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MEDLI2 Inverse Heating Reconstruction

• Mars 2020 aeroshell had an instrumentation suite called MEDLI2
• Included plugs (MISPs) made of the heatshield and backshell TPS materials

• 1-3 thermocouples embedded within each plug
• Flush mounted into heatshield (MTH) and backshell (MTB) in 11 locations on 

the heatshield and 6 locations on the backshell
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• What is the sensitivity of the reconstructed heat flux and heat load 
to the uncertainty in each material property?

• Used data from thermocouples to figure out 
aerothermal environments during entry 
• Fully Implicit Ablation and Thermal Response (FIAT) 

Model take aerothermal environment as input and 
outputs in-depth temperature throughout TPS material

• FIAT_Opt runs through different environments until the 
output closely matches flight TC data (40 min per run)

• Determined surface heating profiles for all MTH and MTBs
All 2000 cases 

plotted

Mean
1.96*σ
95% of runs• Accounted for uncertainties in material properties using Monte Carlo 

simulations
• Assumed distribution for each property based on flight-lot material testing
• Ran 2000 FIAT_Opt iterations and calculated 95% confidence intervals



Variance Decomposition

• Variance decomposition is a method used to quantify how much the output of a model can be 
attributed to uncertainty in each of the model input factors

• Sobol indices can be used to calculate the sensitivity of the output to each input factor

• Total Sensitivity: 𝑺𝑻𝒊 = 𝟏 −
𝑽𝑿~𝒊 (𝑬𝑿𝒊 𝒀 𝑿~𝒊 )
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• A and B are (N x K) sampling matrices where K is the # of factors and N is the # of samples
• AB

(i) is matrix A where the ith column is replaced with the ith column from B

• For total sensitivity, need to to compute output for A and all AB
(i) matrices

• This entails running FIAT_Opt 𝑁×(𝐾 + 1) times
• Initial test case showed that Sobol indices do not converge until ~30,000 iterations

• With each FIAT_Opt run taking 40 min on a single CPU and access to 20 CPUs at once à 41 days per MISP
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Machine Learning Approach
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• Using a surrogate or predictive model in place of FIAT_Opt enables us to drastically reduce 
computation time, making variance decomposition feasible

• Need a training set, a validation set, and a test set
• Training set: a subset of the data on which many models (with differently tuned parameters) were trained
• Validation set: a different subset of the data used to assess the models and choose a “final” model
• Test set: a different subset of data on which the performance metrics of the final model were evaluated

• Trained 3 types of machine learning models 
Random Forest Regression

• Ensemble learning method in which several 
decision trees are created, split a specified 
number of times based on one variable each 
time, until every branch only has a specified 
number of cases left R2 = 0.85

ε < 1.04

k > 1 k < 1

k < 0.9k > 0.9ρ > 1

ρ < 1

ε > 1.04

Cp > 1

Cp < 1

ρ > 0.94
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Deep Neural Network (DNN)

R2 = 0.99

• Network comprised of several nodes that 
take in inputs, create a non-linear function, 
and feed that into the next node
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Ridge Regression with Cross-Validation
• Similar to multivariate linear regression, 

with an added regularization
R2 = 0.97term to reduce 

overfitting



Machine Learning Approach: Deep Neural Network

• DNN outperformed random forest and ridge regression models on validation set in early 
testing so further tuned DNN hyperparameters to attain final model
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• Training a DNN is a stochastic process
• Weights of neural network are randomly 

initialized pre-training
• Order in which samples from training set are 

“seen” by model can influence final weights

• Trained 100 DNNs with the same 
architecture and hyperparameters to 
evaluate variation in final model 
performance caused by stochasticity

Deep Neural Network (DNN)
• Network comprised of several nodes that take in 

inputs, create a non-linear function, and feed 
that into the next node
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Neural Network Performance

• Accurate and consistent peak heat flux and heat load estimates
• Evaluated mean absolute error (MAE) and mean absolute percent error 

(MAPE) to assess accuracy and their standard deviations to assess consistency
• 100 DNNs have different biases but across all DNNs the bias is fairly uniform
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Average MAE Std MAE Average MAPE Std MAPE

