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Abstract 

Landslides triggered by extreme rainfall can be devastating, resulting in loss of life, property, and 

infrastructure. Landslide forecasting systems provide an opportunity to build awareness of potential 

hazards and ultimately take preemptive measures. There is currently a dearth of forecasting systems 

that provide regional or global coverage, but these systems can offer important situational awareness 

in data-sparse, ungauged, or large-scale catchments. A near global, primarily satellite-based system 

called the Landslide Hazard Assessment for Situational Awareness (LHASA) provides near real-time 

estimates of potential landslide hazard and exposure around the world. In this work, a precipitation 

forecast module is introduced into LHASA to complement the existing LHASA framework and 

provide an estimate of landslide hazard up to three days in advance at 1km resolution. The model-

based Goddard Earth Observing System-Forward Processing (GEOS-FP) precipitation forecast 

product is used as the forcing input for the model in place of the satellite-based Integrated Multi-

satellitE Retrievals for Global Precipitation Mission product. Soil moisture and snow depth from the 

GEOS-FP assimilated product are also incorporated. The study period January 2020–January 2021 is 

used to test the model performance against the LHASA near real-time estimates at multiple 

spatiotemporal scales. Validation of the model is carried out using a collection of rainfall-triggered 

landslide inventories from around the world as case studies to demonstrate the potential utility and 

limitations of this system. The rescaling of the GEOS-FP precipitation product is a critical step in 

incorporating the forecasted precipitation data within LHASA-Forecast (LHASA-F). Combining 

different streams of forecasted data within the LHASA-F framework shows promise, particularly for 

larger events at the 1- and 2-day lead time for events. Results indicate that for the case studies 

evaluated, the LHASA-F is generally able to resolve major landslide events triggered by extreme 

rainfall, such as from tropical cyclones. The analysis shows that landslide forecast outputs may be 

represented differently depending on the user’s needs. This framework serves as a first milestone in 

providing a global predictive view of landslide hazard.  

mailto:sana.khan@nasa.gov
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 1    Introduction 

Landslides are pervasive in mountainous areas and adversely affect human life and infrastructure 

(Chester 1995; Petley 2011). Key factors leading to landslides can be broadly classified into two 

categories: the dynamic triggering mechanisms like extreme rainfall and local soil moisture conditions 

and prevalent ground conditions (Guzzetti et al., 2020). It is critical to develop near real-time and early 

warning systems for predicting impending events. These systems could provide, emergency managers 

and planners, advanced situational awareness to save lives and property. Predicting when and where 

landslides may occur and issuing warnings, accordingly, is an evolving area of research. Landslide 

models can either be designed to function as near real-time or forecasting systems.  Literature refers to 

predictive systems using several different terms, such as landslide models, forecast models, warning 

models, and warning systems. A forecast model provides estimate of the future state of a natural system 

obtained with a numerical model (Ramage, 1993). A ‘warning model’ is a framework to issue landslide 

advisories and can incorporate one or more landside models and advisory protocols that are used to 

issue advisories. Comparatively, a ‘warning system’ is a physical implementation of a warning model 

with one or more landslides forecast models (Guzzetti et al., 2020).  

Landslide Early Warning Systems (LEWSs) are usually developed locally and are designed for specific 

uses, such as civil protection, hill slope monitoring, and regional situational awareness. According to 

literature, a total of five nations, 13 regions and the metropolitan areas of Chittagong, Hong Kong, and 

Seattle benefit from LEWSs (Guzzetti et al., 2020). An example of a near-real time system is Rio de 

Janeiro Brazil’s Alerta Rio system, which fuses information from susceptibility maps with the rain-

gauge measurements, updated every five minutes (Calvello et al., 2015). Some examples of LEWSs 

that leverage numerical weather model Quantitative Precipitation Forecasts (QPF) include one Ahmed 

et al., 2018 proposed (operated on voluntary basis) for Chittagong Metropolitan Area, Bangladesh. 

This LEWS exploits empirical rainfall thresholds, daily QPF, and a statistically based landslide 

susceptibility zonation for preparing landslide forecasts. The Civil Protection Department of Sicily, 

southern Italy is operating a Hydrohazards Early Warning System (HEWS: flood and shallow landslide 

warning system) based on the combined use of rainfall thresholds, soil moisture modelling and QPF 

(Brigandì et al., 2017). Similarly, the regional government of Piedmont, northern Italy, is operating a 

regional LEWS which comprises three complementary landslide forecasting systems, namely, the 

DEFENSE (Tiranti et al., 2014), SMART (Tiranti and Rabuffetti, 2010) and TRAPS (Tiranti et al., 

2013) systems. LEWS based on the comparison between hourly rainfall measures, rainfall forecasts up 

to +48 hours, and 3D rainfall thresholds (using intensity, duration, and antecedent rainfall as rainfall 

parameters) is operated in the Emilia Romagna Region, Italy (Rosi et al., 2021). The Japanese 

Meteorological Department’s early-warning system is based on hourly rainfall, short-range 

precipitation forecasts, and soil-moisture index (Singh, 1995; Sugawara et al., 1983; Osanai et al., 

2010), and the Norwegian national landslide early warning system uses hydrologic models and web 

tools to monitor and forecast hydrometeorological conditions that could potentially trigger landslides 

(Devoli et al., 2015). However, these LEWSs cover a very small percentage of the land susceptible to 

landslides globally (Nadim et al., 2006). Results compiled by Froude and Petley, (2018) suggest that 

most of these national and regional LEWSs do not operate where a large majority of fatal landslides 

occur and the risk of landslides to the population is high.   

