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ABSTRACT

Wildfire occurrences have been increasing for the past decade,
leaving devastating traces across the world. In the recent ef-
forts, remote sensing and airborne missions have been utilized
to better understand and manage wildfires. This has resulted
in an exponential increase in volume of remote sensing data,
which has pushed the need for intelligent automation of data
extraction for wildfire studies. Machine learning offers accu-
rate automation in detecting such natural anomalies and en-
able decision-makers to take actions in a timely manner. Re-
cent advances in machine learning algorithms, namely prob-
abilistic generative methods, allow researchers and decision-
makers to step beyond detection and study “what-if” scenar-
ios for wildfire occurrences. Additionally, they offer better
imitations to the stochastic behavior of nature, and wildfire
events. However, optimizing the performance of these proba-
bilistic generative models is a computationally expensive pro-
cess, specially using digital computers. On the other hand,
quantum computers have recently shown a promise to reduce
computationally costly training of such models and provide
performance improvements. There is a body of research in-
vestigating the potential for improved machine learning meth-
ods in which key operations are performed on a quantum
computer. In this study, we propose a probabilistic image-to-
image segmentation approach combining a very well-known
segmentation method, U-NET, with a Conditional Variational
Auto-Encoder (CVAE) to not only detect wildfires but also
describe the stochasticity of the phenomenon and be capa-
ble of running “what-if” scenarios. Our proposed model is
compatible with training on quantum computers, which re-
sults in a quantum-assisted image-to-image segmentation ap-
proach and can be used to benchmark the potential benefit of
quantum computing over the classical one.

Index Terms— Wildfire Detection, Remote Sensing,
Image-to-Image Segmentation, Quantum Machine Learning

1. INTRODUCTION

Wildfires are an essential part of terrestrial ecosystem and
provide significant ecological benefits [1, 2]. However, the

fire intensities, sizes, frequencies have increased across the
world, with an exceptional impact on the western United
States in the past decades [3, 2]. Proper resource manage-
ment and timely decision-making require accurate monitoring
and understanding of the wildfire nature. With the advent of
terrestrial and atmospheric remote sensing, mainly supported
by satellite and aviation vessels, the means to monitor and
detect wildfires have been more accessible [4]. Advances
in observation sensors, specifically enhancement of spatial,
temporal, and spectral resolution, allow more in-depth stud-
ies and reveal some of the unknown dynamics of fires such
as holdover fires [5, 4]. However, with the increase in the
number of satellites/aviation missions, and the enhancement
of spatial, temporal, and spectral resolution, efficient and
effective land management through remote sensing has been
challenging [6]. Automated intelligent approaches such as
machine learning propose an opportunity to extract useful
information from a large volume of remote sensing datasets.
From the spectrum of machine learning approaches, varia-
tional methods outshine others for wildfire applications due
to their capabilities in learning stochastic behaviors [7], such
as ones in wildfire processes. Recent advances in quan-
tum computations allow classical machine learning models
to be trained on quantum computers, with the potential for
significant advantages in computing costly operations and
simulating stochastic behavior [8]. However, optimizing the
performance of such models is a computationally expensive
process, specially using digital computers. Quantum com-
puters on the other hand, make use of quantum effects such
as quantum superposition, entanglement, and interference to
compute in ways that have no classical analog. Quantum
algorithms making use of these effects have been proven to
outperform classical algorithms in a variety of settings, in-
cluding for certain sampling problems [9], though much work
remains to be done to understand how best to take advantage
of these effects. In this study, the authors propose a quantum-
compatible variational machine learning approach that takes
images of lightning-based wildfire predictors and segments
wildfire events. Replacing components of this approach
with quantum compatible computations makes the quantum-



Fig. 1. Graphical illustration of the proposed probabilistic
U-NET framework. The inputs are NDVI, NDVI difference
with long-term NDVI and MODIS MCD43A4 channels for
Land/Cloud/Aerosols. The model uses an RBM to represent
the latent space as a Boltzmann distribution.

assisted machine learning possible and can benchmark its
superiority to classical computers.

