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Abstract: In this paper, we consider the problem of state-of-charge estimation for rechargeable
batteries. Coulomb counting is a well-known method for estimating the state of charge, and it is
regarded as accurate as long as the battery capacity and the beginning state of charge are known. The
Coulomb counting approach, on the other hand, is prone to inaccuracies from a variety of sources,
and the magnitude of these errors has not been explored in the literature. We formally construct
and quantify the state-of-charge estimate error during Coulomb counting due to four types of error
sources: (1) current measurement error; (2) current integration approximation error; (3) battery
capacity uncertainty; and (4) timing oscillator error/drift. It is demonstrated that the state-of-charge
error produced can be either time-cumulative or state-of-charge-proportional. Time-cumulative errors
accumulate over time and have the potential to render the state-of-charge estimation utterly invalid
in the long term.The proportional errors of the state of charge rise with the accumulated state of
charge and reach their worst value within one charge/discharge cycle. The study presents methods
for reducing time-cumulative and state-of-charge-proportional mistakes through simulation analysis.

Keywords: battery management system; state of charge; Coulomb counting; battery capacity; mea-
surement errors; battery impedance; equivalent circuit model

1. Introduction

Rechargeable batteries are becoming an integral part of the future energy strategy
of the globe. The use of rechargeable batteries is steadily on the rise in wide-ranging
applications, such as electric vehicles, household equipment, robotics, power equipment,
consumer electronics, aerospace, and renewable energy storage systems. Accurate esti-
mation of a battery’s state of charge (SOC) is crucial for battery management that is safe,
efficient, and reliable [1–4].

It was found that there are three different methods for the SOC estimation of the
lithium–ion battery [5]: (i) The current-based method. (ii) The voltage-based method. (iii)
The fusion of voltage/current-based approaches. The fusion-based approaches seek to
retain the benefits of both voltage-based and current-based approaches by employing
non-linear filters, such as the extended Kalman filter, in order to fuse the information
obtained through the voltage and current measurements.

The voltage-based SOC estimation approach is basically a table look-up method. Bat-
tery terminals’ voltage is matched with the SOC according to the OCV-SOC characterization
curve [6]. In more generic terms, we have the following:

voltage-measurement = f (SOC)︸ ︷︷ ︸
OCV-SOC model

+ g(parameters, current)︸ ︷︷ ︸
voltage drop

(1)
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where the function f (·) refers to the open circuit voltage model that relates the OCV of the
battery to SOC and g(·) accounts for the voltage-drop within the battery cell, due to hys-
teresis and relaxation effects. Challenges in voltage-based SOC estimation arise due to the
fact that the functions f (·) and g(·) are usually non-linear and that there is a great amount
of uncertainty as to what those functions might be [6,7]. For instance, the parameters can
be modeled through electrical equivalent circuit models (ECM) [8,9] or electrochemical
models [10], each of which can result in numerous reduced-order approximations. The
voltage based approach suffers from the following three types of errors:

(i) OCV-SOC modeling error. The OCV-SOC relationship of a battery can be approxi-
mated through various models [6]: linear model, polynomial model and combined
models are a few examples. Reducing the OCV-SOC modeling error is an ongoing
research problem—in [11], a new modeling approach was reported that resulted in
the “worst case modeling error” of about 10 mV. It must be mentioned that the OCV
modeling error is not identical in all voltage regions of the battery.

(ii) Voltage-drop modeling error. Voltage-drop models account for the hysteresis and re-
laxation effects in the battery. Various approximations were proposed in the literature
in order to represent these effects [7,12].

(iii) Voltage measurement error. Every voltage measurement system comes with errors;
this translates into a SOC estimation error.

In order to reduce the effect of uncertainties in voltage-based SOC estimation, it
is often suggested to rest the battery before taking the voltage measurement for SOC
lookup [9]—when the current is zero for sufficient time the voltage-drop also approaches
zero. However, all the other sources of errors mentioned above (OCV-SOC modeling error,
hysteresis, and voltage measurement error) cannot be eliminated by resting the battery.

Coulomb counting method is the well-known term that is used for the current-based
method [9]. In this method, SOC can be calculated as the ratio between the remaining
Coulombs and the battery capacity that is assumed to be known. The Coulomb counting
approach to SOC estimation can be approximated as follows (see Section 2 for details):

SOC(k) = SOC(k− 1) +
∆ki(k)

3600Cbatt
(2)

where SOC(k) indicates the SOC at time k, ∆k is the sampling time, i(k) is the current
through the battery at the at time k, and Cbatt is the battery capacity in ampere hours (Ah).

The Coulomb counting method does not require offline OCV-SOC characterization [6];
however, it is susceptible to the following sources of errors:

1. Initial SOC: This methods requires initial SOC to start with.
2. Current measurement error: The measurement error will affect the computed SOC.
3. Current integration error: The Coulomb counting method uses a very simplified

approximation to integration, which will result in errors.
4. Uncertainty in the knowledge of battery capacity [13]: Battery capacity changes due

to temperature, age, etc. [14,15]. The uncertainty in battery capacity will affect the
SOC computed by the Coulomb counting method.

5. Timing oscillator error: Any error in the timing oscillator will affect the computed SOC.

The fusion-based approach seeks to retain the best features of both voltage and current-
based approaches. This is achieved by creating the following state-space model:

SOC(k) = SOC(k− 1) +
∆ki(k)

3600Cbatt
+ ns(k) (3)

zv(k) = f (SOC(k))︸ ︷︷ ︸
OCV-SOC model

+ g(parameters, i(k))︸ ︷︷ ︸
voltage drop

+nz(k) (4)

where (3) is the process model that is derived from the Coulomb counting Equations (2), (4)
is the measurement model that is is derived from the voltage measurement Equation (1),
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ns(k) is the process noise, zv(k) is the measured voltage across the battery terminals,
f (SOC(k)) is the OCV characterization function [6] that represents the battery voltage as a
function of SOC, g(parameters, i(k)) is the voltage drop due to impedance and hysteresis
within the battery, and nz(k) is the measurement noise corresponding to the model (4). The
goal from the above state-space model is to recursively estimate the SOC, given the voltage
and current measurements.

The state-space model described in (3) and (4) is non-linear, due to the OCV-SOC
model and the different approximate representations for voltage-drop models [7]. If the
models are known, a non-linear filter, such as the extended Kalman filter [16], can yield a
near-accurate estimate of SOC in real time. The filter selection is based on the following
model assumptions:

(I) Kalman filter. Here, the following assumptions need to be met. The state-space model
is known and linear, i.e., the functions f (·) and g(·) in (4) are linear in terms of SOC,
and the ‘parameter’ and the current i(k) in (4) are known with negligible uncertainty
in them. The process and measurement noises, ns(k) and nv(k), respectively, are i.i.d.
Gaussian with known mean and variance.

(II) Extended/unscented Kalman filter. Here, only the linearity assumption is relaxed,
i.e., the functions f (·) and g(·) in (4) can be non-linear in terms of SOC. All other
assumptions for the Kalman filter need to be met, i.e., the model parameters and the
noise statistics need to be perfectly known and the process and measurement noises
need to be i.i.d. Gaussian with known mean and variance.

(III) Particle filter. Compared to the Kalman filter assumptions, the particle filter allows to
relax both linear and Gaussian assumptions. Here, the f (·) and g(·) can be non-linear,
and both process and measurement noise statistics can be non-Gaussian. It needs to
be re-emphasized that, similar to the cases in (I) and (II) above, the models f (·) and
g(·) and the parameters of the noise statistics need to be perfectly known.

It is important to note that the recursive filters discussed above all assume that the
model, which consists of the functions f (·), g(·) and the parameters of the noise statistics,
is perfectly known. However, we discussed several ways earlier in this section in which
the known-model assumptions can be violated. Indeed, the “known model” assumptions
can be violated through any of the following ten ways:

(a) Five sources of error in defining the process model (3), namely, the initial SOC error,
current measurement error, current integration error, battery capacity error, and timing
oscillator error.

(b) Three sources of error in defining the measurement model (4), namely, the OCV-SOC
modeling error, voltage-drop modeling and its parameter estimation error, and voltage
measurement error.

