of rainfall-triggered
landslide inventories from around the world as case studies to demonstrate the potential utility and
limitations of this system. The rescaling of the GEOS-FP precipitation product is a critical step in
incorporating the forecasted precipitation data within LHASA-Forecast (LHASA-F). Combining
different streams of forecasted data within the LHASA-F framework shows promise, particularly for
larger events at the 1- and 2-day lead time for events. Results indicate that for the case studies
evaluated, the LHASA-F is generally able to resolve major landslide events triggered by extreme
rainfall, such as from tropical cyclones. The analysis shows that landslide forecast outputs may be
represented differently depending on the user’s needs. This framework serves as a first milestone in
providing a global predictive view of landslide hazard.
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1 Introduction

Landslides are pervasive in mountainous areas and adversely affect human life and infrastructure
(Chester 1995; Petley 2011). Key factors leading to landslides can be broadly classified into two
categories: the dynamic triggering mechanisms like extreme rainfall and local soil moisture conditions
and prevalent ground conditions (Guzzetti et al., 2020). It is critical to develop near real-time and early
warning systems for predicting impending events. These systems could provide, emergency managers
and planners, advanced situational awareness to save lives and property. Predicting when and where
landslides may occur and issuing warnings, accordingly, is an evolving area of research. Landslide
models can either be designed to function as near real-time or forecasting systems. Literature refers to
predictive systems using several different terms, such as landslide models, forecast models, warning
models, and warning systems. A forecast model provides estimate of the future state of a natural system
obtained with a numerical model (Ramage, 1993). A ‘warning model’ is a framework to issue landslide
advisories and can incorporate one or more landside models and advisory protocols that are used to
issue advisories. Comparatively, a ‘warning system’ is a physical implementation of a warning model
with one or more landslides forecast models (Guzzetti et al., 2020).

Landslide Early Warning Systems (LEWSSs) are usually developed locally and are designed for specific
uses, such as civil protection, hill slope monitoring, and regional situational awareness. According to
literature, a total of five nations, 13 regions and the metropolitan areas of Chittagong, Hong Kong, and
Seattle benefit from LEWSs (Guzzetti et al., 2020). An example of a near-real time system is Rio de
Janeiro Brazil’s Alerta Rio system, which fuses information from susceptibility maps with the rain-
gauge measurements, updated every five minutes (Calvello et al., 2015). Some examples of LEWSs
that leverage numerical weather model Quantitative Precipitation Forecasts (QPF) include one Ahmed
et al., 2018 proposed (operated on voluntary basis) for Chittagong Metropolitan Area, Bangladesh.
This LEWS exploits empirical rainfall thresholds, daily QPF, and a statistically based landslide
susceptibility zonation for preparing landslide forecasts. The Civil Protection Department of Sicily,
southern Italy is operating a Hydrohazards Early Warning System (HEWS: flood and shallow landslide
warning system) based on the combined use of rainfall thresholds, soil moisture modelling and QPF
(Brigandi et al., 2017). Similarly, the regional government of Piedmont, northern Italy, is operating a
regional LEWS which comprises three complementary landslide forecasting systems, namely, the
DEFENSE (Tiranti et al., 2014), SMART (Tiranti and Rabuffetti, 2010) and TRAPS (Tiranti et al.,
2013) systems. LEWS based on the comparison between hourly rainfall measures, rainfall forecasts up
to +48 hours, and 3D rainfall thresholds (using intensity, duration, and antecedent rainfall as rainfall
parameters) is operated in the Emilia Romagna Region, Italy (Rosi et al., 2021). The Japanese
Meteorological Department’s early-warning system is based on hourly rainfall, short-range
precipitation forecasts, and soil-moisture index (Singh, 1995; Sugawara et al., 1983; Osanai et al.,
2010), and the Norwegian national landslide early warning system uses hydrologic models and web
tools to monitor and forecast hydrometeorological conditions that could potentially trigger landslides
(Devoli et al., 2015). However, these LEWSs cover a very small percentage of the land susceptible to
landslides globally (Nadim et al., 2006). Results compiled by Froude and Petley, (2018) suggest that
most of these national and regional LEWSs do not operate where a large majority of fatal landslides
occur and the risk of landslides to the population is high.

Kirschbaum and Stanley (2018) proposed a quasi-global near-real time Landslide Hazard Assessment
for Situational Awareness (LHASA) model. LHASA combines satellite-based precipitation estimates
from the Global Precipitation Measurement (GPM) mission with a landslide susceptibility map derived
from information on slope, geology, road networks, fault zones, and forest loss, primarily from
satellite-derived or publicly available data (Kirschbaum et al., 2018; Stanley and Kirschbaum, 2017).
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Version 2 of LHASA leverages machine learning to produce probabilistic ratings of landslide hazard
at 1x1km resolution at quasi-global scale (60°N-60°S) (Stanley et al., 2021). In addition to GPM
rainfall estimates, LHASA version 2 ingests data on snow mass and soil moisture from the Soil
Moisture Active Passive Level 4 (SMAP L4) product (Reichle et al., 2018). It also analyzes the
exposure of population and road networks to landslide hazard for each level-2 administrative district
(Emberson et al., 2020). Although LHASA version 2 provides near-global information in near-real
time (~4hrs latency), many stakeholders have expressed a preference for forecasting of landslide
hazard, which is not addressed solely using satellite observations.

In this study, we test the feasibility of ingesting a global precipitation forecast from the NASA Goddard
Earth Observing System Forward processing product (GEOS-FP; Molod et al., 2012; Rienecker et al.,
2008) into the LHASA framework to provide probabilistic landslide estimates for one to three days in
the future. As landslide hazards can be triggered in relatively short time, the global landslide forecast
system could serve as a tool in conjunction with other situational awareness products for an impending
major rainfall event (e.g., tropical storms). This represents a new effort in global landslide forecasting
and a first attempt to provide a global predictive view of landslide hazard, which can be particularly
useful in areas without ground-based systems or active monitoring programs. This work introduces the
global LHASA-Forecast (LHASA-F) framework and evaluates its performance relative to the LHASA
near-real time (LHASA-NRT) model and observed landslides. The overarching goal of this work is to
determine the feasibility of incorporating a global forecast precipitation product within the LHASA
framework to represent potential landslide hazards into future. This study considers analyses at global,
regional, and local scales, with an emphasis on validation studies in multiple geographic and
climatological settings using landslide inventories.