2. PROPOSED FRAMEWORK

Image segmentation refers to the task of identifying and seg-
menting objects/phenomena of interest in the input image.
One of the popular methods for instance segmentation is U-
NET [10], originally developed for biomedical image seg-
mentation problems and adopted to many domains including
space exploration and Earth sciences. U-NET is an image-to-
image translation deep neural network with a convolutional
architecture that takes an image as input and outputs the seg-
mentation map of the image. It is trained in a supervised fash-
ion, meaning that accurate segmented images need to be pro-
vided for training the model to perform such mapping. Al-
though U-NET has shown significant performance in image
segmentation, one of the drawbacks of the framework is its
deterministic nature. The mapping of the input image to the
output segmentation map is fully deterministic and does not
incorporate sources of uncertainty and stochasticity into ac-
count. This can cause the model to overfit to the training data
and generalize poorly to an unseen regions, and also cannot be
used to perform ”what-if” scenarios and provide probabilistic
segmentation.

Kohl et al. [11] extends the U-NET framework and pro-
poses a probabilistic U-NET model for image segmentation.
They achieve this by combining the U-NET with a Condi-
tional Variational Auto-Encoder (CVAE) [12, 13] that allows
the model to produce plausible hypotheses and ”what-if” sce-
narios. Figure 1 shows the overall architecture of the pro-
posed model. As it can be seen, the segmentation genera-
tion of the U-NET model is conditioned on the sample ob-

tained from the latent feature space of the VAE. This low-
dimensional latent feature space encodes the possible seg-
mentation variants and can be used to evaluate ”what-if” sce-
narios in the evaluation mode (once the model is trained).
This addition allows the model to generate multiple segmen-
tation maps for a single input image, conditioned on the re-
gion of the latent feature space that is sampled. As suggested
by the authors, this capability allows the model ”to learn hy-
potheses that have a low probability and to predict them with
the corresponding frequency”.

Once the output of the U-NET (the green block) and the
sampled latent variable (blue block) are concatenated, a func-
tion, F (red block), generates a segmentation for each sample.
i.e., Si = F (fU-NET (X, θ) , zi;ψ), where Si is the segmen-
tation corresponding to the sampled latent variable zi, and θ
and ψ are the parameters of the U-NET model and the genera-
tion function, respectively. The model is trained based on two
objectives: (1) generating accurate segmentation for detect-
ing wildfire in the input image, and (2) generalize well to un-
seen or rare scenarios. The first objective is obtained by mini-
mizing a supervised cross-entropy loss between the generated
segmentation, S(X, z), and the ground truth, Y , and the sec-
ond objective is obtained by minimizing the KL-divergence
between the prior, P (z | X), and posterior, Q(z | Y,X),
distributions of the variables in the latent feature space. The
overall loss function for training the machine learning model
is defined as follow,

L (Y,X) =Ez∼Q(.|Y,X)

[
− logP (Y | S (X, z))

]
+

βKL
[
Q (x | Y,X) ||P (z | X)

] (1)

Where, β is a hyper-parameter controlling the effect of
KL-divergence term (i.e., the regularization term). The model
is trained end-to-end. In order to utilize the proposed method
in a quantum-compatible environment, we propose a discrete
latent feature space parameterized by an energy-based model
such as a Quantum-compatible Restricted Boltzmann Ma-
chine (RBM) (Figure 1). The RBM model with binary units
in visible and hidden variables represents an Ising model with
the following energy function,

Ez = −
∑
a

baza −
∑
a,b

wabzazb (2)

Where, ba and wab are the RBM parameters and za and
zb are the binary units. The goal for training the RBM is to
find the Hamiltonian parameters (i.e. the weights of RBM)
optimally for resembling the probability distribution of the
real latent feature space. We aim to achieve this objective by
minimizing the average negative log-likelihood

LRBM = −
∑
v

Pv(z) log

∑
h e

−Ez∑
z′ eEz′

(3)

Where, v and h represent states of visible and hidden vari-
ables. The sampling scheme used in training these hidden



variables is a Monte Carlo simulation which can be either
quantum-assisted or a quantum-inspired algorithm such as
parallel tempering [14, 15]. The quantum-oriented improve-
ments, introduced by [16, 17] demonstrate state-of-the-art
performance and efficient model parameterizations that can
leverage near-term quantum architectures in training latent
discrete variables within generative models.