(c) The process noise ns(k): The statistical parameters of the process noise should be
computed based on the knowledge about the statistics of the five error sources in
(a) above.

(d) The measurement noise nv(k): The statistical parameters of the measurement noise
should be computed based on the knowledge about the statistics of the three error
sources in (b) above.

The focus of the present paper is to develop detailed insights about the error sources
(a) and (c), above. In a separate work [17], we discuss the noise sources (b) and (d) in detail.

1.1. Background

The classical estimation theory [16] states that when the linear–Gaussian conditions
and the known model assumptions (stated under (I) in Section 1) are met, the SOC estimate
will be efficient, i.e., the variance of the SOC estimation error will be equal to that of the
posterior Cramér–Rao lower bound (PCRLB), which is proved to be the theoretical bound;
under non-Bayesian conditions, this limit is known just as the Cramér–Rao lower bound
(CRLB), that is, the PCRLB or CRLB can be used as a gold standard on performance. In this
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regard, some prior works in the literature [18–20] derived the CRLB as a measure of perfor-
mance evaluation. These approaches were developed to estimate the ECM parameters of
the battery; the ECM parameters are involved in the measurement model for the SOC in (1).
In addition to the use in SOC estimation, ECM parameter estimation has other important
applications in a battery management system. The literature review suggests that there are
several model-based SOC estimation methods that exist, which are already explored by
different researchers [21–23].

Several other approaches attempted to theoretically derive the error bound on SOC
estimation separately and jointly with ECM parameter identification. In [24], a RLS-
based parameter identification technique with forgetting factor was presented in which a
sinusoidal current excitation made of two sinusoid component was used. According to the
results, the CRLB of resistance decrease with the increase of frequencies and thus the large
frequency components are preferable for higher accuracy in parameter estimation; similar
observations were reported in [25]. The influence of voltage noise, current amplitude and
frequency on parameter identification was illustrated in [26], where a sinusoidal excitation
current was used. Here, the CRLB of the battery equivalent circuit model was derived using
Laplace transform; the authors found no influence of the frequency of the excitation signal
on the single-parameter identification of ohmic resistance and reported that reducing the
voltage measurement noise and increasing current amplitude improves the identification
accuracy. A posterior CRLB was developed to quantify the accuracy for EKF-based ECM
parameter identification in which a second order battery ECM was adopted in [27]. The
CRLB was determined numerically with the help of sinusoidal current excitation. It showed
that the CRLB of the ohmic resistance estimation decreases with the increase of current
amplitude and frequency as well. Unlike [27], the CRLB was derived in analytic expression
in discrete time and Laplace transform in [28] in which a (known) sinusoidal current
input was considered. A non-linear least-square based electrode parameter (e.g., electrode
capacity) identification method was presented in [18] in which only the terminal voltage
was considered to contain the measurement noise. This CRLB was derived and used to
quantify the error bound of the estimator to determine the uncertainty of the parameter
estimation. The parameter estimates were interpreted with the help of analytically derived
confidence levels. Here, the noise was assumed to be Gaussian white noise with standard
deviation 10 mV in the demonstrations. In [19], the battery SOC estimation error was
derived theoretically as a function of sensor noises; the proposed approach considers
measurement noise in both the current and voltage. The effect of different components
involved in SOC estimation were demonstrated, using a parameter sensitivity analysis
in [29], and the effect of bias and noise were reported in [30] as well.

The five sources of error in Coulomb counting have been recognized in the literature
and some remedies were proposed. In [31], the initial SOC was modeled as a function of
the terminal voltage, temperature and the relaxation time. The authors in [32] proposed
the use of neural networks to gain a better estimate of the initial SOC. In [33], a data fusion
approach was proposed, where a H-infinity filter was used to minimize the error in the
initial SOC estimate. In the battery fuel gauge evaluation approach proposed in [15], the
uncertainty in initial SOC error was taken into account and the OCV lookup method [6,34]
was introduced as a performance metric. It was pointed out in [35] that the accuracy of the
OCV lookup method might be affected with battery age. The effect of current integration
error was also recognized in the literature and remedies were proposed: in [32,36], a
model-based approach was proposed to reduce current integration error; in [37], it was
proposed to reset Coulomb counting when the present SOC is known when the battery
is fully charged/discharged, where the “fully-charged” and “fully-empty” conditions
were declared, based on the measured voltage across battery terminals; here, the authors
propose a way to minimize the error due to the voltage-only-based declaration of these two
conditions. Many articles recognize the imperfect knowledge of battery capacity and ways
to estimate them: a neural-network-based approach to battery capacity estimation was
proposed in [32]; an approach based on the charge/discharge currents and the estimated
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SOC for battery capacity estimation was proposed in [38]; the authors in [37] presented
an idea of battery capacity estimation when SOC of battery is 100% or 0%, which can
be known easily when the terminal voltage reaches the max./min. voltage, respectively;
in [13], a state-space model was introduced to track battery capacity where measurements
can be incorporated using multiple means, including when the battery is at rest. None of
the existing works explored the effect of timing oscillator error in the estimated SOC.

In summary, the importance of theoretical performance derivation and analysis is
recognized in the literature, particularly in the above-detailed publications. Considering
the nature of the complexity of the real-world measurement model, the existing literature
represents only a small fraction of what needs to be done for a complete understanding of
the battery SOC estimation problem. For example, even though the effect of some of the
five sources of Coulomb counting error (summarized earlier in this section) were noted in
the literature, it was not fully incorporated into the fusion-based SOC tracking approaches.
In other word, the process noise ns(k) in (3) was not accurately defined in the literature.
Table 1 summarizes how the process noise is defined in some notable works in the literature.
Setting arbitrary values to the process noise will have the following adverse effect on the
filter outcome:

• Too-small process noise: When the process noise is smaller than the reality, the filter will
compute the weights such that the measurements are ignored.

• Too-large process noise: When the process noise is larger than the reality, the variance
of the filtered estimates will be high.Consequently, the benefits of using a filter will
be lost.

Based on Table 1, it is clear that there is a knowledge gap about the process noise
in the recursive-filtering approach to SOC tracking. The focus of this paper is to derive
accurate models for SOC tracking; in particular, we focus on the process model only. Similar
discussions about one of the possible measurement models can be found in [17]. Model
validation strategies and analyses using practical data are left for future discussion.

Table 1. Process noise in SOC tracking.

Publication Filtering Method Definition of Process Noise

[39] (page 279) Extended Kalman filter “small”

[40] (page 1370) Unscented Kalman filter “stochastic process noise or disturbance that models some
unmeasured input which affects the state of the system”

[41] (page 7) Kalman filter “process noise”

[42] (page 334)
Frisch scheme based bias
compensating recursive

least squares
“zero-mean white noise with variance σi”

[43] (page 8954) Extended Kalman filter “zero-mean white Gaussian process noise”

[44] (pages 13,205,
13,206)

Adaptive unscented
Kalman filter

“zero-mean Gaussian white sequence”; “in practice, the mean and
covariance of process noise is frequently unknown or incorrect”

[45] (page 4610) Extended Kalman filter
“The EKF assumes knowledge of the measurement noise statistics.
Moreover, any uncertainty in the system’s model will degrade the

estimator’s performance”

[46] (page 10) Correntropy unscented
Kalman filter

“CUKF assumes that the process noise covariance and
measurement noise are known. They are, however, in real time in
nature and may not be obtained in advance in practice. As a result,

they should be kept up to date with changes in time based on
prior information.”
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Table 1. Cont.

Publication Filtering Method Definition of Process Noise

[47] (page 166,660) Adaptive weighting Cubature
particle filter

“wk ∼ N (0, Qk)” where Qk is the covariance matrix.
“In the process of practical application, the statistical characteristics

of the process noise and measurement noise of the system are
highly random and vulnerable to external environmental factors.”

[48] (page 8614) Extended Kalman filter
“Model bias is one of the existing inefficiency of the model in

representation of real physical systems because of the supposition
and simplifications.”

