

Mapping Modeled Aerosol Species to Measured Lidar Ratios for the MIRA Project

<u>G.L. Schuster</u>¹, T.D. Toth¹, <u>C.R. Trepte</u>¹, M. Chin², H. Bian^{2,3}, D. Kim^{2,3}, J. Kar^{1,4}, E.J. Welton² ¹NASA Langley Research Center, Hampton, Virginia (USA) ²NASA Goddard Space Flight Center, Greenbelt, Maryland (USA) ³Univ Maryland Baltimore County, Baltimore (USA) ⁴Science Systems and Applications Inc. (USA),

50 years of lidar observations: the tip of the laser remote sensing iceberg?

The 30th International Laser Radar Conference (ILRC) virtual conference, June 26th – July 1st, 2022.

Session number 11

June 29, 2022, 12:25 pm

Wednesday_11_P02

Mapping Modeled Aerosol Species to Measured Lidar Ratios for the MIRA Project

Overarching goal: Create Climatological Lidar Ratio Maps for CALIPSO

- Since CALIPSO is an elastic backscatter lidar, it is necessary to select a priori aerosol lidar ratios prior to computing extinction profiles.
- Presently, the CALIPSO lidar ratio selection process uses a single lidar ratio for each of the 7 CALIPSO aerosol types in the troposphere.
- Consequently, regional and seasonal variability of the lidar ratio is very limited in the present CALIPSO algorithm.
- Here, we describe an approach for creating new climatological lidar ratio maps for each of the CALIPSO aerosol types using MODIS-CALIPSO constrained retrievals and global model simulations.
- The purpose is to eventually replace the seven single-valued lidar ratios for the CALIPSO types with latitude- and longitudedependent maps for each of the seven types.

			CALIPSO	Version 4 Li	dar Ratio) Selectio	n Process			
	CALIOP LDR	LDR < 0.2								LDR >
		LDR < 0.075			LDR > 0.075		LDR < 0.075			
	Surface Type	Ocean			Ocean	Land	Land		Desert	Any
	CALIOP IAB	IAB > 0.01 IAB <		< 0.01			IAB > 0.0005	IAB < 0	.0005	
	CALIOP LDR	LDR < 0.05		LDR > 0.05						
					$\mathbf{+}$	$\mathbf{+}$			$\mathbf{+}$	
CALIOP Layer Height (base or top)	Z < 2.5 km	Marine (coarse) (23/23)		Polluted Continental/ Smoke (70/30)	Dusty Marine (37/37)	Polluted Dust	Polluted Continental/ Smoke (70/30)	Clean Continental	Polluted Dust	Dust
	Z > 2.5 km	Elevated Smoke (70/30)			Polluted Dust (55/48)	(55/48)	Elevated Smoke (70/30)	(53/30)	(55/48)	(44/4/
IAB: 532 nm integrated attenuated backscatter LDR: 532 nm estimated linear depolarization ratio										
(532/1064) lidar ratios Adapted from Kim et al (AN										(AMT, 201

The 30th International Laser Radar Conference (ILRC) virtual conference, June 26th – July 1st, 2022.

<u>Results</u>

- We present a technique for creating global maps of lidar ratios that is linked to MODIS-CALIPSO Fernald inversions and GEOS/GOCART aerosol speciation
- We apply this technique to CALIPSO's Clean Marine aerosol type.
- We demonstrate a clear relationship between the MODIS-CALIPSO AOD-constrained lidar ratios and the modeled sea salt volume fractions (right panel).
- We can also use the retrieval-model relationship (right panel) to create seasonal lidar ratio maps (shown in poster).
- Advantages of this approach are
- 1. Empirical method does not require Mie Theory or other single-scatter computations to compute lidar ratios
- 2. Model provides results in perpetually cloudy regions where the constrained retrieval fails (middle panel)
- 3. Model provides smooth transitions at coastlines because sea salt fractions can be non-zero over land and less than 1 over ocean.

MIRA This project is using the MIRA forum to solicit sub-orbital lidar ratios and global model output of aerosol speciation. <u>https://science.larc.nasa.gov/mira-wg/</u>

The 30th International Laser Radar Conference (ILRC) virtual conference, June 26th – July 1st, 2022.

Session number 11 50 years of lidar observations: the tip of the laser remote sensing iceberg? June 29, 2022, 12:25 pm Wednesday_11_P02