3. EXPERIMENTS

In this section, we present U-Net, Probabilistic U-Net with
Gaussian latent space (as proposed in [11]), Probabilistic U-
Net with Bernoulli latent space as baselines. We also present
the proposed Probabilistic U-Net with RBM latent space
model, and compare it with the baseline models.

3.1. Training and Implementation

We trained all the models using the same architecture for
U-Net sub-model with three convolutional blocks, each con-
sisting of three convolutional layers with ReLU activation
followed by a Average Pooling layer, in the encoder part. The
bottleneck layer consists of three convolutional layers with
ReLU activation, and decoder contains three convolutional
blocks, each consisting of three convolutional layers with
ReLU activation followed by a nearest-neighborhood upsam-
pling layer. The feature size for the encoder, bottleneck,
decoder blocks are 32, 64, 128, 192, 128, 64, 32, respec-
tively. In the probabilistic models, the prior and posterior
networks have identical architecture except the final layer of
distribution. The prior and posterior networks have the same
architecture as the encoder plus bottleneck in the U-Net.
The latent space of the probabilistic models consist of 32
latent units. The U-Net model is trained by satisfying three
losses at the same time: a weighted binary cross-entropy for
pixel-wise detection with 750-to-1 ratio which significantly
penalizes missing the fire pixels, a perceptual loss for encour-
aging neighborhood similarity, and a F-2 score loss to further
penalize the false positives and false negatives in the binary
predictions. Similar combination is deployed in probabilistic
models where the perceptual loss and F-2 score loss is used
together with the Evidence Lower Bound (ELBO). The Prob-
abilistic models are trained using a β value of 10, and the
Probabilistic U-Net with Bernoulli and with RBM are trained
using a relaxed Bernoulli distribution with temperature of
0.5.

3.2. Results

Table 1 lists the performances of the baselines and the pro-
posed model in terms of Precision, Recall, F-1 score and Jac-
card score (which shows the intersect over union of fire pix-
els between groundtruth and predictions) on the test set. The

results demonstrates higher performances from RBM U-Net
compared to the other Bernoulli U-Net.

U-Net Prob.
U-Net
(Gaus-
sian)

Prob.
U-Net
(Bernoulli)

Prob.
U-Net
(RBM)

Precision 0.536 0.431 0.235 0.654
Recall 0.987 0.955 0.752 0.473
F-1
score

0.695 0.594 0.358 0.549

Jaccard
score

0.532 0.422 0.318 0.378

Table 1. Statistical performances for the baseline models and
Prob. U-Net with RBM latent space.

Figure 2 shows a sample wildfire predicted by the models
in this study. The Probabilistic models are sampled 4 times
to better illustrate their stochastic nature. The visual com-
parison shows close to groundtruth predictions with small but
observable variations for the probabilistic models.

Fig. 2. Performance of the presented model for a sample wild-
fire detection.

4. CONCLUSION

In this study, we propose a variational image-to-image trans-
lation model with RBM latent space which opens the door for
utilization of quantum computers in latent space sampling.
The classical version of the model without quantum sampling
demonstrates satisfying performances compared to compa-
rable baselines and shows potential performance gains in



stochastic image-to-image translation via quantum sampling.
It is noteworthy that the presented results can still benefit
from a hyper-parameter tuning for the β, temperature, RBM
refining iterations which is part of our future work goals.
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