[49] (pages 5, 8) Adaptive square-root
sigma-point Kalman filter

“wk refers to process noise, which represents unknown
disturbances that affect the state of the system”; “usually,

covariance matrices are constant parameters determined offline
before the estimation process begins. In practice, the characteristics

of noises vary depending on the choice of sensors and the
operating conditions.”

1.2. Summary of Contributions

A large portion of the existing work related to battery SOC estimation in the literature
lack theoretical validation. Almost all the work that employ some form of theoretical vali-
dation are summarized in Section 1.1—the number of papers in this section is insignificant
compared to the number of publication in SOC estimation in the past year alone. This
indicates the need to focus more on theoretical performance analyses and to understand
where the remaining challenges lie in battery SOC estimation.

In this paper, we developed a mathematical model to theoretically compute the
accumulated SOC error as a result of current measurement error, current integration ap-
proximation, battery capacity uncertainty, and timing oscillator error. These four sources of
error are identified in [50]. In this paper, we provided the formulas for exact statistical error
parameters (mean and standard deviation) that can be used to improve all existing SOC
estimation methods. As such, the contributions of this paper are summarized as follows:

• Exact computation of Coulomb counting error. With realistic numerical examples, we
demonstrate the errors and their severity during Coulomb counting. Further, we
derive mathematical formulas to determine these errors such that the statistical confi-
dence in the SOC estimates can be explicitly stated.

• Five different error sources in Coulomb counting are analyzed. We derive the exact standard
deviation and mean error (with time), due to all five possible sources of errors during
Coulomb counting: current measurement error, current integration error, battery
capacity uncertainty, charge/discharge efficiency uncertainty, and timing oscillator
error. It is demonstrated that the resulting error will fall into one of the following two
categories: time-proportional errors and SOC-proportional errors.

• Time proportional errors increase indefinitely. We demonstrate that the standard devi-
ation of the time-proportional error approaches infinity as the number of samples
reaches infinity.

• State of charge proportional errors reach worst case within one cycle. It is shown that the
errors due to battery capacity uncertainty and timing oscillator drifts reach their peak
values within one discharge/charge cycle. In addition, the standard deviation of
these errors vary with the accumulated SOC. The proposed exact model can be used
to improve the SOC estimation by incorporating them in state-space models, e.g.,
the proposed model can be used to improve the extended Kalman filter-based SOC
estimation techniques [3].
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• Accurate state-space models for real-time state-of-charge estimation. The models were
presented in a way that their applicability in state-space models is explicit. The
proposed models can be used to improve the accuracy of virtually all online filtering
approaches, i.e., those based on extended Kalman filter, unscented Kalman filter,
particle filter, etc., that were employed for real-time SOC estimation.

The effect of the initial SOC error will remain as a bias in the Coulomb counting
process and as such, it does not require any further analysis in this paper. Some initial
versions of the derivations presented in this paper were reported in [51]; the present paper
expands all derivations presented [50] toward a generalized state-space model.

It must be noted that all the contributions listed above will translate into an accu-
rate process noise model in the state-space model for recursive SOC tracking. It will be
shown later in this paper that the process noise variance is a significantly time-varying
quantity—something never considered in the literature before. Further, even though
Coulomb counting is considered an outdated approach to SOC estimation, it is still widely
used in practical implementations [14,15,52]. For example, whenever the fusion based
approaches encounter failures, due to unexpected measurements and errors, etc., the bat-
tery management systems are usually programmed to fall back to the Coulomb counting
method as an alternative. Hence, the paper is written in a way that quantifies the error in
computed SOC from Coulomb counting. Later, we discuss how the findings in this paper
will be used to derive an accurate model for voltage-current fusion-based SOC tracking,
using recursive filters.

1.3. Organization of the Paper

The remainder of this paper is organized as follows: Section 2 formally introduces
Coulomb counting and identifies the four different error sources. The accumulated error in
SOC due to current measurement error, current integration approximation, battery capacity un-
certainty, and timing oscillator drift, are derived and analyzed in Sections 3.1, 3.2, 3.3 and 3.5,
respectively. A summary of individual uncertainties and their effect on the counted
Coulombs is presented in Section 4. In Section 5, some practical ways are discussed as to
how individual effects can be combined in the process model of recursive filter implemen-
tation for SOC tracking. Section 6 deals with the numerical analysis of the effect of current
measurement error, current integration error and battery capacity uncertainty. Finally, the
paper is concluded in Section 7.

2. Problem Definition

The Coulomb counting Equation is [8]

s(t) = s(0) +
η

3600Cbatt

∫ t

0
i(t)dt (5)

where η is the Coulomb counting efficiency defined as follows:

η =

{
ηc i(t) > 0
ηd i(t) < 0,

(6)

t denotes the unit of time in seconds, i(t) is the current in amperes (A) through the battery
at time t, s(0) denotes SOC at time instant t = 0, s(t) shows the SOC at time interval t, and
Cbatt denotes the battery capacity in ampere hours (Ah).

A discretized version of the Coulomb counting equation is given as follows:

s(k) = s(k− 1) +
η

3600Cbatt

∫ t(k)

t(k−1)
i(τ)dτ (7)
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where s(k) denotes the SOC at time instant t(k), and i(τ) shows the measured current at
time instant τ. Approximation is done using the rectangular (backward difference) method
for the integration in (7) as follows:

∫ t(k)

t(k−1)
i(τ)dτ ≈ ∆ki(t(k)) = ∆ki(k) (8)

where ∆k = t(k) − t(k − 1), the Coulomb counting equation, is further simplified as
follows: [8,9]

s(k) = s(k− 1) +
η∆ki(k)

3600Cbatt
(9)

The Coulomb counting Equation (9) suffers from the following sources of errors:

1. Measurement error in the current i(k).
2. Error because of the approximation used for the integration in (8).
3. Unreliability in the battery capacity knowledge Cbatt.
4. Uncertainty in the knowledge of the Coulomb counting efficiency η.
5. Measurement error in sampling time ∆.

In the next four sections of this paper, we provide detailed mathematical discussions
about these four types of errors.

3. Individual Uncertainty Analysis
3.1. Effect of Current Measurement Error

The error in measured current zi(k) can is modeled as follows:

zi(k) = i(k) + ni(k) (10)

where i(k) shows the exact current in battery and ni(k) denotes the measurement error
in the current, which is supposed to be zero mean with standard deviation as σi, i.e.,
the following:

E{ni(k)} = 0, E{ni(k)2} = σ2
i (11)

By substituting the measured current (10) in (9) the Coulomb counting equation is
rewritten as follows:

s(k + 1) = s(k) +
η∆kzi(k)
3600Cbatt

(12)

= s(k) +
η∆ki(k)

3600Cbatt
+

η∆kni(k)
3600Cbatt︸ ︷︷ ︸
SOC error

(13)

Let us assume the following:

∆ , ∆k (14)

Now, the SOC at time instant k = 1, 2, . . . can be presents as follows:

s(0) = SOC estimation at t = 0

s(1) = s(0) +
η∆i(1)

3600Cbatt
+

η∆ni(1)
3600Cbatt

s(2) = s(1) +
η∆i(2)

3600Cbatt
+

η∆ni(2)
3600Cbatt

= s(0) +
η∆[i(1) + i(2)]

3600Cbatt
+

η∆[ni(1) + ni(2)]
3600Cbatt

(15)
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Considering n consecutive samples, the SOC at time k = n is as follows:

s(n) = s(0) +
η∆

3600Cbatt

n

∑
k=1

i(k)︸ ︷︷ ︸
sCC(n)

+
η∆

3600Cbatt

n

∑
k=1

ni(k)︸ ︷︷ ︸
wi(n)

= s(0) + sCC(n) + wi(n) (16)

It can be noticed that the change in SOC can be decomposed into charging Coulombs
and discharging SOC as follows:

sCC(n) = sCCc(n) + sCCd(n) (17)

where

sCCc(n) =
ηc∆

3600Cbatt

n

∑
k=1

i(k)× [i(k) > 0] (18)

sCCd(n) =
ηd∆

3600Cbatt

n

∑
k=1

i(k)× [i(k) < 0] (19)

where the logical quantity [i(k) > 0] is defined as follows:

[i(k) > 0] =
{

1 i(k) > 0
0 i(k) < 0

(20)

and the logical quantity [i(k) > 0] is defined as follows:

[i(k) < 0] =
{

1 i(k) < 0
0 i(k) > 0

(21)

Similarly, the error in the computed computed SOC can be split into two terms
corresponding to charging and discharging, i.e., as follows:

wi(n) = wic(n) + wid(n) (22)

where

wic(n) =
ηc∆

3600Cbatt

n

∑
k=1

ni(k)× [i(k) > 0] (23)

wid(n) =
ηd∆

3600Cbatt

n

∑
k=1

ni(k)× [i(k) < 0] (24)

It must be noted that the current measurement noise ni(k) ∼ N (0, σ2
i ) has the same

characteristics during charging and discharging.
Now, it is justified that the SOC estimation error wi(n) has the following characteristics:

E{wi(n)} = 0

E{wi(n)2} = σs,i(n)2 =
∆2σ2

i
36002C2

batt
(ηcnc + ηdnd)

(25)

where nc is the number of present charging current samples and nd is the number of present
discharging current samples that satisfy the following:

nc + nd = n (26)
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It is seen that as n → ∞, the noise variance of the estimated SOC error also tends
toward infinity. Let us write the SOC noise due to current measurement error in a simplified
form as follows:

σs,i(n) =
(

∆ρi

3600

)√
ηcnc + ηdnd (27)

where the ratio between the measurement noise standard deviation and battery capacity
(in Ah), denoted in this paper as the current measurement noise coefficient (which has a unit
of h−1), is defined as follows:

ρi =
σi

Cbatt
(28)

It must be noted that although the SOC s(n) is defined within [0, 1], SOC is usually
displayed in percentage. As such, the standard deviation of the SOC error in (27) is given
as a percentage as follows:

σs,i(n) in % =

(
∆ρi

36

)√
ηcnc + ηdnd % (29)

Table 2 presents the standard deviation (s.d.) in SOC error because of the measure-
ment error in the current at different sampling intervals. Here, it is assumed that the
battery capacity is Cbatt = 1.5 Ah and the current measurement error standard deviation is
σi = 10 mA.

Table 2. SOC error s.d. (%) due to current measurement error.

1 h 24 h 1 Year

∆ = 0.1 s 0.0035 0.0172 0.3289
∆ = 1 s 0.0111 0.0544 1.0399

∆ = 10 s 0.0351 0.1721 3.2886

The SOC error presented in Table 2 is computed assuming zero uncertainties in all the
other sources of error (integration, capacity, and timing oscillator) and the initial SOC s(0).

The variance of the SOC error (29) because of the current measurement error keeps in-
creasing with time. As such, we denote this as a time-cumulative error. For time-cumulative
errors, the standard deviation of the error keeps increasing with time—if it is not reset,
it will completely corrupt the estimated SOC. A possible approach that can be used for
reducing the time-cumulative error is to reset the Coulomb count to zero once during a
process. Considering that the reset value of SOC also comes with errors (which is not
considered in this paper) it is important to select an instant where the uncertainty in the
reset SOC is smaller than the uncertainty derived in (29).

3.2. Effect of Approximating Current Integration

The Coulomb counting method, as described in the preceding section, uses a basic
first-order (rectangular) approximation to approximate the integration of current over
time (see (8)). Figure 1 shows a generic rectangular approximation to integration. For this
method of approximation, the integration error δI(k) can be represented mathematically
as follows: ∫ τ(k)

τ(k−1)
i(τ)dτ︸ ︷︷ ︸

true integration

= ∆i(k)︸ ︷︷ ︸
approximation

+ δI(k)︸︷︷︸
integration error

(30)
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Figure 1. A representation of the current integration error. The positive integration error is shown by
dark shade and negative error by light shade.

The behavior of integration error δI(k) is a more important area of interest. It can be
observed that, for rectangular approximation, the error is proportional to the sampling
duration ∆ [53], i.e., the following:

δI(k) ∝ ∆ (31)

Further, the integration error is proportional to the difference in the adjacent samples
of measured current, i.e., the following:

δI(k) ∝ [i(k)− i(k− 1)] (32)

Since, [i(k)− i(k− 1)] in (32) is a time varying quantity, we can approximately write
the following:

δI(k) ∝ σL (33)

where σL is the standard deviation of the load (or charging) current (e.g., if the current is
constant, then σL = 0 and so is the integration error). Furthermore, when the amplitude of
the current i(k) varies, the sign of the error can be positive and negative—see Figure 1 for
an illustration of this. Using this observation, we can write the following:

E{δI(k)} ≈ 0 (34)

This means that we can assume integration error to be due to rectangular approxima-
tion as the zero mean, considering the large number of samples.

Based on the discussion so far, the integration error has the following (approximate)
properties:

E{δI(k)} = 0

E{δI(k)2} = σ2
I

(35)

where σ2
I denotes the variance of current integration error From (31) and (33), we can write

the following:
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σI ∝ ∆σL

= κ∆σL
(36)

where κ is a constant, ∆ is the sampling time, and σL is the standard deviation of the
load current.

Figure 2 shows two different load current profiles from practical applications. It sup-
ports the assumption made in (32) that the current difference [i(k)− i(k− 1)] indeed is the
zero mean.
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Figure 2. Current difference in realistic loads. (a) Smart Phone [15], σL = 0.1673 A, Cbatt = 1.5 Ah
and (b) Electric Vehicle [9], σL = 8.6917 A, Cbatt ≈ 250 Ah.

On following the similar approach of Section 3.1, the computed SOC can be written in
recursive form as follows:
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s(k + 1) = s(k) +
η(∆i(k) + δI(k))

3600Cbatt

= s(k) +
η∆i(k)

3600Cbatt
+

ηδI(k)
3600Cbatt︸ ︷︷ ︸
Integ.Error

(37)

where the integration error is incorporated based on (30). SOC at time instant k = 0, 1, 2 . . .
can be written as follows:

s(0) = initial SOC estimation

s(1) = s(0) +
η∆i(1)

3600Cbatt
+

ηδI(1)
3600Cbatt

s(2) = s(1) +
η∆i(2)

3600Cbatt
+

ηδI(2)
3600Cbatt

= s(0) +
η∆[i(1) + i(2)]

3600Cbatt
+

η(δI(1) + δI(2))
3600Cbatt

(38)

The computed SOC at time instant k = n can be written as follows:

s(n) = s(0) +
η∆

3600Cbatt

n

∑
k=1

i(k)︸ ︷︷ ︸
sCC(n)

+
η

3600Cbatt

n

∑
k=1

δI(k)︸ ︷︷ ︸
wI(n)

= s(0) + sCC(n) + wI(n) (39)

where wI(n) represents the SOC computation error due to approximation in integration.
Similar to (55)–(57), the SOC error wI(n) can be decomposed, corresponding to charg-

ing and discharging, as follows:

wI(n) = wIc(n) + wId(n) (40)

where

wIc(n) =
ηc

3600Cbatt

n

∑
k=1

δI(k)× [i(k) > 0] (41)

wId(n) =
ηd

3600Cbatt

n

∑
k=1

δI(k)× [i(k) < 0] (42)

The SOC error possesses the following characteristics:

E{wI(n)} = 0

E{wI(n)2} = σs,I(n)2 =
κ2∆2σ2

L
36002C2

batt
(ηcnc + ηdnd)

(43)

Then, the standard deviation can be written as follows:

σs,I(n) =
κ∆ρI

3600
√

ηcnc + ηdnd (44)

where the integration error coefficient is defined as follows:

ρI =
σL

Cbatt
(45)

Considering that the SOC s(n) is defined within [0, 1], the standard deviation of the
SOC in (43) ranges between σs,I(n) ∈ [0, 1]. Usually, SOC is displayed in percentage.
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As such, the standard deviation of the SOC error in (44) can be displayed in percentage
as follows:

σs,I(n)/year (in %) =
κ∆ρI

36
√

ηcnc + ηdnd % (46)

Now, to simplify the above expression, some realistic assumptions need to be made
for further processes. Based on the data shown in Figure 2, we have the following:

ρI =

{
0.1115 Smart Phone
0.0348 Electric Vehicle

(47)

Tables 3 and 4 show the standard deviation of the computed SOC error due to the
current integration error at different sampling intervals for longer periods. These two tables
are made based on the values shown in (47) and by assuming κ = 1.