2 Materials and Methods

2.1 Data

2.1.1 Dynamic Variables

Precipitation is the key dynamic variable within the LHASA framework. The Integrated Multi-Satellite
Retrievals for Global Precipitation Measurement (IMERG) product provides instantancous
precipitation estimates at a 30 minute, 0.1° resolution from 60°N to 60°S by merging passive
microwave and infrared data (Huffman et al., 2020). IMERG products are available at different
latencies: the early product (latency of 4hrs), the late product (12-14hrs), and final product (3months).
The Early and Late product employ a climatological gauge correction from the Global Precipitation
Climatology Project (GPCP; https://psl.noaa.gov/data/gridded/data.gpcp.html) and the Final product
uses monthly gauge observations to adjust the precipitation estimates.

The GEOS system provides atmospheric and environmental variables including precipitation, soil
moisture, and total precipitable water by integrating the GEOS Atmospheric General Circulation
Model with land surface models (Rienecker et al., 2008; Molod et al., 2012). The GEOS FP system
generates assimilation products, and ten-day forecasts. New observations are assimilated periodically
(6hrs), and a forecast model is used to generate a time-series of hourly forecast products. The forecast
product (GEOS-FP) is initialized four times a day at 00z, 06z, 12z, and 18z, respectively. GEOS-FP
Forecast products provide precipitation estimates up to 10 days into the future at ~0.25°x0.31°/hr
spatio-temporal resolution.
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LHASA version 2 (refer to section 2.2 for details) utilizes rescaled precipitation as a model input,
mainly to account for the climatology at the grid scale, and to minimize the disparity between the near-
real time and forecasted precipitation (Figure 3). Additionally, it supports the use of the previously
trained model for landslide forecasting. Rescaling of the precipitation is accomplished by dividing the
current daily rainfall estimates to historical 99" percentile rainfall (p99). The p99 values at each 0.1°
grid cell are derived from a log-normal distribution, because it is less sensitive to skewness in the
empirical data than other statistical distributions and fits the probability density function (pdf) of
rainfall data well. Historical IMERG v06B data (2000-2018) are used to compute the 99" percentile
(p99) for IMERG-NRT and GEOS-FP Forecast data (2018-2021) for computing p99 for rescaling
forecasted precipitation.

An example of the rescaled precipitation (raw precipitation divided by p99) used to feed information
on the precipitation for landslide modeling is shown in Figure 1. The raw precipitation totals (mm)
from Tropical storm Linfa on October 10, 2020, can be seen in the top panels (Figure 3A and 3B) and
the rescaled precipitation in the bottom panels respectively. It is observed that the magnitude difference
between the near-real time daily accumulated precipitation (IMERG Early) and 24hr forecasted
precipitation (GEOS-FP) is minimal in case of the rescaled precipitation (Figure 1C and 1F). Details
regarding other dynamic variables used in LHASA-Forecast framework are included in Table 1.
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Figure 1: Rescaled precipitation example over Lower Mekong Region (LMR) used in the LHASA version 2
model. The top panels (A and B) exhibit the raw 24-hour accumulated precipitation on October 12, 2020, for
the LMR, and the bottom panels show the rescaled precipitation maps (D and E) for both near-real time
(IMERG Early) and forecasted precipitation (GEOS-Forecast) products at daily scale. Red (C and F) indicates
that IMERG Early has higher values than GEOS-Forecast and blue (C and F) corresponds to greater GEOS-
Forecast precipitation accumulation.
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Table 1: Dynamic variables description and sources used in LHASA-Forecast framework.

Type of Data Product Resolution Frequency/Latency Source
Precipitation GOES-FP 25kmx31km 1hr/ 1-10days out NASA GMAO;
Forecast Forecast https://gmao.gsfc.nasa.gov/
Antecedent IMERG-Early  10kmx10km 30min/NRT NASA GPM,;
Precipitation https://gpm.nasa.gov/;
(Huffman et al., 2020)
Soil Moisture, GEOS-FP 25kmx31km 1hr/NRT NASA GMAO;
Snow Mass https://gmao.gsfc.nasa.gov/
Assimilated

2.1.2 Landslide Inventories

The Landslide inventories used in this study are mapped utilizing optical imagery from Planet (Planet
Team, 2018) and Sentinel-2 using the Semi-Automatic Landslide Detection (SALaD) system (Amatya
etal., 2021a,b) . A total of seven rainfall-induced landslide inventories are used in the model validation.
Details are provided in Table 2 (more details on climate and geology of the locations in SM8). The
quality of these inventories can be assessed using similar evaluation criteria to those described by
Tanyas et al., 2017. For each of the inventories, the high-resolution imagery allows differentiation of
all landslide bodies. The boundary area of the mapped area is included in the datasets. The inventories
are polygons of landslides triggered by the rainfall, although pre-event landslides are not differentiated
— all mapped landslides are assumed to have resulted from the rainfall event associated with the
inventory. The polygons do not differentiate between source and depositional areas for consistency.

Table 2: Catalog of rainfall-triggered landslide inventories used for model evaluation.

Event Inventory Imagery Date Reference
Tropical Cyclone Vanuatu PlanetScope  April 5, 2020 https://maps.disasters.nasa.gov
Harold /arcgis/home/webmap/viewer.
html?webmap=b6598e9b92bf4
979a76e8fccee741ed?
Hurricane Guatemala PlanetScope/  Nov 5,2020  https://maps.disasters.nasa.gov
Eta/lota (San Pedro Soloma,  Sentinel-2 /arcgis/home/item.htmI?id=0a
Queja) d1dd0063d94e849ac5ddadche
7a3a6
Tropical storm Phong Dien PlanetScope  Oct 12, 2020 Van Tien etal., 2021 a
Linfa
Extreme rainfall Huong Hua PlanetScope Oct 17, 2020 Van Tienetal., 2021 b
Typhoon Molave Quang Nam PlanetScope  Oct 28, 2020 Van Tien etal., 2021 b
Medicane lanos Greece PlanetScope  Sep 18, 2020 Zekkos et al., 2020
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2.2 Model Description