Kirschbaum and Stanley (2018) proposed a quasi-global near-real time Landslide Hazard Assessment 

for Situational Awareness (LHASA) model. LHASA combines satellite-based precipitation estimates 

from the Global Precipitation Measurement (GPM) mission with a landslide susceptibility map derived 

from information on slope, geology, road networks, fault zones, and forest loss, primarily from 

satellite-derived or publicly available data (Kirschbaum et al., 2018; Stanley and Kirschbaum, 2017). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/early-warning-system
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Version 2 of LHASA leverages machine learning to produce probabilistic ratings of landslide hazard 

at 1×1km resolution at quasi-global scale (60°N-60°S) (Stanley et al., 2021). In addition to GPM 

rainfall estimates, LHASA version 2 ingests data on snow mass and soil moisture from the Soil 

Moisture Active Passive Level 4 (SMAP L4) product (Reichle et al., 2018). It also analyzes the 

exposure of population and road networks to landslide hazard for each level-2 administrative district 

(Emberson et al., 2020). Although LHASA version 2 provides near-global information in near-real 

time (~4hrs latency), many stakeholders have expressed a preference for forecasting of landslide 

hazard, which is not addressed solely using satellite observations.  

In this study, we test the feasibility of ingesting a global precipitation forecast from the NASA Goddard 

Earth Observing System Forward processing product (GEOS-FP; Molod et al., 2012; Rienecker et al., 

2008) into the LHASA framework to provide probabilistic landslide estimates for one to three days in 

the future. As landslide hazards can be triggered in relatively short time, the global landslide forecast 

system could serve as a tool in conjunction with other situational awareness products for an impending 

major rainfall event (e.g., tropical storms). This represents a new effort in global landslide forecasting 

and a first attempt to provide a global predictive view of landslide hazard, which can be particularly 

useful in areas without ground-based systems or active monitoring programs. This work introduces the 

global LHASA-Forecast (LHASA-F) framework and evaluates its performance relative to the LHASA 

near-real time (LHASA-NRT) model and observed landslides. The overarching goal of this work is to 

determine the feasibility of incorporating a global forecast precipitation product within the LHASA 

framework to represent potential landslide hazards into future. This study considers analyses at global, 

regional, and local scales, with an emphasis on validation studies in multiple geographic and 

climatological settings using landslide inventories.  

2    Materials and Methods  

2.1 Data 

2.1.1 Dynamic Variables 

Precipitation is the key dynamic variable within the LHASA framework. The Integrated Multi-Satellite 

Retrievals for Global Precipitation Measurement (IMERG) product provides instantaneous 

precipitation estimates at a 30 minute, 0.1° resolution from 60°N to 60°S by merging passive 

microwave and infrared data (Huffman et al., 2020). IMERG products are available at different 

latencies: the early product (latency of 4hrs), the late product (12-14hrs), and final product (3months). 

The Early and Late product employ a climatological gauge correction from the Global Precipitation 

Climatology Project (GPCP; https://psl.noaa.gov/data/gridded/data.gpcp.html) and the Final product 

uses monthly gauge observations to adjust the precipitation estimates.  

The GEOS system provides atmospheric and environmental variables including precipitation, soil 

moisture, and total precipitable water by integrating the GEOS Atmospheric General Circulation 

Model with land surface models (Rienecker et al., 2008; Molod et al., 2012). The GEOS FP system 

generates assimilation products, and ten-day forecasts. New observations are assimilated periodically 

(6hrs), and a forecast model is used to generate a time-series of hourly forecast products. The forecast 

product (GEOS-FP) is initialized four times a day at 00z, 06z, 12z, and 18z, respectively.  GEOS-FP 

Forecast products provide precipitation estimates up to 10 days into the future at ~0.25°×0.31°/hr 

spatio-temporal resolution.  
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LHASA version 2 (refer to section 2.2 for details) utilizes rescaled precipitation as a model input, 

mainly to account for the climatology at the grid scale, and to minimize the disparity between the near-

real time and forecasted precipitation (Figure 3). Additionally, it supports the use of the previously 

trained model for landslide forecasting. Rescaling of the precipitation is accomplished by dividing the 

current daily rainfall estimates to historical 99th percentile rainfall (p99). The p99 values at each 0.1° 

grid cell are derived from a log-normal distribution, because it is less sensitive to skewness in the 

empirical data than other statistical distributions and fits the probability density function (pdf) of 

rainfall data well. Historical IMERG v06B data (2000-2018) are used to compute the 99th percentile 

(p99) for IMERG-NRT and GEOS-FP Forecast data (2018-2021) for computing p99 for rescaling 

forecasted precipitation.  

