Towards an Implementation of Differential Dynamic Logic
in PVS

J. Tanner Slagel,! César Mufioz*,! Swee BalachandranT,?

Mariano Moscato,?, Aaron Dutle,! Paolo Masci,?
Lauren Whitel

1 NASA Langley Research Center %National Institute of Aerospace

Hampton, VA, USA Hampton, VA, USA
j.tanner.slagel@nasa.gov

* Currently at Amazon Web Services
T Currently at Xwing

June 2022 @ SOAP 2022: 11th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis

Overview

* dL: Differential Dynamic Logic for hybrid programs [1]

N

* PVS: Interactive theorem prover [2]

/Result: Embedding of dL in PVS

* Formally verified soundness of dL.

* Fully operational in PVS

* Leveraging features of PVS to extend dL

< 4

[1] Differential Dynamic Logic website, André Platzer: https://symbolaris.com/logic/dL.html
[2] PVS website, SRI International: https://pvs.csl.sri.com

https://symbolaris.com/logic/dL.html
https://pvs.csl.sri.com/

Hybrid Systems

* Hybrid system: dynamical
system that exhibits
 Continuous behavior
* Discrete behavior

/ Want \

* Formal specification
of hybrid systems
* Formal reasoning

\ of hybrid systems /

Hybrid Programs

Hybrid programs allow formal specification of hybrid systems:
* Discrete jump set:
(xl = 01, vy X = 071)

 Differential equations:
{x; =04, ..,x5, =0, & x}
 {x;};L variables
 {0;}L assignments (ex. — functions of past variable assignments)
e y first order formula that describes domain

Hybrid Programs (continued)

dL: Differential Dynamic Logic

Example Let
Hp = ((a =a+1);{x'=v,v = a})
P =(x =10),

dL: Differential Dynamic Logic

I-Another example:

x=>1Av=20Aa=20

[((a =a+1);{x' =v,v' = a})*](x > 1)

dL: Differential Dynamic Logic — Rule Schema 3!

[le]P/\ [HPQ]P
‘Hpi U Hps| P

Union axiom:

'-J JklalJ JEP
' |a*|P

Loop rule:

Differential invariant [g(z) Fplx) g(z) b [2" = f2)](p(z))
rule: I'F 2 = f(x) & q(x)|p(x)

....and many more! 4]

[3] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-63588-0
[4] AL "Cheat Sheet,” André Platzer, https://symbolaris.com/logic/dL-sheet.pdf

https://doi.org/10.1007/978-3-319-63588-0
https://symbolaris.com/logic/dL-sheet.pdf

KeYmeara X

KeYmeara X: formal verification tool for hybrid systems implementing dL
Verification of:

* Railway systems [°!

« Automotive systems L°]

* Aviation transportation systems [7]

« Autonomous robotics (8

* Etc.

[5] André Platzer and Jan-David Quesel. European Train Control System: A case study in formal verification. 11th International Conference on Formal Engineering

Methods, ICFEM, Rio de Janeiro, Brazil, 2009
[6] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid, distributed, and now formally verified. 17th International Symposium on Formal

Methods, FM, Limerick, Ireland, 2011
[7] André Platzer and Edmund M. Clarke. Formal verification of curved flight collision avoidance maneuvers: A case study 16th International Symposium on Formal

Methods, FM, Eindhoven, Netherlands 2009
[8] Stefan Mitsch, Khalil Ghorbal and André Platzer. On provably safe obstacle avoidance for autonomous robotic ground vehicles Robotics: Science and Systems,

RSS, 20139, 2013

Outline

e dLin PVS 2
. PVS >
e Extensions of dL (¢,,vo,,viy)
in PVS

* Examples

(t3,v03,vi3)

PVS

“Prototype Verification System” developed by SRI International
Interactive theorem prover
* Higher order logic

 Completely typed, dependent types deriv_test :
Automation L o
* Customizable tactics and strategies S GICE
PVSio animation and rapid prototyping [1] deriv(LAMBDA (x: real): cos(x ~ 10 + b) + exp(x ~ 2) / c) =

AMBDA (x: real):
NASA PVS |ibrary [9] -sin(x ~ 10 + b) *x 10 *x x ~ 9 + exp(x * 2) x 2 xx / C

e 58 libraries

Visual studio code extension [19

[9] NASAlib, maintained by NASA Langley Formal Methods Group: https://github.com/nasa/pvslib
[10] VSCode-PVS, Paolo Masci: https://github.com/nasa/vscode-pvs

https://github.com/nasa/pvslib
https://github.com/nasa/vscode-pvs

PVS — Prototype Verification System

Specification (.pvs) Interactive theorem prover

% Define half
half(a:real,b:real | b>a): 1)
{r:real | abs(a-r) = abs(b-r)} = [-2]

[-3]
(a+b) /2 [-4]

half_sqg.1.1 :

heorem about half [1] half(a, b) < half(a ~ 2, b ~ 2)

prove | show-prooflite >> (expand "half")}]
half_sq: THEOREM

— Ctrl+SPACE shows the full list of commands.
FORALL(a:real,b:real | b>a):

— TAB autocompletes commands. Double click expands definitions.
EXISTS(n:posnat):

a>n AND b>n
IMPLIES half(a,b) < half(a”n,b”n)

PVS — Prototype Verification System

Proof (.prf)

half_sq : PROOF

(then (skeep)(inst 1 "2")(flatten)
(spread (case "a<a”"2")
((spread (case "b<b”2")

((then (expand "half")(mult-by 1 "2")(assert))
(then (div-by 1 "b")(grind))))
(then (div-by 1 "a")(grind)))))
QED half_sq

Interactive theorem prover

half_sqg.1.1 :

1}
[-2]
[-3]
[-4]

[1] half(a, b) < half(a ~ 2, b ~ 2)

(expand "half")}

— Ctrl+SPACE shows the full list of commands.
— TAB autocompletes commands. Double click expands definitions.