LHASA version 2 advances beyond the original model by using a XGBoost machine-learning approach
to incorporate soil moisture, snow mass, and geological information (Stanley et al., 2021). LHASA
continues to use daily satellite rainfall estimates from the IMERG early and late run products to
represent landslide-triggering rainfall, as well as antecedent precipitation. However, in version 2.0,
LHASA separates these elements into a variable representing the current day’s rainfall and another
variable representing the prior two days’ rainfall. The hydrologic effects of all precipitation prior to
this 3-day period are represented by two state variables from the Soil Moisture Active Passive Level 4
(SMAP L4) product (Reichle et al., 2018): snow mass and total profile soil wetness. Finally, the
relatively static effects of terrain and geologic material strength are represented by three variables:
distance to active faults (Styron and Pagani, 2020; GEM Hazard Team, 2019), slope gradient from the
Viewfinder Panoramas DEM (de Ferranti, 2015), and a global lithologic rating derived from the global
lithologic map (Hartmann and Moosdorf, 2012). These factors were transformed to a probability of
landslide occurrence using XGBoost, a machine-learning framework (Chen and Guestrin, 2016). To
assign these probabilities, several landslide inventories were obtained and filtered by process type,
trigger, and spatial uncertainty. Then the remaining landslides were merged into a global gridded
landslide inventory with a 30-arcsecond daily resolution (Stanley et al., 2021). Dates and locations
without recorded landslides were assumed to indicate landslide non-occurrence, and a random sample
of these data were used for model development. The model was trained with data for the years 2015-
2018 and evaluated with data for the years 2019-2020. LHASA version 2 raised the overall
performance to an aggregated true positive rate of 93% from 45% for version 1.1, and therefore,
adopted for routine operation. LHASA outputs a map of landslide hazard with a 30-arcsecond
resolution that is updated 4 times daily; results can be viewed at https://landslides.nasa.gov/.

Herein, all analysis is conducted with LHASA version 2 and the near real-time (NRT) products will be
referred to as LHASA-NRT, whereas the forecast product will be denoted as LHASA-F. LHASA-NRT
has a 4-hour latency due to the availability of the IMERG data. With LHASA-F, the global precipitation
forecast is utilized to provide global landslide probabilistic estimates with a 3-day lead time. The
forecast model framework is described in Figure 2. LHASA-F employs rescaled forecasted
precipitation, soil moisture, and snow mass information from GEOS-FP forecast and assimilated
products. These dynamic variables are fed into the machine-learning model from LHASA-NRT to
estimate the probability of future landslides (Table 3).

LHASA version 2 Near Real Time LHASA version 2 Forecast
Dynamic Inputs Dynamic Inputs
Rescaled IMERG Precip (NRT)  SMAP Soil moisture Rescaled GEOS-Forecast (HO0) GEOS FP Soil moisture
IMERG Antecedent Rainfall SMAP Snow mass IMERG Antecedent Rainfall GEOS FP Snow mass
| ___Ml-based Model |___MibasedModel |
| Pis nrm (lon, lat, t) | | Pisr (lon, lat, t) ‘

‘ Binary Ground truth ‘

(from Landslid
| Validation ]« ri?\\TenigriZsl) ) »‘ Validation |

Figure 2: LHASA version 2 Near real-time (NRT) and Forecast (F) model workflow. The dynamic inputs
highlighted in red text are the substitutions made in the forecast model. Both models provide landslide
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probability estimates at 1-km resolution. The model framework involves periodic validation with landslide
inventories. Refer to Table 4 for details on the antecedent rainfall for LHASA-F 2-day and LHASA-F 3-day.

Table 3: Timeline for ingesting dynamic variables including rescaled forecasted precipitation, antecedent
rainfall, soil moisture, and snow mass into the LHASA Forecast model for landslide probability estimation
into future. This table shows timelines for 3-day forecast.

LHASA-F 3-day Soil Moisture Antecedent Rainfall Rescaled
Snow Mass Forecasted Precipitation Forecasted
(GEOS FP) 48hrs Precipitation
(72hrs)
GEOS FP
LHASA-F 2-day Soil Moisture Antecedent Rainfall Rescaled
Snow Mass IMERG Late + Forecasted Forecasted
(GEOS FP) Precipitation (24hrs) Precipitation
(48hrs)
GEOS FP
LHASA-F 1-day Soil Antecedent Rainfall Rescaled
Moisture IMERG Late Forecasted
Snow Mass Precipitation
(GEOS FP) (24hrs)
GEOS FP

2.3 Performance Metrics

In this study, we assess LHASA-F probabilistic estimates at global, regional, and local scales against
LHASA-NRT, with a special emphasis on case studies in landslide-prone areas using event-based
landslide inventories.

To assess the global forecast performance, magnitude-based metrics such as mean absolute difference
(MAD) and mean difference (MD) is used. These metrics are computed as follows:

iL1(INcast; — Fcast;|)
n

MAD =

MD — L ;(Ncast; — Fcast;)

n

Where Ncast represents version 2 LHASA-NRT probability estimates, and Fcast represents LHASA-
F probability estimates respectively.

Furthermore, the performance LHASA-NRT and LHASA-F is compared at local scale using landslide
inventories (Figure 3). The study period of one year from January 2020-January 2021 is used to
evaluate the LHASA models.
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Figure 3: Location of landslide inventories used to validate both LHASA-NRT and Forecast models'
performance across the globe during January 2020-January 2021 analysis period. Red marks correspond to
seven inventory locations. The background map shows the mean LHASA-NRT probabilities. Refer to Table 2
for details regarding the landslide inventories.

3 Results

3.1 Global Scale

To assess LHASA-F performance at global scale, we first compute the mean absolute difference
(MAD) between LHASA-NRT and LHASA-F (Figure 4). The MAD between LHASA-NRT and
LHASA-F 1-day for an analysis period of one year shows small differences for the large regions shown
in gray (<0.001 probability). Most of these areas are not highly susceptible to landslides (Stanley and
Kirschbaum 2017). A closer look at the MAD for more hazardous regions such as Papua New Guinea
(Figure 4A), Central and parts of northwestern South America (Figure 4B), high mountain Asia (Figure
4C), and Central Africa (Figure 4D) reveals differences ranging from 0.005-0.15 for mean probability.
It should be noted that in regions where the LHASA-NRT mean probability is relatively high (Figure
3), the results for MAD are expected to diverge the most.
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Figure 4: Global map of Mean Absolute Difference (MAD) between LHASA-NRT and LHASA-F 1-day
landslide probability estimates. Dotted circles represent areas shown in panels below. A, B, C, and D represent
4 areas with different climates (tropical, temperate, continental, snow, and dry). The 4 panels show the mean
absolute difference (MAD) for A) Papua New Guinea, B) Central and Northwestern parts of South America,
C) High Mountain Asia region, and D) parts of central Africa.