An example of the rescaled precipitation (raw precipitation divided by p99) used to feed information 

on the precipitation for landslide modeling is shown in Figure 1. The raw precipitation totals (mm) 

from Tropical storm Linfa on October 10, 2020, can be seen in the top panels (Figure 3A and 3B) and 

the rescaled precipitation in the bottom panels respectively. It is observed that the magnitude difference 

between the near-real time daily accumulated precipitation (IMERG Early) and 24hr forecasted 

precipitation (GEOS-FP) is minimal in case of the rescaled precipitation (Figure 1C and 1F). Details 

regarding other dynamic variables used in LHASA-Forecast framework are included in Table 1.  

  

 

Figure 1: Rescaled precipitation example over Lower Mekong Region (LMR) used in the LHASA version 2 

model. The top panels (A and B) exhibit the raw 24-hour accumulated precipitation on October 12, 2020, for 

the LMR, and the bottom panels show the rescaled precipitation maps (D and E) for both near-real time 

(IMERG Early) and forecasted precipitation (GEOS-Forecast) products at daily scale. Red (C and F) indicates 

that IMERG Early has higher values than GEOS-Forecast and blue (C and F) corresponds to greater GEOS-

Forecast precipitation accumulation.   
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Table 1: Dynamic variables description and sources used in LHASA-Forecast framework. 

Type of Data Product Resolution Frequency/Latency Source 

Precipitation 

Forecast 

GOES-FP 

Forecast 

25km×31km 1hr/ 1-10days out NASA GMAO; 

https://gmao.gsfc.nasa.gov/ 

Antecedent 

Precipitation 

IMERG-Early 10km×10km 30min/NRT NASA GPM; 

https://gpm.nasa.gov/; 

(Huffman et al., 2020) 

Soil Moisture, 

Snow Mass 

GEOS-FP 

Assimilated  

25km×31km 1hr/NRT NASA GMAO; 

https://gmao.gsfc.nasa.gov/ 

 

2.1.2 Landslide Inventories 

The Landslide inventories used in this study are mapped utilizing optical imagery from Planet (Planet 

Team, 2018) and Sentinel-2 using the Semi-Automatic Landslide Detection (SALaD) system (Amatya 

et al., 2021a,b) . A total of seven rainfall-induced landslide inventories are used in the model validation. 

Details are provided in Table 2 (more details on climate and geology of the locations in SM8). The 

quality of these inventories can be assessed using similar evaluation criteria to those described by 

Tanyaş et al., 2017. For each of the inventories, the high-resolution imagery allows differentiation of 

all landslide bodies. The boundary area of the mapped area is included in the datasets. The inventories 

are polygons of landslides triggered by the rainfall, although pre-event landslides are not differentiated 

– all mapped landslides are assumed to have resulted from the rainfall event associated with the 

inventory. The polygons do not differentiate between source and depositional areas for consistency.  

Table 2: Catalog of rainfall-triggered landslide inventories used for model evaluation. 

Event Inventory Imagery Date Reference 

Tropical Cyclone 

Harold 

Vanuatu PlanetScope April 5, 2020 https://maps.disasters.nasa.gov

/arcgis/home/webmap/viewer.

html?webmap=b6598e9b92bf4

979a76e8fccee741ed2 

Hurricane 

Eta/Iota 

Guatemala 

(San Pedro Soloma, 

Queja) 

PlanetScope/

Sentinel-2 

Nov 5, 2020 https://maps.disasters.nasa.gov

/arcgis/home/item.html?id=0a

d1dd0063d94e849ac5dda9cbe

7a3a6 

Tropical storm 

Linfa 

Phong Dien PlanetScope Oct 12, 2020 Van Tien et al., 2021 a   

Extreme rainfall Huong Hua PlanetScope Oct 17, 2020 Van Tien et al., 2021 b  

Typhoon Molave Quang Nam PlanetScope Oct 28, 2020 Van Tien et al., 2021 b  

Medicane Ianos Greece PlanetScope Sep 18, 2020 Zekkos et al., 2020 

 

 

https://gpm.nasa.gov/
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2.2 Model Description 

LHASA version 2 advances beyond the original model by using a XGBoost machine-learning approach 

to incorporate soil moisture, snow mass, and geological information (Stanley et al., 2021). LHASA 

continues to use daily satellite rainfall estimates from the IMERG early and late run products to 

represent landslide-triggering rainfall, as well as antecedent precipitation. However, in version 2.0, 

LHASA separates these elements into a variable representing the current day’s rainfall and another 

variable representing the prior two days’ rainfall. The hydrologic effects of all precipitation prior to 

this 3-day period are represented by two state variables from the Soil Moisture Active Passive Level 4 

(SMAP L4) product (Reichle et al., 2018): snow mass and total profile soil wetness. Finally, the 

relatively static effects of terrain and geologic material strength are represented by three variables: 

distance to active faults (Styron and Pagani, 2020; GEM Hazard Team, 2019), slope gradient from the 