Table 3. S.D. of SOC error (%) for smart phone data.

1 h 24 h 1 Year

∆ = 0.1 s 0.0588 0.2879 5.5002
∆ = 1 s 0.1858 0.9104 17.3930

∆ = 10 s 0.5877 2.8789 55.0016

Table 4. S.D. of SOC error (%) for EV data.

1 h 24 h 1 Year

∆ = 0.1 s 0.0183 0.0899 1.7166
∆ = 1 s 0.0580 0.2841 5.4285

∆ = 10 s 0.1834 0.8985 17.1664

3.3. Effect of the Uncertainty in Battery Capacity

The capacity of a battery refers to the number of Coulombs that can be charged into
(or discharged from) it. The capacity of a battery degrades with time [54], and the rate
at which it degrades is determined by the battery’s calendar life as well as the battery’s
environmental and usage trends over a lengthy period of time [55]. As a result, the true
value of the battery capacity Cbatt is unknown. To estimate the battery SOC, usually a
measure of the battery capacity, denoted as Cbatt, is employed. Such a capacity measurement
is not exact, and it has the following relationship to the genuine battery capacity:

Cbatt = Ctrue + C∆ (48)

where C∆ shows the uncertainty in the prior knowledge of the true capacity of the battery
Ctrue. It was shown in [13] that uncertainty in battery capacity can be considered as the
zero-mean Gaussian distribution, which can be represented as follows:

C∆ ∼ N (0, σ2
batt) (49)

where σbatt is the standard deviation of the capacity estimation error.
The first order Taylor series approximation of a function f (x) around a point x0 is

given by the following:

f (x) = f (x0) + (x− x0)∆ f ′(x0) (50)

using the above Taylor series approximation and the relationship (48), the inverse capacity
can be approximated as follows:
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1
Cbatt

≈ 1
Ctrue

− C∆

C2
true

(51)

With the above approximation to the inverse capacity, let us re-write the Coulomb
counting equation as follows:

s(k + 1) = s(k) +
η∆i(k)

3600Cbatt

= s(k) +
(

η∆i(k)
3600

)
×
(

1
Ctrue

− C∆

C2
true

)
(52)

= s(k) +
η∆i(k)

3600Ctrue
− η∆i(k)C∆

3600C2
true

Now, SOC can be written for time instant k = 0, 1, 2, . . . as follows:

s(0) = SOC at time step t= 0

s(1) = s(0) +
η∆i(1)

3600Ctrue
− η∆i(1)C∆

3600C2
true

s(2) = s(1) +
η∆i(2)

3600Ctrue
− η∆i(2)C∆

3600C2
true

= s(0) +
η∆[i(1) + i(2)]

3600Ctrue
− C∆η∆[i(1) + i(2)]

3600C2
true

(53)

The computed SOC at time instant k = n can be written as follows:

s(n) = s(0) +
η∆

3600Ctrue

n

∑
k=1

i(k)︸ ︷︷ ︸
sCC(n)

− η∆C∆

3600C2
true

n

∑
k=1

i(k)︸ ︷︷ ︸
wC(n)

= s(0) + sCC(n) + wC(n) (54)

where wC(n) represents SOC error due to the uncertainty in battery capacity. Similar
to (55)–(57), wC(n) above can be decomposed into the following two terms:

wC(n) = wCc(n) + wCd(n) (55)

where

wCc(n) =
ηc∆C∆

3600C2
true

n

∑
k=1

i(k)× [i(k) > 0] (56)

wCd(n) =
ηd∆C∆

3600C2
true

n

∑
k=1

i(k)× [i(k) < 0] (57)

Now, wC(n) becomes the following:

wC(n) =
(

C∆

Ctrue

)
(sCCc(n) + sCCd(n))

=

(
C∆

Ctrue

)
sCC(n) (58)

Now, due to the uncertainty in prior knowledge of the battery capacity, the SOC error
can be written as follows:
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E{wC(n)} = 0

E{wC(n)2} = σs,C(n)2 =
E{C2

∆}
C2

true
sCC(n)2 (59)

=
σ2

batt
C2

true
sCC(n)2 = ρ2

CsCC(n)2

where the dimensionless capacity uncertainty coefficient is defined as follows:

ρC =
σbatt
Ctrue

(60)

3.4. Effect of the Uncertainty in Charging Efficiency

Let us assume the uncertainty in charging efficiency as follows:

ηc = ηct + ηc∆ (61)

ηd = ηdt + ηd∆ (62)

In summary, we may write the following:

η = ηt + η∆ (63)

where

ηt =

{
ηct if i(k) > 0
ηdt if i(k) < 0

η∆ =

{
ηc∆ if i(k) > 0
ηd∆ if i(k) < 0

(64)

Now, the measured current (10) needs to substitute in (9) and revise the Coulomb
counting equation as follows:

s(k + 1) = s(k) +
ηt∆i(k)

3600Cbatt
+

η∆∆i(k)
3600Cbatt

(65)

The computed SOC at time instant k = n can be written as follows:

s(n) = s(0) +
ηt∆

3600Cbatt

n

∑
k=1

i(k)︸ ︷︷ ︸
sCC(n)

+
η∆∆

3600Cbatt

n

∑
k=1

i(k)︸ ︷︷ ︸
wη(n)

= s(0) + sCC(n) + wη(n)

(66)

where the SOC error wη(n) can be expressed as the following:

wη(n) =
ηc∆

ηct

(
ηct∆

3600Cbatt

n

∑
k=1

i(k)× [i(k) > 0]

)

+
ηd∆
ηdt

(
ηdt∆

3600Cbatt

n

∑
k=1

i(k)× [i(k) < 0]

)
=

ηc∆

ηct
sCCc(n) +

ηd∆
ηdt

sCCd(n)

=ρηc sCCc(n) + ρηd sCCd(n)

(67)

where

ρηc =
ηc∆

ηct
and ρηd =

ηd∆
ηdt

(68)
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are defined as the charging uncertainty coefficient and the discharging uncertainty coefficient,
respectively. Let us model these two coefficients as ρηc ∼ N (0, σ2

ηc) and ρηd ∼ N (0, σ2
ηd
).

With this assumption, the SOC error wη(n) will possess the following characteristics:

E{wη(n)} = 0 (69)

E{wη(n)2} = σs,η(n)2 = σ2
ηc sCCc(n)2 + σ2

ηd
sCCd(n)2 (70)

3.5. Effect of the Uncertainty in Timing Oscillator

In this method, we have the following:

∆ = ∆true + ∆ε (71)

where ∆ε represents a random parameter for timing oscillator error. It can behave like bias,
which can be considered constant for a longer period of time. The timing error coefficient can
be defined as follows:

ρ∆ =
∆ε

∆true
(72)

Considering the assumption that the timing oscillator is off by 3 minutes in one month,
then, for such a scenario, the constant ρ∆ can be written as follows:

ρ∆ =
3

30× 24× 60
= 6.9444× 10−5 ≈ 69× 10−6 (73)

Considering (71), the Coulomb counting Equation (9) can be re-written as follows:

s(k + 1) = s(k) +
η∆

3600Cbatt

n

∑
k=1

i(k)

= s(k) +
η∆true

3600Cbatt

n

∑
k=1

i(k) +
η∆ε

3600Cbatt

n

∑
k=1

i(k) (74)

= s(0) + sCC(n) + w∆(n)

The simplification of SOC estimation error can be performed as follows:

w∆(n) =

(
η

3600Cbatt

n

∑
k=1

i(k)∆ε

)

= ρ∆

(
η

3600Cbatt

n

∑
k=1

i(k)∆true

)
(75)

= ρ∆sCC(n)

According to the following assumption that SOC at time step t = 0, it can state the
following:

0 ≤ sCC(n) ≤ 1 (76)

Therefore, the SOC variation can be shown as follows:

0 ≤ w∆(n) ≤ ρ∆ (77)

The SOC error w∆ is a deterministic quantity for a given battery, provided that ρ∆ is
known. However, a realistic assumption is that the knowledge of ρ∆ is only probabilistic.
Let us assume that ρ∆ ∼ N (0, σ2

∆). In the following circumstance, the characteristics
exhibited by the SOC error w∆ can be shown as follows:
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E{w∆(n)} = 0 (78)

E{w∆(n)2} = σs,∆(n)2 = σ2
∆sCC(n)2 (79)

with the assumption that ρ∆ is a too-small number; see (73). Due to the time oscillator error,
the error in SOC can be assumed to be negligible.