Additionally, a global comparison between LHASA-NRT and LHASA-F 1-day is presented in terms
of mean difference (probability) during the study period (Figure 5). The positive difference (red color)
indicates higher LHASA-NRT estimates, and negative difference (blue), higher LHASA-F (1-day)
estimates, respectively. On average, LHASA-F has lower probability values across the globe, and
higher values (~0.03) in some parts of western Venezuela and Colombia (Figure 5B). Moreover, in
complex terrains with high landslide hazard such as parts of Papua New Guinea (Figure 5A), western
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Colombia and central America (Figure 5B), and high mountain Asia (Figure 5C), the LHASA-NRT
show higher probability values (MD ranging from 0.05 to 0.35).
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Figure 5: Global Mean difference (MD) map between LHASA-NRT and LHASA-F 1-day (probabilities) for
the study period. Red indicates that LHASA-NRT has higher values than LHASA-F and blue corresponds to
greater LHASA-F probability. The 4 panels show the mean difference (MD) for A) Papua New Guinea, B)

Central and Northwestern parts of South America, C) High Mountain Asia region, and D) parts of central
Africa.
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3.2 Regional Inventory Analyses

To evaluate model performance at a local scale, we compare LHASA-F probabilistic outputs from 1-,
2- and 3-day forecasts to the locations of the landslide inventories highlighted in Table 1, as well as
LHASA-NRT. The ultimate objective of the analysis is to assess the potential utility and limitations of
the LHASA-F system.

Tropical Cyclone Harold, Vanuatu, 2-9 April 2020

Tropical cyclone Harold hit Vanuatu, Fiji, Tonga, and Solomon Islands as a Category 5 event between
2-9 April 2020. 27 people lost their lives to Tropical Cyclone Harold, while many more were injured
(Mahul and Signer, 2020). More than 159,000 people were affected by the cyclone in Vanuatu. GPM-
based estimates showed ~40-48mm/hr rainfall in Vanuatu. The northern islands, including the main
town of Luganville, Espiritu Santo, were among the worst hit areas. Significant damage to
infrastructure was also reported. Figure 6 exhibits the areas in Santo affected by the landslides (Figure
6D). The Vanuatu landslide inventory showed cyclone-triggered landslides in the North, Northwest,
South, and West Santo districts. All four administrative districts show elevated landslide probabilities
(>0.6) for all areas covered by the mapped landslide points in the LHASA-NRT. In LHASAF 1-day,
the probability of landslides is in the range of 0.2-0.7 in parts of West Santo, Northwest Santo, and
South Santo (Figure 6C). In contrast, LHASA-F 2-day estimated probabilities (~0.2) were only
observed in the West Santo administrative district (Figure 6B). LHASA-F 3-day (Figure 6A) showed
no signs of landslide hazard in the Santo area except for 1 pixel showing a probability value of ~0.15
in Northwest Santo admin district.
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Figure 6: LHASA probability estimates for Vanuatu on April 5, 2020. (A) LHASA-F 3-day, (B) LHASA-F
2-day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped landslides and the
black line to admininstrative district boundaries.

Tropical storm Linfa, Vietnam, 12 October 2020

Tropical Storm Linfa triggered landslides in the central Vietnam along the coast on October 12, 2020.
The performance of LHASA-NRT and LHASA-F for Tropical Storm Linfa in Vietnam is shown in
Figure 7 (more details on the dynamic inputs be found in section 2.2). Despite the missed estimation
of the landslide hazard in the 3-day forecast, the model shows qualitatively good overall performance
for this event in terms of the spatial representation of the high landslide hazard for the mapped
landslides districts. The spatial pattern of the estimated probabilities in LHASA-NRT and LHASA-F
1-day is similar (Figure 7C and 7D), however, LHASA-F clearly underestimates hazard (~0.2
probability difference) relative to LHASA-NRT in Phong Pién and A Ludi (~0.3 probability
difference) district in central Vietnam. This is in line with the global mean difference map (Figure 5C)
where the positive difference (red) indicates higher LHASA-NRT probabilities over Vietnam and
Lower Mekong Region in general.

Medicane lanos, Greece, 15-21 September 2020

Medicane lanos, considered to be the most intense medicane (tropical-like cyclone) ever recorded,
formed over the warm Mediterranean Sea during 15-21 September 2020. Heavy rainfall was recorded
in several lonian Islands, and in parts of Central Greece (Karagiannidis et al., 2021; Zekkos et al.,
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2020). IMERG estimated ~152mm rainfall accumulation in Central and Western coastal Greece, and
~305mm in parts of the lonian islands, particularly in Kefalonia by September 20, 2020. Figure 8 shows
LHASA-F and LHASA-NRT outputs for Thessaly, central Greece, on September 18, 2020. The
landslide inventory for Medicane lanos shows clusters of landslides in southwestern parts of the district
(Figure 8D). The model displays high probability values in this area ~>0.85 (LHASA-NRT) and ~>0.7
(LHASA-F 1-day) respectively. Analogous to other case studies in Vanuatu and Vietnam, the 3-day
forecast is showing probabilities ranging from 0-0.1. 2-day lead time LHASA-F, however, exhibits a
landslide footprint with probability ~0.2 for the mapped landslide locations.
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Figure 7: LHASA probability estimates for Vietnam on Oct 12", 2020. (A) LHASA-F 3-day, (B) LHASA-F
2-day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped landslides and the
black line to administrative district boundaries.
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Figure 8: LHASA probability estimates for Central Greece on September 18", 2020. (A) LHASA-F 3-day,
(B) LHASA-F 2-day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped
landslides and the black line to administrative district boundaries.
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Figure 9: LHASA probability estimates for Guatemala on Nov 5%, 2020. (A) LHASA-F 3-day, (B) LHASA-F
2-day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped landslides and the
black line to administrative district boundaries.