Peak Heat Flux 0.010 W/cm2 0.004 W/cm2 0.21% 0.08%

Heat Load 0.358 J/cm2 0.179 J/cm2 0.25% 0.12%

1 DNN (500 test points)

1 DNN (500 test points)

100 DNNs (500 test points each)



Sensitivity Analysis

• Instead of running FIAT_Opt, used neural network to predict peak heating for each line of A and 
AB

(i) matrices, reducing computation time significantly (10000x)
• Peak heat flux

• Cp drives uncertainty, 2.2x greater than k
• Standard deviation on the Sobol index for Cp = 1% of the mean

• Heat load
• Cp drives uncertainty, 2.8x greater than k
• Standard deviation on the Sobol index for Cp = 1.4% of the mean
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Density Heat Capacity Thermal Conductivity Virgin Emissivity Char Emissivity TC Depth

ρ Cp k εv εc d

Peak Heat Flux

Mean 0.014 0.550 0.251 0.122 0.058 0.071

Std Dev 0.001 0.005 0.004 0.003 0.002 0.002

Heat Load

Mean 0.018 0.589 0.212 0.090 0.056 0.075

Std Dev 0.005 0.008 0.008 0.005 0.004 0.002



Sensitivity Analysis: Sanity Check

• Confirmed results from sensitivity analysis by running Monte Carlo analysis with different 
uncertainty distributions

• Using 2σk of 13% and 2σCp of 15%, maximum standard deviation is 0.61 W/cm2

• Halving 2σk reduces max std dev to 0.54 W/cm2, while halving 2σCp reduces it to 0.45 W/cm2
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2σk = 13%
2σCp = 15%
σmax = 0.61 W/cm2

HL σmax = 12.3 J/cm2

2σk = 13%
2σCp = 7.5%
HF σmax = 0.45 W/cm2
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2σk = 6.5%
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HF σmax = 0.54 W/cm2

HL σmax = 11.4 J/cm2

Mean
95% Confidence 

Nominal Halved σk Halved σCp

Peak Heat Flux
Std Dev (W/cm2)

0.61 0.54 0.45

Heat Load
Std Dev (J/cm2)

12.3 11.4 9.6

Halved σk

Halved σ
Cp



Summary

• Used 2000 Monte Carlo iterations to train a neural network that can be used in lieu of 
FIAT_Opt for significantly (10000x) faster computation time
• Tried three different machine learning models and found that the deep neural network had better results 

than ridge regression and random forest regression
• DNNs were highly accurate and consistent in predicting peak heat flux and heat load

• Found that heat capacity is the biggest drivers of uncertainty in reconstructed peak 
heating and heat load, followed by thermal conductivity
• Results can be leveraged to provide requirements for material property measurements 

needed to improve the accuracy of surface heating prediction and ultimately lead to the 
reduction of design margins in the future
• Next steps – conduct sensitivity analysis on all MISPs and see how Sobol indices vary 

across material (SLA-561V vs. PICA) and aeroshell location
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Increasing/Decreasing Value k and Cp

• Increased Cp and decreased k by 5-25%
• Cp has more of an impact than k if the change is <20%, but k has more of an impact if 

change is >20%
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Normal Cp k

5% 10% 15% 20% 22.5% 25% 5% 10% 15% 20% 22.5% 25%

Peak HF (W/cm2) 4.42 4.63 4.86 5.07 5.32 5.47 5.63 4.59 4.80 5.04 5.30 5.53 5.76

% Change -- 4.9 10.0 14.6 20.3 23.8 27.3 4.1 8.6 14.1 19.9 25.04 30.3



“Final” Neural Network

• Created 500 new data points as test set
• Train on 2000 data points
• Take 40,000 samples and retrain NN 100 times to evaluate variation
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Mean
Std Dev

Max
Min

STk
Mean: 0.251
Std Dev: 0.004
Max: 0.261
Min: 0.245

MAE: 0.010 W/cm2

MAPE: 0.21%

STCp
Mean: 0.550
Std Dev: 0.005
Max: 0.562
Min: 0.538