4. Summary of Individual Errors

This study presents a critical look at the Coulomb counting method that is employed
to estimate the state of charge of a battery. The Coulomb counting approach computes the
present SOC as follows:

s(t) = s(0)︸︷︷︸
initial SOC

+
∫ t

0

i(τ)
3600Cbatt

dτ︸ ︷︷ ︸
change in SOC

where i(t) is the instantaneous current through the battery and Cbatt is the battery capacity
in ampere hours, that is, the present SOC is the summation of the initial SOC and the
change in SOC, computed through the above integration. The SOC can be approximately
computed in a recursive manner as follows:

s(n) = s(0) +
∆

3600Cbatt

n

∑
k=1

i(k)

= s(0)︸︷︷︸
initial SOC

+ sCC(n)︸ ︷︷ ︸
change in SOC

where at time step k, SOC can be represented by s(k), i(k) denotes the measured current
at time step k, and ∆ represents the sampling time in seconds. The SOC at time n is the
summation of the initial SOC s(0) and the accumulated SOC sCC from time n = 0 until n.

In this paper, we showed that the above (discrete) recursive approximation to comput-
ing SOC suffers from four sources of error: current measurement error, current integration
error, battery capacity uncertainty and the timing oscillator error. Particularly, we com-
puted the exact amount of the resulting SOC uncertainty as a result of the above four types
of errors. Those results are as follows:

1. Current measurement error: At time instant n, the computed SOC can be stated as if the
current measurement error is zero-mean with standard deviation σi.

s(n) = s(0) + sCC(n) + wi(n)

where s(0) is the initial SOC and sCC(n) is the accumulated SOC from the start at
n = 0. The SOC error wi(n) is shown to be zero mean with standard deviation
(see (25))

σs,i(n) =
(

∆ρi

36

)√
n % (80)

It should be noted that, due to the current measurement noise, the variance of the
Coulomb counting error is accumulative with time. As the time increases, i.e., n→ ∞,
the standard deviation of SOC error also increases.

2. Current integration error: With the consideration that approximation is done for the
integration of current using the rectangular method, it can be shown that resulting
approximation error is zero mean with standard deviation σI. As a result, at time
instant n the computed SOC can be written as follows:

s(n) = s(0) + sCC(n) + wI(n)
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where it can be shown that SOC error wI(n) has zero mean and standard deviation
as follows:

σs,I(n) =
κ∆ρI

36
√

n % (81)

Again, it must be noted that, due to the current measurement noise, the variance of
the Coulomb counting error is accumulative with time.

3. Uncertainty in the knowledge of battery capacity: With the consideration that uncertainty
in the battery capacity has zero mean with standard deviation σ2

batt, the SOC at time
instant n can be derived as follows:

s(n) = s(0) + sCC(n) + wC(n)

where wC(n) represents SOC error as follows:

σs,C(n)2 = ρ2
CsCC(n)2

where ρC is defined as the capacity uncertainty coefficient. It should be noted that error
in capacity due to uncertainty is not accumulative with time; rather, it is proportional
to the accumulated SOC sCC(n) ∈ [0, 1].

4. Charging efficiency error: The charging and discharging efficiencies are denoted as ηc
and ηd, respectively. The uncertainties in charging and discharging efficiencies are
denoted as ηc∆ and ηd∆, respectively. At time step n, the SOC error can be written
as follows:

s(n) = s(0) + sCC(n) + wη(n)

where

wη(n) =ρηc sCCc(n) + ρηd sCCd(n) (82)

Similar to wC, wη(n) does not accumulate with time; rather, it accumulates with the
accumulated Coulombs.

5. Timing oscillator error: In the timing oscillator, considering the error of ρ∆ (ratio of
clocked time vs. true time), the SOC at time instant n can be shown as follows:

s(n) = s(0) + sCC(n) + w∆(n)

where w∆(n) denotes the SOC error, which is the deterministic value as follows:

w∆(n) = ρ∆sCC(n)

Similar to the error due to capacity uncertainty, w∆(n) is not accumulative with time
and it is proportional to the accumulated SOC. It can be shown that the realistic
value of η is a too-small number. For example, a timing oscillator which is leading or
lagging by three minutes in a month has η = 69× 10−6. Therefore, the weightage of
the timing oscillator error in the SOC estimation is very minimal.

In summary, the resulting four types of errors can be grouped into two categories:
time-accumulative and SOC-proportional. The SOC errors due to current measurement error
and integration approximation fall under the category of time-accumulative errors. The
SOC errors due to the uncertainty in battery capacity and timing oscillator error fall under
the category of SOC-proportional errors. Next, we briefly discuss the nature of these errors
and possible ways to mitigate them.
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4.1. Mitigating Time-Accumulative Errors

It must be stressed that the best way to mitigate Coulomb counting errors is to employ
a state-space filter, such as the Kalman filter, with correctly derived model parameters as
briefly discussed in Section 5. However, practical battery management systems are imple-
mented through complex state diagrams [15], where at some stages, Coulomb counting is
the best way to compute the SOC. Some strategies discussed below can be useful when the
SOC is computed, based on Coulomb counting only.

The following strategies can be looked at to reduce time-accumulative errors.

• Over sampling. It can be noted that both σs,i(n) and σs,I(n), in (80) and (81), respectively,
are proportional to ∆

√
n, where ∆ and n are related as follows:

n =
T
∆

(83)

where T is the total time duration. Now, both σs,i(n) and σs,I(n) can be written
as follows:

σs,i(n) =
ρi

36

√
∆T % (84)

σs,I(n) =
κρI

36

√
∆T % (85)

Now, one must realize that the integration error coefficient ρI reduces with over-
sampling, i.e., as ∆ decreases so does ρI. However, the current measurement noise
coefficient is unaffected by the sampling time. The conclusion is that both σs,i(n) and
σs,I(n) reduce with higher sampling rate—however, σs,I(n) reduces at a higher rate
compared to σs,i(n) with oversampling.

• Reinitialization. Time-accumulative errors increase with time. The growth of error can
be reduced down by re-initializing the SOC.

4.2. Mitigating SOC-Proportional Errors

Intermittent re-initialization—within a single charge–discharge cycle—will help to
minimize this error. However, in most practical cases, there may not be many opportunities
(a rested battery) for frequent resetting within a single cycle. The knowledge of uncertainty
in the battery capacity σbatt will be very useful in SOC error management. For example, if
it is known that σbatt is significantly high, then the SOC can be computed solely based on
the voltage approach.

Finally, it must be emphasized that the focus of this paper is exclusively on the
Coulomb counting approach. As such, we did not delve into other types of approaches
that are shown to be useful in improving SOC estimates, such as voltage/current based
approaches through the use of nonlinear filters [3,40]. The results reported in this paper,
such as the standard deviation of the Coulomb counting error for various scenarios, will
help to improve the voltage/current based SOC estimations as well.

5. Combined Effect and the State-Space Model Derivation

So far, the Coulomb counting uncertainty is computed only based on individual
sources of errors. In this section, we discuss how the combined effect due to all sources of
error can be approximated, using a naive combination approach. Exact derivation of the
combined effect can be quite lengthy, due to the non-linear relationships involved—this is
left for future works.

Under the naive combination approach, at time instant n SOC can be written as follows:

s(n) = s(0) + sCC(n) + w(n) (86)

where
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w(n) = wi(n) + wI(n) + wC(n) + wη(n) + w∆(n) (87)

Under the above naive assumption, the following can be shown:

E{w(n)} = 0 (88)

E{w(n)2} = σs(n)2 =
∆2σ2

i
36002C2

batt
(ηcnc + ηdnd)

+
κ2∆2σ2

L
36002C2

batt
(ηcnc + ηdnd)

+ ρ2
CsCC(n)2 (89)

+ σ2
ηc sCCc(n)2 + σ2

ηd
sCCd(n)2

+ σ2
∆sCC(n)2

With the combined noise derived above, now we are ready to redefine the state-space
model (3) and (4).