Hurricane Eta, Guatemala, November 5th, 2020

In November 2020, Hurricanes Eta and lota combined to cause some of Central America’s worst losses
from landslides in the last several decades (Shultz et al., 2021; Walton et al., 2021). Results from the
LHASA-NRT (Figure 9D) and Forecast (Figure 9A-C) for parts of Guatemala affected by landslides
during Hurricanes Eta and lota are shown in Figure 9. While comparing the results, both LHASA
products underestimate the hazard level of this event on Nov 5, 2020. This could be attributed to the
underestimation of the precipitation in IMERG Early as well as in GEOS-Forecast at the location of
the mapped landslides (SM4). The high landslide hazard (probability values ~> 0.40) indication is
towards the eastern part of the region (Figure 9C and 9D).

To summarize the performance for the different case studies, the landslide probability values are
extracted for each landslide point from LHASA-NRT and LHASA-F model outputs. Scatter plots in
Figure 10 show the performance of the model outputs at a point scale. If all the landslide points are
taken together, the overall correlation coefficient (CC) of 0.43 is observed between LHASA-NRT and
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LHASA-F 1-day, CC ~0.47 for NRT versus LHASA-F 2-day, and CC~0.3 for LHASA-F 3-day
respectively. LHASA-NRT is consistently higher, and the forecast appears to be more accurate (closer
to the 1:1 line) at higher probabilities than lower probabilities. The forecast model tends to show
comparable performance for landslide points where LHASA-NRT ~>0.70. However, the performance
is attributable to the characteristics of the storm, geographical location, and the precipitation estimates,
in general. This is discussed in more depth below.

The form in which forecasts are communicated requires a clear articulation of the intended purpose of
the forecast and an accurate spatiotemporal representation of the results. Stakeholders such as Pacific
Disaster Center, suggested that summarizing results based on administrative district could help to
rapidly articulate areas of potential impact that could initiate further investigation, action, and
awareness. The results are aggregated by taking the maximum probability values within the
administrative district from the model’s nominal spatial resolution of ~1-km.

Figure 11 shows the maximum landslide probability values for each administrative district for the
extreme rainfall events. LHASA-NRT shows ~>0.80 maximum probability for all the studied
administrative level 2 districts, except for Guatemala where ~0.40 maximum value is noted. Maximum
probability values in case of LHASA-F 1-day ranged between 0.2-1.0. Relative to LHASA-NRT,
LHASA-F’s performance varies by region, with the highest forecasts in Vietnam (0.99), followed by
Greece (0.8), Vanuatu (0.6), and Guatemala (0.3). Overall, this analysis highlights that the performance
of the LHASA-F model depends on both region (Figure 5) and the forecast lead time (Figure 11).

The effects of aggregating forecasts by the level-2 administrative district are further illustrated in
Figure 12. Spatial distribution of the maximum probabilities assigned to the individual district for the
October 17, 2020, event in Vietnam is exhibited in Figure 12A-D. In this example, if a categorical
hazard threshold is set to 0.80, all the districts with landslides show elevated (high) landslide hazard
for all 5 districts in LHASA-F 1-day, and three districts in LHASA-F 2-day. Similarly, with a medium-
hazard threshold set at 0.20, LHASA-F 2-day would display medium hazard for the remaining two
districts (Figure 12C). These thresholds should be adjusted based on local conditions and the intended
purpose of the application.
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Figure 10: Scatter plots for landslide probabilities extracted from LHASA-NRT and LHASA-F for landslide
point locations A) LHASA-F 1-day vs LHASA-NRT, B) LHASA-F 2-day vs LHASA-NRT, C) LHASA-F 3-
day vs LHASA-NRT, respectively. Sample size=5395.
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Figure 11: LHASA-NRT and LHASA-F performance in terms of maximum landslide probability within
landslide affected administrative district level 2 limits.
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Figure 12: Maximum landslide probability maps for landslide affected administrative district level 2 limits in
Vietnam on October 17, 2020. Landslide points are displayed with gray points in panel A.

4 Discussion

Landslide forecasting is a challenging task due to several complex phenomena which may contribute
toward landslide occurrence. This is further complicated by the inherent uncertainties in the data used
for developing landslide models. As in any modeling technique, simplifying assumptions are often
employed to reduce the complexity in formulating underlying models. The goal of this study is to
evaluate the feasibility of using a global precipitation forecast within the LHASA global landslide
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modeling framework to better anticipate future landslide hazard. Landslide inventories from
representative areas are used as an independent reference to evaluate the performance of both products
at a regional scale. Comparing LHASA-F to LHASA-NRT provides a first step in characterizing the
regional differences in landslide predictions using the outlined framework.

LHASA-F evaluation framework designed in this study is based on following assumptions: Event-
based landslide inventories are complete and do not miss any landslides triggered by the event;
LHASA-NRT is a reasonable comparator, in the absence of an alternative global NRT hazard model,
p99 calculations are not impacted by different computation time spans used for GEOS-Forecast (2018-
2021) and IMERG-Early (2000-2018); substituting rescaled precipitation derived from GEOS-FP in
model trained with rescaled precipitation derived from IMERG-Early alleviates the model dependence
of raw precipitation. Some of these assumptions are driven by the limited historical global forecast
availability. However, as previously stated, all landslide forecasting models have some assumptions
(Guzzetti et al., 2020). Despite these limitations, the findings of this study demonstrate promising
performance at the global scale in the analysis window and represents a step towards improved
predictive capability for global landslides.

Khan et al., 2021 reported that the GEOS-FP model-based precipitation forecast demonstrates
coherence with the near-real time satellite estimated (IMERG Early) for tropical storms and extreme
precipitation (~> 100mm) in general, for regions with landslide susceptibility. As rainfall-triggered
landslides are mostly caused by extreme rainfall conditions, the GEOS-FP product was deemed fit to
be ingested in the new global LHASA framework for forecasting landslides. LHASA-NRT and
LHASA-F exhibit high coherence for landslide points, with both associating higher probabilities
(~>0.70) with major events (Tropical storms), as demonstrated by the scatter plots in Figure 10A-C.