Viewfinder Panoramas DEM (de Ferranti, 2015), and a global lithologic rating derived from the global 

lithologic map (Hartmann and Moosdorf, 2012). These factors were transformed to a probability of 

landslide occurrence using XGBoost, a machine-learning framework (Chen and Guestrin, 2016). To 

assign these probabilities, several landslide inventories were obtained and filtered by process type, 

trigger, and spatial uncertainty. Then the remaining landslides were merged into a global gridded 

landslide inventory with a 30-arcsecond daily resolution (Stanley et al., 2021). Dates and locations 

without recorded landslides were assumed to indicate landslide non-occurrence, and a random sample 

of these data were used for model development. The model was trained with data for the years 2015-

2018 and evaluated with data for the years 2019-2020. LHASA version 2 raised the overall 

performance to an aggregated true positive rate of 93% from 45% for version 1.1, and therefore, 

adopted for routine operation. LHASA outputs a map of landslide hazard with a 30-arcsecond 

resolution that is updated 4 times daily; results can be viewed at https://landslides.nasa.gov/. 

Herein, all analysis is conducted with LHASA version 2 and the near real-time (NRT) products will be 

referred to as LHASA-NRT, whereas the forecast product will be denoted as LHASA-F. LHASA-NRT 

has a 4-hour latency due to the availability of the IMERG data. With LHASA-F, the global precipitation 

forecast is utilized to provide global landslide probabilistic estimates with a 3-day lead time. The 

forecast model framework is described in Figure 2. LHASA-F employs rescaled forecasted 

precipitation, soil moisture, and snow mass information from GEOS-FP forecast and assimilated 

products. These dynamic variables are fed into the machine-learning model from LHASA-NRT to 

estimate the probability of future landslides (Table 3).  

 

Figure 2: LHASA version 2 Near real-time (NRT) and Forecast (F) model workflow. The dynamic inputs 

highlighted in red text are the substitutions made in the forecast model. Both models provide landslide 
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probability estimates at 1-km resolution. The model framework involves periodic validation with landslide 
inventories. Refer to Table 4 for details on the antecedent rainfall for LHASA-F 2-day and LHASA-F 3-day.  

Table 3: Timeline for ingesting dynamic variables including rescaled forecasted precipitation, antecedent 

rainfall, soil moisture, and snow mass into the LHASA Forecast model for landslide probability estimation 

into future. This table shows timelines for 3-day forecast. 

 

2.3 Performance Metrics 

In this study, we assess LHASA-F probabilistic estimates at global, regional, and local scales against 

LHASA-NRT, with a special emphasis on case studies in landslide-prone areas using event-based 

landslide inventories. 

To assess the global forecast performance, magnitude-based metrics such as mean absolute difference 

(MAD) and mean difference (MD) is used. These metrics are computed as follows:  

 𝐌𝐀𝐃 =
∑ (|𝐍𝐜𝐚𝐬𝐭𝐢 − 𝐅𝐜𝐚𝐬𝐭𝐢|)

𝐧
𝐢=𝟏

𝒏
  

𝐌𝐃 =
∑ (𝐍𝐜𝐚𝐬𝐭𝐢 − 𝐅𝐜𝐚𝐬𝐭𝐢)

𝐧
𝐢=𝟏

𝒏
  

Where Ncast represents version 2 LHASA-NRT probability estimates, and Fcast represents LHASA-

F probability estimates respectively.  

Furthermore, the performance LHASA-NRT and LHASA-F is compared at local scale using landslide 

inventories (Figure 3). The study period of one year from January 2020-January 2021 is used to 

evaluate the LHASA models.    
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Figure 3: Location of landslide inventories used to validate both LHASA-NRT and Forecast models' 

performance across the globe during January 2020-January 2021 analysis period. Red marks correspond to 

seven inventory locations. The background map shows the mean LHASA-NRT probabilities. Refer to Table 2 

for details regarding the landslide inventories.  

3    Results  

3.1 Global Scale 

To assess LHASA-F performance at global scale, we first compute the mean absolute difference 

(MAD) between LHASA-NRT and LHASA-F (Figure 4). The MAD between LHASA-NRT and 

LHASA-F 1-day for an analysis period of one year shows small differences for the large regions shown 

in gray (<0.001 probability). Most of these areas are not highly susceptible to landslides (Stanley and 

Kirschbaum 2017). A closer look at the MAD for more hazardous regions such as Papua New Guinea 

(Figure 4A), Central and parts of northwestern South America (Figure 4B), high mountain Asia (Figure 

4C), and Central Africa (Figure 4D) reveals differences ranging from 0.005-0.15 for mean probability. 

It should be noted that in regions where the LHASA-NRT mean probability is relatively high (Figure 

3), the results for MAD are expected to diverge the most.  



Global Landslide Forecast System for Hazard Assessment and Situational Awareness  

 
9 

 

 

Figure 4: Global map of Mean Absolute Difference (MAD) between LHASA-NRT and LHASA-F 1-day 

landslide probability estimates. Dotted circles represent areas shown in panels below. A, B, C, and D represent 

4 areas with different climates (tropical, temperate, continental, snow, and dry). The 4 panels show the mean 

absolute difference (MAD) for A) Papua New Guinea, B) Central and Northwestern parts of South America, 

C) High Mountain Asia region, and D) parts of central Africa. 