Based on the detailed derived about the Coulomb counting error, the process model (3)
can be written as follows:

s(k) = s(k− 1) +
∆zi(k)

3600Cbatt
+ ns(k) (90)

where ns(k) is the process noise that has zero-mean and variance, given by (90) when n is
set to 1.

Based on the notations introduced in [7], the measurement Equation in (4) can be
written in detail as follows:

zv(k) = V◦(s(k)) + a(k)Tb + nz(k) (91)

where V◦(s(k)) is the open circuit voltage model, a(k)Tb approximates the voltage drop in
the relaxation elements of the battery, b is the parameter vector of the relaxation elements,
and nz(k) is the measurement noise.

6. Numerical Analysis
6.1. Effect of Current Measurement Error

The objective in this section is to validate—using the Monte Carlo simulation approach—
the standard deviation of the SOC error, due to the measurement error in the current that
was derived in (29). For this experiment, errors from all the other possible sources of
uncertainties (current integration error, battery capacity uncertainty, and timing oscillator
error as well as initial SOC error) are assumed to be zero. In order to do this, a special
current profile, shown in Figure 3, is created. For this profile, the amount of Coulombs can
be perfectly computed, using geometry. Once the Coulombs are computed, the true SOC
can be computed by making use of the knowledge of the true battery capacity and other
noise-free quantities. The following procedure details the Monte Carlo experiment:

1. Generate a perfectly integrable current profile, similar to the one shown in Figure 3.
The generated current profile denotes i(k) in (10).

• First 40 s of the true current profile generated for the experiment is shown in
Figure 4.

2. Compute the true SOC at time k, strue(k), using the geometric approach, illustrated in
Figure 3, for the entire duration of the profile, i.e., for k = 1, . . . , n where n denotes
the number of samples in the entire current profile.

3. Set m = 1, where m denotes the index of the Monte Carlo run.
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4. Generate current measurement noise ni(k) as zero-mean Gaussian noise with stan-
dard deviation σi = 10 mA. Using this, generate the measured current profile
zi(k) = i(k) + ni(k).

• Figure 4 shows the true current profile i(k) along with the measured current
profile zi(k) for a duration of 40 s.

5. Compute the (noisy) SOC, sm(k) using the traditional Coulomb counting equation
given in (65), i.e., the following:

sm(k) = sm(k− 1) +
∆kzi(k)

3600Cbatt

where the subscript m denotes the mth Monte Carlo run.

• Figure 5 shows the true SOC strue(k) and the computed noisy SOC sm(k). The
top plot (a) shows the SOC at the start of the current profile, and the bottom plot
(b) shows the SOC toward the end of applying 3.5 h of the load profile.

6. If m = M, where M denotes the maximum number of Monte Carlo runs, go to step
(g); otherwise, set m← m + 1 and go to step (d).

7. End of simulation (all the data generated during the above steps need to be stored
for analysis).

After M = 1000 Monte Carlo runs, the standard deviation of the SOC error due to
current measurement error is computed as follows:

σ̂s,i(k) =

√√√√ 1
M

M

∑
m=1

(strue(k)− sm(k))
2 (92)

Figure 6 shows the standard deviation of the SOC error computed using the theoretical
Formula (29) and the standard deviation of the SOC error computed using the Monte Carlo
method detailed in (92). As expected, the theoretical derivation matches the SOC error
standard deviation obtained through 1000 Monte Carlo simulations.

Figure 3. Generic illustration to computing the true amount of Coulombs. Computing true Coulombs
is challenging. Here, we assume the true current to take the above pattern; under this assumption,
Total Coulombs = A1 + A2 + A3 + A4 + A5.
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Figure 4. Current measurement error. True vs. measured current that was simulated by assuming a
current measurement error standard deviation of σi = 10 mA.
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Figure 5. Effect of current measurement error in SOC. (a) At the start of the experiment, the true SOC
and the computed SOC through Coulomb counting are nearly identical. (b) Within 3.5 h, the true
SOC and the computed SOC are slightly different. Simulation Parameters: current measurement error
s.d. σi = 10 mA and sampling time ∆ = 200 ms.
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Figure 6. Standard deviation of the SOC error due to measurement error in current. Simulated
value is plotted in comparison with the theoretical value derived in (29) shown against time that
corresponds to n.

6.2. Effect of Current Integration Error

The objective in this section is to validate the standard deviation of the SOC error due
to integration that we derived in (44). For this experiment, errors from all the other possible
sources of uncertainties (current measurement error, battery capacity error, timing oscillator
error as well as initial SOC error) are assumed to be zero. In order to do this, similar to
the previous analysis, a special current profile shown in Figure 7 is made up of constant
current signals of different amplitudes. For this profile, the amount of Coulombs can be
perfectly computed using geometry similar to the example illustrated in Figure 3. Once the
Coulombs are computed, the true SOC can be computed by making use of the knowledge
of the true battery capacity. The following procedure details the Monte Carlo experiment
to validate the standard deviation of the SOC error due to current integration error:

1. Generate a perfectly integrable current, where the generated current allows one to

perfectly compute
∫ k+1

k i(k)dk shown in (30).
– First 18 s of the noiseless current profile i(k) is shown in red in Figure 7. Note that

the true current profile is the downsampled version—this emulates the fact that the
discretely measured current is always a downsampled version, and it will never be
the same as the real current (shown in blue). First four minutes of the current profile
along with the true SOC (assuming initial SOC =1) is shown in Figure 8.

2. Let the true battery capacity be Ctrue = 1.5 Ah.
3. Assuming the knowledge of the true capacity, compute the true SOC at time k, strue(k),

using the geometric approach illustrated in Figure 3 for the entire duration of the
profile, i.e., for k = 1, . . . , n where n denotes the number of samples in the entire
current profile.

– The second plot in Figure 8 shows the true SOC.
4. Set m = 1, where m denotes the index of the Monte Carlo run.
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5. Compute the (noisy) SOC sm(k), using the traditional Coulomb counting equation
given in (65), i.e., the following:

sm(k) = sm(k− 1) +
∆ki(k)

3600Cbatt

where i(k) is the ‘measured current’ indicated by red lines in Figure 7, and the
subscript m denotes the mth Monte Carlo run.

6. If m = M, where M denotes the maximum number of Monte Carlo runs, go to step
(g); otherwise, set m← m + 1 and go to step (e).

7. End of simulation (all the data generated during the above steps need to be stored
for analysis).

After M = 1000 Monte Carlo runs, the standard deviation of the SOC error due to
current measurement error is computed as follows:

σ̂s,I(k) =

√√√√ 1
M

M

∑
m=1

(strue(k)− sm(k))
2 (93)

Figure 9 shows the standard deviations of error computed through the theoretical
approach, σs,I(n) in (46), and through the Monte Carlo simulation approach, σ̂s,I(k) (93).
The constant κ for the theoretical approach in (46) is found to be κ = 0.88 through empirical
means (i.e., different values for κ were used until the theoretical curve in red aligned well
with the simulation curve in blue). It must be noted that κ will be different for different
current profiles.
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Figure 7. Perfectly integrable current profile. The blue curve shows a perfectly integrable current
that is made of rectangular pulses of different amplitude; it can be integrated using the geometric
approach detailed in Figure 3. The measured current, shown in red, is a downsampled version of
the true current profile—this emulates the way in which discrete measurement systems measure the
voltage/current in BMS.
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Figure 8. Current profile and corresponding SOC. First four minutes of the true current profile and
the corresponding true SOC that is computed using the geometric approach detailed in Figure 3.
Only 4 min of profiles are shown; the true profile lasted for 4 h (see Figure 9).
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Figure 9. The standard deviation of SOC error because of the current integration error. The red
curve is the theoretical value of the s.d. σs,I(k) derived in (46); the blue curve shows σ̂s,I(k), the s.d.
obtained through Monte Carlo simulation as shown in (93). The constant κ is computed through
empirical methods to be κ = 0.88. It must be noted that κ varies for different types of current profiles.