Although LHASA-F generates slightly lower landside probabilities (Figure 5) than LHASA-NRT,
these are relative probabilities and the differences may not be significant from operational perspective,
especially for extreme events. Results from the case studies presented in this work indicate that the
performance of the forecast model varies with specific storm and its geographical location. The
accuracy of LHASA-F improves as the forecast time is closer to the prediction time. The reduced
performance of the forecast model for 3-day lead time observed in case studies is attributable to
uncertainties associated with forecasted precipitation (Sikder and Hossain, 2019 ). Factors such as
initial meteorological conditions, data assimilation methods, and the approximations required to
represent physical processes, all contribute towards the forecast skill with lead time. Another reason
for degraded performance of LHASA-F with longer lead time could be linked to antecedent conditions
used in the model training framework (trained on LHASA-NRT dynamic variables). While the
antecedent conditions for Forecast 1-day are derived from IMERG-NRT, those for Forecast 3-day are
based on the forecast from the last two days (refer to Table 3 for details). However, the global scale
mean difference maps between LHASA-NRT and LHASA-F 2-day and 3-day products reveal overall
similar trends as shown in Figure 5 for LHASA-F 1-day, with LHASA-F 2- and 3-day showing lower
probability values across the globe, and higher values (~0.03-0.05) in some parts of western South
America (SM6 and SM7). The spatial tendency of the LHASA-F system to provide high probability
estimates is assessed using a threshold of 0.9. SM3 shows the global map with a count for, each 1x1km
grid box, of the number of days when LHASA-F estimated a landslide probability of >0.9, when
LHASA-NRT does not. The count ranges from 1 to 5 days out of 365 days of testing period. LHASA-
F estimates are lower than high threshold (0.9) most of the days across the globe (shown with white
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color inland) except for few grid boxes in Jamaica and El Salvador, parts of New Guinea, and north
central coast Vietnam.

There are limited global landslide inventories for the relatively short historical GEOS-Forecast record,
which did not allow development of a model solely based on the GEOS-Forecast. This problem is
addressed by employing rescaled precipitation in both the LHASA-NRT and LHASA-F frameworks.
Three dynamic variables, rescaled precipitation, soil moisture, and snow mass from GEOS-FP are used
for the validation studies in the model trained with rescaled precipitation from IMERG-NRT, to
generate LHASA-F up to 3-days lead time at the global scale. Depending on the availability of a long
and consistent precipitation forecast data, and global landslide inventories, future work could address
these limitations by training models for each forecast lead-time and combination of inputs.

We find the following overarching results when comparing LHASA-F to LHASA-NRT and available
event-based inventories:

» The rescaling of the GEOS-FP precipitation product is a critical step in incorporating the
forecasted precipitation data within LHASA-F, though when compared directly, probability
values for LHASA-F are low relative to the LHASA-NRT.

« Combining different streams of forecasted data within the LHASA-F framework shows
promise, particularly for larger events at the 1- and 2-day lead time for events.

« Maximum probability values at administrative district level 2 are informative for assigning
categorical alert levels for landslides. This could help stakeholders rapidly identify areas of
potential impact for further investigation, action, and awareness.

Periodic assessment of the landslide forecast system and user feedback is vital for its operational
success and utility. This will require assessment of the system by stakeholders using more diverse
regional landslide inventories. We envision the availability of such inventories through global
initiatives such as LandAware (Calvello et al., 2020) will be crucial for the generalization as well as
the advancement of the global landslide forecasting efforts.

Furthermore, updates to IMERG and GEOS may improve the predictive capability of LHASA model
and could be a path for future study. LHASA framework is designed with flexibility for adapting to
the future updates to the products.

LHASA-F could be used to issue landslide advisories in conjunction with other situational awareness
tools. Our analysis at administrative district level 2 shows that landslide forecast outputs may be
mapped differently depending on the application. Results of this system are promising, and we continue
to engage with stakeholders to support the continual development, localized adaptation, and
implementation of the landslide forecast framework. We plan to deploy this model routinely and to
make it publicly available under the LHASA framework.

LHASA-F’s global coverage will be valuable in providing crucial information in data-sparse,
ungauged, or large-scale catchments to provide broader situational awareness of potential landslide
hazard. It is not intended to provide local scale warnings or to supersede local and regional systems
that have been calibrated for the specific environment. The LHASA-based hazard estimates provide
the likely location of landslide events and inform decision-making about disaster preparedness and
response. Additional modules, incorporated into LHASA, such as estimates of population and

19



Global Landslide Forecast System for Hazard Assessment and Situational Awareness

infrastructure exposure to landslide hazard (Emberson et al. 2020), could be integrated into the
landslide forecast to provide further information on potential landslide impacts as well as hazard
estimates. The availability of such multi-temporal landslide hazard and exposure tools will equip
stakeholders with complementary resources to aid in disaster response, planning and decision-making.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Author Contributions

Conceptualization, S.K., D.K., T.S.; funding and project supervision, D.K.; methodology, S.K.
(LHASA-F), T.S. (LHASA-NRT), P.A. (Landslide inventories); software, algorithm development,
data processing, data analysis, and visualization, S.K.; writing—original draft preparation, S.K.;
writing—review and editing, S.K., D.K., T.S., P.A. and R.E.

Funding

This research was supported by NASA's Disasters program through the solicitation for Earth Science
Applications: Disaster Risk Reduction and Response (NNH18ZDAOO01N).

Acknowledgments

The GEOS data used in this study have been provided by Global Modeling and Assimilation Office
(GMAO) at NASA Goddard Space Flight Center (GSFC). The authors would like to thank the NASA
GMAO for providing the GEOS-FP data and Precipitation Processing System (PPS) for providing
the IMERG data. Computing resources supporting this work were provided by the NASA High-End
Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at NASA's
GSFC. We thank our collaborators from NASA-GMAO, Dr. Ronald Gelaro, Gary Partyka, for their
inputs to the analysis, and Robert Lucchesi for helping with the relevant GEOS-FP data acquisition.

References

Ahmed, B., Rahman, M., Islam, R., Sammonds, P., Zhou, C., Uddin, K., Al-Hussaini, T.M., 2018.
Developing a dynamic web-GIS based landslide early warning system for the Chittagong
metropolitan area, Bangladesh. ISPRS Int. J. Geo-Inf. 7, 485.