Additionally, a global comparison between LHASA-NRT and LHASA-F 1-day is presented in terms 

of mean difference (probability) during the study period (Figure 5). The positive difference (red color) 

indicates higher LHASA-NRT estimates, and negative difference (blue), higher LHASA-F (1-day) 

estimates, respectively. On average, LHASA-F has lower probability values across the globe, and 

higher values (~0.03) in some parts of western Venezuela and Colombia (Figure 5B). Moreover, in 

complex terrains with high landslide hazard such as parts of Papua New Guinea (Figure 5A), western 
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Colombia and central America (Figure 5B), and high mountain Asia (Figure 5C), the LHASA-NRT 

show higher probability values (MD ranging from 0.05 to 0.35).   

 
 

 
 

Figure 5: Global Mean difference (MD) map between LHASA-NRT and LHASA-F 1-day (probabilities) for 

the study period. Red indicates that LHASA-NRT has higher values than LHASA-F and blue corresponds to 

greater LHASA-F probability. The 4 panels show the mean difference (MD) for A) Papua New Guinea, B) 

Central and Northwestern parts of South America, C) High Mountain Asia region, and D) parts of central 

Africa.  
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3.2 Regional Inventory Analyses 

To evaluate model performance at a local scale, we compare LHASA-F probabilistic outputs from 1-, 

2- and 3-day forecasts to the locations of the landslide inventories highlighted in Table 1, as well as 

LHASA-NRT. The ultimate objective of the analysis is to assess the potential utility and limitations of 

the LHASA-F system.  

Tropical Cyclone Harold, Vanuatu, 2-9 April 2020 

Tropical cyclone Harold hit Vanuatu, Fiji, Tonga, and Solomon Islands as a Category 5 event between 

2-9 April 2020. 27 people lost their lives to Tropical Cyclone Harold, while many more were injured 

(Mahul and Signer, 2020). More than 159,000 people were affected by the cyclone in Vanuatu. GPM-

based estimates showed ~40-48mm/hr rainfall in Vanuatu. The northern islands, including the main 

town of Luganville, Espiritu Santo, were among the worst hit areas. Significant damage to 

infrastructure was also reported. Figure 6 exhibits the areas in Santo affected by the landslides (Figure 

6D). The Vanuatu landslide inventory showed cyclone-triggered landslides in the North, Northwest, 

South, and West Santo districts. All four administrative districts show elevated landslide probabilities 

(>0.6) for all areas covered by the mapped landslide points in the LHASA-NRT. In LHASAF 1-day, 

the probability of landslides is in the range of 0.2-0.7 in parts of West Santo, Northwest Santo, and 

South Santo (Figure 6C). In contrast, LHASA-F 2-day estimated probabilities (~0.2) were only 

observed in the West Santo administrative district (Figure 6B). LHASA-F 3-day (Figure 6A) showed 

no signs of landslide hazard in the Santo area except for 1 pixel showing a probability value of ~0.15 

in Northwest Santo admin district.  
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Figure 6: LHASA probability estimates for Vanuatu on April 5th, 2020. (A) LHASA-F 3-day, (B) LHASA-F 

2-day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped landslides and the 

black line to admininstrative district boundaries.  

Tropical storm Linfa, Vietnam, 12 October 2020 

Tropical Storm Linfa triggered landslides in the central Vietnam along the coast on October 12, 2020.  

The performance of LHASA-NRT and LHASA-F for Tropical Storm Linfa in Vietnam is shown in 

Figure 7 (more details on the dynamic inputs be found in section 2.2). Despite the missed estimation 

of the landslide hazard in the 3-day forecast, the model shows qualitatively good overall performance 

for this event in terms of the spatial representation of the high landslide hazard for the mapped 

landslides districts. The spatial pattern of the estimated probabilities in LHASA-NRT and LHASA-F 

1-day is similar (Figure 7C and 7D), however, LHASA-F clearly underestimates hazard (~0.2 

probability difference) relative to LHASA-NRT in Phong Điền and A Lưới (~0.3 probability 

difference) district in central Vietnam. This is in line with the global mean difference map (Figure 5C) 

where the positive difference (red) indicates higher LHASA-NRT probabilities over Vietnam and 

Lower Mekong Region in general.  

Medicane Ianos, Greece, 15-21 September 2020 

Medicane Ianos, considered to be the most intense medicane (tropical-like cyclone) ever recorded, 

formed over the warm Mediterranean Sea during 15-21 September 2020. Heavy rainfall was recorded 

in several Ionian Islands, and in parts of Central Greece (Karagiannidis et al., 2021; Zekkos et al., 
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2020).  IMERG estimated ~152mm rainfall accumulation in Central and Western coastal Greece, and 

~305mm in parts of the Ionian islands, particularly in Kefalonia by September 20, 2020. Figure 8 shows 

LHASA-F and LHASA-NRT outputs for Thessaly, central Greece, on September 18, 2020. The 

landslide inventory for Medicane Ianos shows clusters of landslides in southwestern parts of the district 

(Figure 8D). The model displays high probability values in this area ~>0.85 (LHASA-NRT) and ~>0.7 

(LHASA-F 1-day) respectively. Analogous to other case studies in Vanuatu and Vietnam, the 3-day 

forecast is showing probabilities ranging from 0-0.1. 2-day lead time LHASA-F, however, exhibits a 

landslide footprint with probability ~0.2 for the mapped landslide locations.  