6.3. Effect of Battery Capacity Uncertainty

The objective in this section is to validate the standard deviation of the SOC error due
to the battery capacity uncertainty that we derived in (59) using the Monte Carlo simulation
approach. For this experiment, errors from all the other possible sources of uncertainties
(current measurement error, current integration error, timing oscillator error as well as
initial SOC error) are assumed to be zero. In order to do this, similar to the previous
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analysis, a special current profile that is shown in Figure 10 is created. The current profile in
Figure 10 is made of low frequency (constant current) signals of different amplitudes. For
this profile, the amount of Coulombs can be perfectly computed using geometry similar to
the example illustrated in Figure 3. Once the Coulombs are computed, the true SOC can
be computed by making use of the knowledge of the true battery capacity. The following
procedure is followed to perform the Monte Carlo experiment to validate the standard
deviation of the SOC error, due to uncertainty in battery capacity:

1. Generate a perfectly integrable current where the generated current profile denotes
i(k) in (10).

– The entire true current profile generated for the experiment is shown at the top plot
Figure 10.

2. Let the true battery capacity be Ctrue = 1.5 Ah.
3. Assuming the knowledge of the true capacity, compute the true SOC at time k,

strue(k), using the geometric approach illustrated Figure 3 for the entire duration of
the profile, i.e., for k = 1, . . . , n where n denotes the number of samples in the entire
current profile.

– The second plot in Figure 10 shows the accumulated Coulombs sCC(n). From this,
the true SOC can be computed as strue(n) = s(0) + sCC(n).

4. Set m = 1, where m denotes the index of the Monte Carlo run.
5. Assuming a capacity estimation error s.d. of σbatt = 0.1 Ah, use the capacity uncer-

tainty model of (48) to compute the estimated battery capacity Cbatt = Ctrue + C∆
where it is a zero mean random number with standard deviation σbatt.

– Figure 11 shows all the Cbatt values generated for m = 1, . . . , M in the form of
a histogram.

6. Compute the (noisy) SOC sm(k), using the traditional Coulomb counting equation
given in (65), i.e., the following:

sm(k) = sm(k− 1) +
∆ki(k)

3600Cbatt

where the subscript m denotes the mth Monte-Carlo run.
– Figure 12 shows the true SOC strue(k) and the computed noisy SOC sm(k) for different

Monte Carlo runs.
7. If m = M, where M denotes the maximum number of Monte Carlo runs, go to step

(h); otherwise, set m← m + 1 and go to step (e).
8. End of simulation (all the data generated during the above steps need to be stored for

analysis).

After M = 1000 Monte Carlo runs, the standard deviation of the SOC error due to
current measurement error is computed as follows:

σ̂s,C(k) =

√√√√ 1
M

M

∑
m=1

(strue(k)− sm(k))
2 (94)

Figure 13 shows the SOC error standard deviation obtained through the theoretical
Equation (59) as well as the Monte Carlo simulation approach summarized through (94). It
can be noticed that the theoretical value and the simulated values slightly differ—this can
be attributed to the approximation made in (51) in order to derive the theoretical value.
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Figure 10. Simulated current profile and corresponding true SOC. This figure shows the difference
between the true SOC and the SOC with battery capacity uncertainty after 100 runs of the Monte
Carlo simulation.
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Figure 11. The histogram of Cbatt generated during 1000 Monte Carlo simulations. This graph shows
that the battery capacity error that we use in our Monte Carlo runs is reasonable.
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Figure 12. SOC error due to battery capacity uncertainty. This figure shows the difference between
the true SOC and the SOC with battery capacity uncertainty for different simulations. The true SOC is
computed using the true battery capacity of Ctrue = 1.5 Ah; each Monte Carlo run assumes a different
battery Cbatt that is distributed N(Ctrue, σ2

batt). Figure 11 shows all the Cbatt during different runs.

0 2 4 6 8 10 12 14 16

Time (Hour)

0

1

2

3

4

5

6

S
td

. 
d

e
v
ia

it
o

n
 o

f 
S

O
C

 e
rr

o
r 

(%
)

Simulation

Theory

Figure 13. The standard deviation of SOC error due to uncertainty in battery capacity. The red
curve is the theoretical value of the s.d. σs,C(k) derived in (59); the blue curve shows σ̂s,C(k), the s.d.
obtained through the Monte Carlo simulation as shown in (94). Due to the approximation made
in (51), the theoretical and simulated values slightly differ.

7. Conclusions and Discussion

In this paper, we developed an in-depth mathematical analysis of the Coulomb count-
ing method for state-of-charge estimation in rechargeable batteries. In particular, we
derived the exact statistical values of the state-of-charge error as a result of the following:
(i) current measurement error, (ii) current integration error, (iii) battery capacity uncertainty,
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and (iv) timing oscillator error. The results revealed that the SOC error because of the cur-
rent measurement and current integration error grows with time (time-proportional errors),
whereas the SOC error due to the uncertainty in the capacity of the battery and timing os-
cillator error are proportional to the accumulated state of charge (SOC-proportional errors).
The time proportional errors increase indefinitely with time and may result in significant
errors in the long run, e.g., satellites that operate for decades. The SOC-proportional
errors reach their peak within one cycle; hence, the SOC estimates should be accompanied
with standard deviation of the estimation error. The models presented in this paper will
be useful to improve the overall state-of-charge estimations in the majority of existing
approaches; in particular, the statistics developed in this paper define the process model
for Kalman filter-based approaches to SOC estimation.
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Abbreviations
The following abbreviations are used in this manuscript:

CRLB Cramer–Rao lower bound
ECM Equivalent circuit model
EKF Extended Kalman filter
OCV Open circuit voltage
PCRLB Posterior Cramer–Rao lower bound
RLS Recursive least squares
SOC State of charge

List of Notations
A list of the notations used in this paper is summarized below:

Ctrue True battery capacity (see (48))
Cbatt Assumed battery capacity (5)
C∆ Battery capacity uncertainty (48)
δI(k) Current integration error at time k (30)
∆k Sampling duration at time k (8)
∆ Sampling time that is assumed constant (14)
∆true True sampling time (71)
∆ε Timing oscillator error (71)
η Coulomb counting efficiency (5)
ηc Charging efficiency (6)
ηd Discharging efficiency (6)
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i(t) Current through battery at time t (5)
i(k) Sampled current through battery at time instant k (7)
ni(k) Current measurement noise (10)
ns(k) Process noise (3)
nz(k) Measurement noise (4)
κ Integration error constant (36)
ρi Current measurement noise coefficient (28)
ρI Current integration noise coefficient (45)
ρC Capacity uncertainty coefficient (60)
ρηc Charging uncertainty coefficient (68)
ρηd Discharging uncertainty coefficient (68)
ρ∆ Timing error coefficient (72)
s(t) SOC at time t (5)
s(0) Initial SOC (5)
s(k) SOC at discretized time instance k (7)
sCC(n) Change in SOC over n samples (16)
σi Std. deviation of current measurement error (11)
σL Std. deviation of load current changes (33)
σbatt Std. deviation of battery capacity uncertainty (49)
σηc Std. deviation of charging uncertainty (70)
σηd Std. deviation of discharging uncertainty (70)
σ∆ Std. deviation of timing uncertainty (90)
σs,i(n) Std. deviation of wi(n) (25)
σs,I(n) Std. deviation of wI(n) (43)
σs,C(n) Std. deviation of wC(n) (59)
σs,η(n) Std. deviation of wη(n) (70)
σs,∆(n) Std. deviation of w∆(n) (79)
σs(n) Std. deviation of w(n) (90)
wi(n) SOC error due to current measurement error (16)
wI(n) SOC error due to current integration error (39)
wC(n) SOC error due to battery capacity uncertainty(54)
wη(n) SOC error due to the uncertainty in c/d efficiency (66)
w∆(n) SOC error due to timing oscillator uncertainty (75)
w(n) SOC error due combined uncertainties (87)
zi(k) Measured current at time k (10)
zv(k) Measured voltage at time k (91)
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