Amatya, P., Kirschbaum, D., Stanley, T., n.d. Rainfall-induced landslide inventories for Lower
Mekong based on Planet imagery and a semi-automatic mapping method. Geosci. Data J.

Amatya, P., Kirschbaum, D., Stanley, T., Tanyas, H., 2021. Landslide mapping using object-based
image analysis and open source tools. Eng. Geol. 282, 106000.

Borker, J., Hartmann, J., Amann, T., Romero-Mujalli, G., 2018. Global Unconsolidated Sediments
Map Database v1. 0 (shapefile and gridded to 0.5 spatial resolution).

Brigandi, G., Aronica, G.T., Bonaccorso, B., Gueli, R., Basile, G., 2017. Flood and landslide warning
based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early
Warning System) for Sicily. Adv. Geosci. 44, 79-88.

20



Global Landslide Forecast System for Hazard Assessment and Situational Awareness

Calvello, M., Devoli, G., Freeborough, K., Gariano, S.L., Guzzetti, F., Kirschbaum, D., Nakaya, H.,
Robbins, J., Stahli, M., 2020. LandAware: a new international network on Landslide Early
Warning Systems. Springer.

Calvello, M., D’Orsi, R.N., Piciullo, L., Paes, N.M., Magalhaes, M.A., Coelho, R., Lacerda, W.A.,
2015. The community-based alert and alarm system for rainfall induced landslides in Rio de
Janeiro, Brazil, in: Engineering Geology for Society and Territory-Volume 2. Springer, pp.
653-657.

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd
Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785—
794.

de Ferranti, J., 2015. Digital Elevation Data-with SRTM voids filled using accurate topographic
mapping.

Emberson, R., Kirschbaum, D., Stanley, T., 2020. New global characterisation of landslide exposure.
Nat. Hazards Earth Syst. Sci. 20, 3413-3424.

Froude, M.J., Petley, D.N., 2018. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards
Earth Syst. Sci. 18, 2161-2181.

Graziella, D., Ingeborg, K., Monica, S., Nils-Kristian, O., Ragnar, E., Erik, J., Herve, C., 2015.
Landslide early warning system and web tools for real-time scenarios and for distribution of
warning messages in Norway, in: Engineering Geology for Society and Territory-Volume 2.
Springer, pp. 625-629.

Guzzetti, F., Gariano, S.L., Peruccacci, S., Brunetti, M.T., Marchesini, 1., Rossi, M., Melillo, M.,
2020. Geographical landslide early warning systems. Earth-Sci. Rev. 200, 102973.

Hartmann, J., Moosdorf, N., 2012. The new global lithological map database GLiM: A representation
of rock properties at the Earth surface. Geochem. Geophys. Geosystems 13.

Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K.-L., Joyce, R.J., Kidd, C., Nelkin, E.J.,
Sorooshian, S., Stocker, E.F., Tan, J., 2020. Integrated multi-satellite retrievals for the Global
Precipitation Measurement (GPM) Mission (IMERG), in: Satellite Precipitation
Measurement. Springer, pp. 343-353.

Karagiannidis, A., Dafis, S., Kalimeris, A., Kotroni, V., 2021. lanos-A hurricane in the
Mediterranean. Bull. Am. Meteorol. Soc. 1-31.

Khan, S., Kirschbaum, D.B., Stanley, T., 2021. Investigating the potential of a global precipitation
forecast to inform landslide prediction. Weather Clim. Extrem. 33, 100364.

Kirschbaum, D., Stanley, T., Emberson, R., Amatya, P., Khan, S., Tanyas, H., 2020. Global
Landslide Hazard Assessment for Situational Awareness (LHASA) Version 2: New Activities
and Future Plans, in: EGU General Assembly Conference Abstracts. p. 11012.

Kirschbaum, D., Stanley, T.A., Cappelaere, P., 2018. Landslide hazard assessment system and
method.

Mahul, O., Signer, B., 2020. The perfect storm: How to prepare against climate risk and disaster
shocks in the time of COVID-19. One Earth 2, 500-502.

Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., Eichmann, A., 2012a. The GEOS-5
atmospheric general circulation model: Mean climate and development from MERRA to
Fortuna.

21



Global Landslide Forecast System for Hazard Assessment and Situational Awareness

Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., Eichmann, A., 2012b. The GEOS-5
atmospheric general circulation model: Mean climate and development from MERRA to
Fortuna.

Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., Jaedicke, C., 2006. Global landslide and avalanche
hotspots. Landslides 3, 159-173.

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Képpen-Geiger
climate classification. Hydrol. Earth Syst. Sci. 11, 1633-1644.

Planet Team, 2018. Planet Application Program Interface: In Space for Life on Earth. San Francisco,
CA. [WWW Document]. URL https://api.planet.com

Ramage: Forecasting in meteorology - Google Scholar [WWW Document], n.d. URL
https://scholar.google.com/scholar_lookup?title=Forecasting%20in%20meteorology&publica
tion_year=1993&author=C.S.%20Ramage (accessed 1.26.22).

Reichle, R.H., Liu, Q., Koster, R.D., Ardizzone, J.V., Colliander, A., Crow, W.T., Lannoy, G.,
Kimball, J.S., 2018. Soil Moisture Active Passive (SMAP) project assessment report for
version 4 of the L4_SM data product. NASA Tech. Rep. Ser. Glob. Model. Data Assim.
NASATM-2018-104606 52.

Rienecker, M.M., Suarez, M.J., Todling, R., Bacmeister, J., Takacs, L., Liu, H.C., Gu, W.,
Sienkiewicz, M., Koster, R.D., Gelaro, R., 2008a. The GEOS-5 Data Assimilation System:
Documentation of Versions 5.0. 1, 5.1. 0, and 5.2. 0.

Rienecker, M.M., Suarez, M.J., Todling, R., Bacmeister, J., Takacs, L., Liu, H.C., Gu, W.,
Sienkiewicz, M., Koster, R.D., Gelaro, R., 2008b. The GEOS-5 Data Assimilation System:
Documentation of Versions 5.0. 1, 5.1. 0, and 5.2. 0.