 
Figure 7: LHASA probability estimates for Vietnam on Oct 12th, 2020. (A) LHASA-F 3-day, (B) LHASA-F 

2-day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped landslides and the 

black line to administrative district boundaries.  
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Figure 8: LHASA probability estimates for Central Greece on September 18th, 2020. (A) LHASA-F 3-day, 

(B) LHASA-F 2-day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped 

landslides and the black line to administrative district boundaries. 
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Figure 9: LHASA probability estimates for Guatemala on Nov 5th, 2020. (A) LHASA-F 3-day, (B) LHASA-F 

2-day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped landslides and the 

black line to administrative district boundaries.  

Hurricane Eta, Guatemala, November 5th, 2020 

In November 2020, Hurricanes Eta and Iota combined to cause some of Central America’s worst losses 

from landslides in the last several decades (Shultz et al., 2021; Walton et al., 2021). Results from the 

LHASA-NRT (Figure 9D) and Forecast (Figure 9A-C) for parts of Guatemala affected by landslides 

during Hurricanes Eta and Iota are shown in Figure 9. While comparing the results, both LHASA 

products underestimate the hazard level of this event on Nov 5, 2020. This could be attributed to the 

underestimation of the precipitation in IMERG Early as well as in GEOS-Forecast at the location of 

the mapped landslides (SM4). The high landslide hazard (probability values ~> 0.40) indication is 

towards the eastern part of the region (Figure 9C and 9D).  

To summarize the performance for the different case studies, the landslide probability values are 

extracted for each landslide point from LHASA-NRT and LHASA-F model outputs. Scatter plots in 

Figure 10 show the performance of the model outputs at a point scale. If all the landslide points are 

taken together, the overall correlation coefficient (CC) of 0.43 is observed between LHASA-NRT and 
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LHASA-F 1-day, CC ~0.47 for NRT versus LHASA-F 2-day, and CC~0.3 for LHASA-F 3-day 

respectively. LHASA-NRT is consistently higher, and the forecast appears to be more accurate (closer 

to the 1:1 line) at higher probabilities than lower probabilities. The forecast model tends to show 

comparable performance for landslide points where LHASA-NRT ~>0.70. However, the performance 

is attributable to the characteristics of the storm, geographical location, and the precipitation estimates, 

in general. This is discussed in more depth below. 

The form in which forecasts are communicated requires a clear articulation of the intended purpose of 

the forecast and an accurate spatiotemporal representation of the results. Stakeholders such as Pacific 

Disaster Center, suggested that summarizing results based on administrative district could help to 

rapidly articulate areas of potential impact that could initiate further investigation, action, and 

awareness. The results are aggregated by taking the maximum probability values within the 

administrative district from the model’s nominal spatial resolution of ~1-km.  

Figure 11 shows the maximum landslide probability values for each administrative district for the 

extreme rainfall events. LHASA-NRT shows ~>0.80 maximum probability for all the studied 

administrative level 2 districts, except for Guatemala where ~0.40 maximum value is noted. Maximum 

probability values in case of LHASA-F 1-day ranged between 0.2-1.0. Relative to LHASA-NRT, 

LHASA-F’s performance varies by region, with the highest forecasts in Vietnam (0.99), followed by 

Greece (0.8), Vanuatu (0.6), and Guatemala (0.3). Overall, this analysis highlights that the performance 

of the LHASA-F model depends on both region (Figure 5) and the forecast lead time (Figure 11).  

The effects of aggregating forecasts by the level-2 administrative district are further illustrated in 

Figure 12. Spatial distribution of the maximum probabilities assigned to the individual district for the 

October 17, 2020, event in Vietnam is exhibited in Figure 12A-D. In this example, if a categorical 

hazard threshold is set to 0.80, all the districts with landslides show elevated (high) landslide hazard 

for all 5 districts in LHASA-F 1-day, and three districts in LHASA-F 2-day. Similarly, with a medium-

hazard threshold set at 0.20, LHASA-F 2-day would display medium hazard for the remaining two 

districts (Figure 12C). These thresholds should be adjusted based on local conditions and the intended 

purpose of the application.  

 

Figure 10: Scatter plots for landslide probabilities extracted from LHASA-NRT and LHASA-F for landslide 

point locations A) LHASA-F 1-day vs LHASA-NRT, B) LHASA-F 2-day vs LHASA-NRT, C) LHASA-F 3-

day vs LHASA-NRT, respectively. Sample size=5395. 
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Figure 11: LHASA-NRT and LHASA-F performance in terms of maximum landslide probability within 

landslide affected administrative district level 2 limits.  