Rosi, A., Segoni, S., Canavesi, V., Monni, A., Gallucci, A., Casagli, N., 2021. Definition of 3D
rainfall thresholds to increase operative landslide early warning system performances.
Landslides 18, 1045-1057.

Shultz, J.M., Berg, R.C., Kossin, J.P., Burkle Jr, F., Maggioni, A., Escobar, V.A.P., Castillo, M.N.,
Espinel, Z., Galea, S., 2021. Convergence of climate-driven hurricanes and COVID-19: The
impact of 2020 hurricanes Eta and lota on Nicaragua. J. Clim. Change Health 3, 100019.

Sikder, M.S., Hossain, F., 2019. Improving operational flood forecasting in monsoon climates with
bias-corrected quantitative forecasting of precipitation. Int. J. River Basin Manag. 17, 411
421.

Singh, V.P., 1995. Computer models of watershed hydrology. Rev.

Stanley, T., Kirschbaum, D.B., 2017. A heuristic approach to global landslide susceptibility mapping.
Nat. Hazards 87, 145-164.

Stanley, T.A., Kirschbaum, D.B., Benz, G., Emberson, R.A., Amatya, P.M., Medwedeff, W., Clark,
M.K., 2021. Data-driven landslide nowcasting at the global scale. Front. Earth Sci. 9, 378.

Styron, R., Pagani, M., 2020. The GEM global active faults database. Earthqg. Spectra 36, 160-180.

Sugawara, M., Watanabe, 1., Ozaki, E., Katsuyame, Y., 1983. Reference manual for the TANK
model. Natl. Res. Cent. Disaster Prev. Jpn.

Tanyas, H., Van Westen, C.J., Allstadt, K.E., Anna Nowicki Jessee, M., Goriim, T., Jibson, R.W.,
Godt, J.W., Sato, H.P., Schmitt, R.G., Marc, O., 2017. Presentation and analysis of a

22



Global Landslide Forecast System for Hazard Assessment and Situational Awareness

worldwide database of earthquake-induced landslide inventories. J. Geophys. Res. Earth Surf.
122, 1991-2015.

Tiranti, D., Cremonini, R., Marco, F., Gaeta, A.R., Barbero, S., 2014. The DEFENSE (debris Flows
triggEred by storms—nowcasting system): An early warning system for torrential processes by
radar storm tracking using a Geographic Information System (GIS). Comput. Geosci. 70, 96—
109.

Tiranti, D., Rabuffetti, D., 2010. Estimation of rainfall thresholds triggering shallow landslides for an
operational warning system implementation. Landslides 7, 471-481.

Tiranti, D., Rabuffetti, D., Salandin, A., Tararbra, M., 2013. Development of a new translational and
rotational slides prediction model in Langhe hills (north-western Italy) and its application to
the 2011 March landslide event. Landslides 10, 121-138.

Van Tien, P., Luong, L.H., Duc, D.M., Trinh, P.T., Quynh, D.T., Lan, N.C., Thuy, D.T., Phi, N.Q.,
Cuong, T.Q., Dang, K., 2021. Rainfall-induced catastrophic landslide in Quang Tri Province:
the deadliest single landslide event in Vietnam in 2020.

Walton, D., Arrighi, J., van Aalst, M., Claudet, M., 2021. The compound impact of extreme weather
events and COVID-19.

Zekkos, D., Zalachoris, G., Alvertos, A., Amatya, P., Blunts, P., Clark, M., Dafis, S., Farmakis, 1.,
Ganas, A., Hille, M., 2020. The September 18-20 2020 Medicane lanos Impact on Greece-
Phase | Reconnaissance Report.

23



Global Landslide Forecast System for Hazard Assessment and Situational Awareness

Supplementary Material

-150 -100 -50 0 50 100 150

150

-150 -100 -50 0 50 100 150

SM2: Average Snowmass GEOS-FP Global map (kg/m?/s) for study period.
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SM3: Figure 13: Global map of number of days with false positives based on a threshold of 0.9 for LHASA-F
1-day landslide probability estimates (relative to LHASA-NRT). Panels A-D show zoomed versions of the
areas highlighted with dotted circles. A and B) parts of Central America, C) parts of New Guinea, and D) parts
of north central coast Vietnam.
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SM4: LHASA probability estimates for Vietnam on Oct 17", 2020. (A) LHASA-F 3-day, (B) LHASA-F 2-
day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped landslides and the
black line to administrative district level 2 limits.

Map, Accumuiated of Dally accumulated precipitation (combined microwave-IR) estimate - Early Run daily 0.1 deg. [GPM GPM_3IMERGDE v06] mm
over 2020-11-05, Region 98.4375W, 4 3506N, 73 8281W, 24.7412N

Nov 7, 2020
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SM5: Precipitation totals from IMERG Early (A) and GEOS-Forecast (B) for Hurricane Eta/lota on
November 5, 2020.
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SM6: Global Mean difference (MD) map between LHASA-NRT and LHASA-F 2-day (probabilities) for the
study period. Red indicates that LHASA-NRT has higher values than LHASA-F and blue corresponds to greater
LHASA-F probability. The bottom panel show the mean difference (MD) for Central and Northwestern parts of
South America, where the LHASA-F 2-day probabilities are relatively higher (MD ~0.03) than LHASA-NRT.
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SM7: Global Mean difference (MD) map between LHASA-NRT and LHASA-F 3-day (probabilities) for the
study period. Red indicates that LHASA-NRT has higher values than LHASA-F and blue corresponds to
greater LHASA-F probability. The bottom panel show the mean difference (MD) for Northwestern parts of
South America, where the LHASA-F 3-day probabilities are relatively higher (MD ~0.04-0.05) than LHASA-
NRT.
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SMB8: Climate and geological characteristics of the locations used for model evaluation.

Location Climate Geology
Vanuatu Tropical* Submarine
volcaniclastic rocks
dominant, Alluvium?
Guatemala Warm tropical, hot Quaternary pumice
tropical® fills and pyroclastic
mantles, Quaternary
alluvium?
Vietnam Tropical rainforest, Lacustrine
Tropical monsoon?! sediments with
lignite, gravels?
Greece Mediterranean, Sedimentary rocks?

Continental*

peel et al., 2007); 2Borker et al., 2018;  Hartmann and Moosdorf, 2012
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