 

Figure 12: Maximum landslide probability maps for landslide affected administrative district level 2 limits in 

Vietnam on October 17, 2020. Landslide points are displayed with gray points in panel A. 

4    Discussion 

Landslide forecasting is a challenging task due to several complex phenomena which may contribute 

toward landslide occurrence. This is further complicated by the inherent uncertainties in the data used 

for developing landslide models. As in any modeling technique, simplifying assumptions are often 

employed to reduce the complexity in formulating underlying models. The goal of this study is to 

evaluate the feasibility of using a global precipitation forecast within the LHASA global landslide 
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modeling framework to better anticipate future landslide hazard. Landslide inventories from 

representative areas are used as an independent reference to evaluate the performance of both products 

at a regional scale. Comparing LHASA-F to LHASA-NRT provides a first step in characterizing the 

regional differences in landslide predictions using the outlined framework. 

LHASA-F evaluation framework designed in this study is based on following assumptions: Event-

based landslide inventories are complete and do not miss any landslides triggered by the event; 

LHASA-NRT is a reasonable comparator, in the absence of an alternative global NRT hazard model; 

p99 calculations are not impacted by different computation time spans used for GEOS-Forecast (2018-

2021) and IMERG-Early (2000-2018); substituting rescaled precipitation derived from GEOS-FP in 

model trained with rescaled precipitation derived from IMERG-Early alleviates the model dependence 

of raw precipitation. Some of these assumptions are driven by the limited historical global forecast 

availability. However, as previously stated, all landslide forecasting models have some assumptions 

(Guzzetti et al., 2020). Despite these limitations, the findings of this study demonstrate promising 

performance at the global scale in the analysis window and represents a step towards improved 

predictive capability for global landslides.    

Khan et al., 2021 reported that the GEOS-FP model-based precipitation forecast demonstrates 

coherence with the near-real time satellite estimated (IMERG Early) for tropical storms and extreme 

precipitation (~> 100mm) in general, for regions with landslide susceptibility. As rainfall-triggered 

landslides are mostly caused by extreme rainfall conditions, the GEOS-FP product was deemed fit to 

be ingested in the new global LHASA framework for forecasting landslides. LHASA-NRT and 

LHASA-F exhibit high coherence for landslide points, with both associating higher probabilities 

(~>0.70) with major events (Tropical storms), as demonstrated by the scatter plots in Figure 10A-C.  

Although LHASA-F generates slightly lower landside probabilities (Figure 5) than LHASA-NRT, 

these are relative probabilities and the differences may not be significant from operational perspective, 

especially for extreme events. Results from the case studies presented in this work indicate that the 

performance of the forecast model varies with specific storm and its geographical location. The 

accuracy of LHASA-F improves as the forecast time is closer to the prediction time. The reduced 

performance of the forecast model for 3-day lead time observed in case studies is attributable to 

uncertainties associated with forecasted precipitation (Sikder and Hossain, 2019 ). Factors such as 

initial meteorological conditions, data assimilation methods, and the approximations required to 

represent physical processes, all contribute towards the forecast skill with lead time. Another reason 

for degraded performance of LHASA-F with longer lead time could be linked to antecedent conditions 

used in the model training framework (trained on LHASA-NRT dynamic variables). While the 

antecedent conditions for Forecast 1-day are derived from IMERG-NRT, those for Forecast 3-day are 

based on the forecast from the last two days (refer to Table 3 for details). However, the global scale 

mean difference maps between LHASA-NRT and LHASA-F 2-day and 3-day products reveal overall 

similar trends as shown in Figure 5 for LHASA-F 1-day, with LHASA-F 2- and 3-day showing lower 

probability values across the globe, and higher values (~0.03-0.05) in some parts of western South 

America (SM6 and SM7). The spatial tendency of the LHASA-F system to provide high probability 

estimates is assessed using a threshold of 0.9. SM3 shows the global map with a count for, each 1x1km 

grid box, of the number of days when LHASA-F estimated a landslide probability of >0.9, when 

LHASA-NRT does not. The count ranges from 1 to 5 days out of 365 days of testing period. LHASA-

F estimates are lower than high threshold (0.9) most of the days across the globe (shown with white 
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color inland) except for few grid boxes in Jamaica and El Salvador, parts of New Guinea, and north 

central coast Vietnam.   

There are limited global landslide inventories for the relatively short historical GEOS-Forecast record, 

which did not allow development of a model solely based on the GEOS-Forecast. This problem is 

addressed by employing rescaled precipitation in both the LHASA-NRT and LHASA-F frameworks. 

Three dynamic variables, rescaled precipitation, soil moisture, and snow mass from GEOS-FP are used 

for the validation studies in the model trained with rescaled precipitation from IMERG-NRT, to 

generate LHASA-F up to 3-days lead time at the global scale. Depending on the availability of a long 

and consistent precipitation forecast data, and global landslide inventories, future work could address 

these limitations by training models for each forecast lead-time and combination of inputs.  

We find the following overarching results when comparing LHASA-F to LHASA-NRT and available 

event-based inventories:  

• The rescaling of the GEOS-FP precipitation product is a critical step in incorporating the 

forecasted precipitation data within LHASA-F, though when compared directly, probability 

values for LHASA-F are low relative to the LHASA-NRT.  

• Combining different streams of forecasted data within the LHASA-F framework shows 

promise, particularly for larger events at the 1- and 2-day lead time for events.   

• Maximum probability values at administrative district level 2 are informative for assigning 

categorical alert levels for landslides. This could help stakeholders rapidly identify areas of 

potential impact for further investigation, action, and awareness. 

Periodic assessment of the landslide forecast system and user feedback is vital for its operational 

success and utility. This will require assessment of the system by stakeholders using more diverse 

regional landslide inventories. We envision the availability of such inventories through global 

initiatives such as LandAware (Calvello et al., 2020) will be crucial for the generalization as well as 

the advancement of the global landslide forecasting efforts.  

Furthermore, updates to IMERG and GEOS may improve the predictive capability of LHASA model 

and could be a path for future study. LHASA framework is designed with flexibility for adapting to 

the future updates to the products.    

LHASA-F could be used to issue landslide advisories in conjunction with other situational awareness 

tools. Our analysis at administrative district level 2 shows that landslide forecast outputs may be 

mapped differently depending on the application. Results of this system are promising, and we continue 

to engage with stakeholders to support the continual development, localized adaptation, and 

implementation of the landslide forecast framework. We plan to deploy this model routinely and to 

make it publicly available under the LHASA framework.  

LHASA-F’s global coverage will be valuable in providing crucial information in data-sparse, 

ungauged, or large-scale catchments to provide broader situational awareness of potential landslide 

hazard. It is not intended to provide local scale warnings or to supersede local and regional systems 

that have been calibrated for the specific environment. The LHASA-based hazard estimates provide 

the likely location of landslide events and inform decision-making about disaster preparedness and 

response. Additional modules, incorporated into LHASA, such as estimates of population and 
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infrastructure exposure to landslide hazard (Emberson et al. 2020), could be integrated into the 

landslide forecast to provide further information on potential landslide impacts as well as hazard 

estimates. The availability of such multi-temporal landslide hazard and exposure tools will equip 

stakeholders with complementary resources to aid in disaster response, planning and decision-making. 
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Supplementary Material 

 

SM1: Average Soil wetness profile GEOS-FP Global map (Scale 0-1) for study period.  

 

 

SM2: Average Snowmass GEOS-FP Global map (kg/m2/s) for study period.  
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SM3: Figure 13: Global map of number of days with false positives based on a threshold of 0.9 for LHASA-F 

1-day landslide probability estimates (relative to LHASA-NRT). Panels A-D show zoomed versions of the 

areas highlighted with dotted circles. A and B) parts of Central America, C) parts of New Guinea, and D) parts 

of north central coast Vietnam. 
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SM4: LHASA probability estimates for Vietnam on Oct 17th, 2020. (A) LHASA-F 3-day, (B) LHASA-F 2-

day, (C) LHASA-F 1-day, and (D) LHASA-NRT. The triangles correspond to mapped landslides and the 

black line to administrative district level 2 limits.  

 

 

SM5: Precipitation totals from IMERG Early (A) and GEOS-Forecast (B) for Hurricane Eta/Iota on 

November 5th, 2020. 



Global Landslide Forecast System for Hazard Assessment and Situational Awareness  

 
27 

 

 

SM6: Global Mean difference (MD) map between LHASA-NRT and LHASA-F 2-day (probabilities) for the 

study period. Red indicates that LHASA-NRT has higher values than LHASA-F and blue corresponds to greater 

LHASA-F probability. The bottom panel show the mean difference (MD) for Central and Northwestern parts of 

South America, where the LHASA-F 2-day probabilities are relatively higher (MD ~0.03) than LHASA-NRT.  
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SM7: Global Mean difference (MD) map between LHASA-NRT and LHASA-F 3-day (probabilities) for the 

study period. Red indicates that LHASA-NRT has higher values than LHASA-F and blue corresponds to 

greater LHASA-F probability. The bottom panel show the mean difference (MD) for Northwestern parts of 

South America, where the LHASA-F 3-day probabilities are relatively higher (MD ~0.04-0.05) than LHASA-

NRT. 

 

 

 

 

 

 

 

 



Global Landslide Forecast System for Hazard Assessment and Situational Awareness  

 
29 

SM8: Climate and geological characteristics of the locations used for model evaluation. 

Location Climate Geology 

Vanuatu Tropical1 Submarine 

volcaniclastic rocks 

dominant, Alluvium2 

Guatemala Warm tropical, hot 

tropical1 

 

Quaternary pumice 

fills and pyroclastic 

mantles, Quaternary 

alluvium2 

Vietnam Tropical rainforest, 

Tropical monsoon1 

Lacustrine 

sediments with 

lignite, gravels2 

Greece Mediterranean, 

Continental1 

Sedimentary rocks3 

1Peel et al., 2007); 2Börker et al., 2018; 3 Hartmann and Moosdorf, 2012 
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