Hybrid Programs in PVS

Values of variables

Environment :

: nat = 0
- 1a ,:: — 1
env: Environment =
| [{x) = 180,

Assigns =
ODEs : TYPE = MapExprInj

MapExprinj

exp_ex: ODEs

= (: (x, val(x)), (y, val(y)+cnst(1l))

1)

Functions on environments

BoolExpr [Environment—>bool]

QBoolExpr : TYPE [real->BoolExpr]

RealExpr [Environment—>real]

val(i:nat): RealExpr
= LAMBDA(env:Environment): env(i)

Hybrid Programs in PVS

Syntax of hybrid programs

NG hp_def

ASSIGN(assigns:Assigns) : assign?

DIFF(odes:0DEs,be:BoolExpr) : diff?

TEST(be:BoolExpr) : test?
SEQ(stml,stm2:HP) : seq?
UNION(stml,stm2:HP)

STAR(stm:HP) : star?
‘ND HP

: union?

Semantics of hybrid programs

semantic_rel(hp:HP) (envi:Environment)

(envo:Environment):

;'] 00 '__ —

Semantics of

(FORALL (i:below(length(1))) :
T (k,re) = nth(l,i) I

envo(k) = re(envi)) ANL
ALL (i:(not_in_map(1l))) :envo(i) = envi(i)

Hybrid Programs in PVS

Recall:
x=>21Av=>20Aa=20

[((a =a+1);{x'=v,v = a})*](x > 1)

In PVS:

hp_ex: LEMMA
LET alpha = STAR(SEQ(ASSIGN((: a, val(a) + cnst(1l) :)),
DIEE(R{ =N x Sval v (v valia)) ==y}) IN

(: :) |- (: DLIMPLIES((: val(x) >= cnst(1),
val(v) >= cnst(@), val(a) >= cnst(0) :),
ALLRUNS (alpha, val(x) >= cnst(1))):)

dL in PVS- Results

 Formal verification of soundness of dL!11]

* Fully operational embedding dL

* Extensions of dL in PVS

[11] Previous Formal Verification of soundness of dL in Coq and Isabelle/Hol:
Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus V6lp, and André Platzer. 2017. Formally verified differential dynamic logic.
In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs.208-221. https://doi.org/10.1145/3018610.3018616

https://doi.org/10.1145/3018610.3018616

Formal Verification of Soundness of dL

dl_loop : LEMMA
FORALL (Gamma,Delta)(J,P)(A):
Loop rule: (Gamma |- cons(J,Delta)) AND
(J |- P) AND
(J |- ALLRUNS(A,J)) IMPLIES
(Gamma |- cons(ALLRUNS(STAR(A),P),Delta))

dl_dI: LEMMA
. . FORALL (P:(ddl_dom?)) (Gamma,Delta) (nnP,Q) (ode:ODEs):
Differential derivable_up_ngbool?(max_var(ode),P)(nnP) AND
invariant (cons(Q,Gamma) |- cons(ngb_to_be(nnP),Delta)) AND
rule: (Q |- SUB_DIFT(P,ode)(nnP)) IMPLIES
(Gamma |-
cons (ALLRUNS (DIFF(ode,DLAND(P,Q)),ngb_to_be(nnP)),Delta))

[81 proven rules/axioms of dl in PVS 1

Fully Operational Embedding of dL

* Proof rules implemented as strategies in PVS

* Fully operational dL within interactive prover console
of PVS

val(x) >= cnst(1), val(v) >= cnst(Q), val(a) >= cnst(0) |-
ALLRUNS (STAR(SEQ(ASSIGN(((a, val(a) + cnst(1))),
DIFF((: (x, val(v)), (v, val(a)) :),
DLBOOL (DR
val(x) >= cnst(1))

[ld1-loop "val(x) >= cnst(1) AND val(v) >= cnst(@) AND val(a) >=cnst(0)")}

Fully Operational Embedding of dL

* Proof rules implemented as strategies in PVS

* Fully operational dL within interactive prover console
of PVS

val(x) >= cnst(1), val(v) >= cnst(@), val(a) >= cnst(0) |-
DLAND(val(x) >= cnst(1),
DLAND(val(v) >= cnst(@), val(a) >= cnst(0))))

fldl-assert)§}

Fully Operational Embedding of dL

* Proof rules implemented as strategies in PVS

* Fully operational dL within interactive prover console
of PVS

= . o o .AX:.... . | = = 3 < ——
'a (ol all af ~' o ™M TaZ\Y4)
discrete_loop_ex.2

{1} ((: DLAND(val(x) >= cnst(1),
DLAND(val(v) >= cnst(@), val(a) >= cnst(9)))
|- val(x) >= cnst(1) :))

fldl-assert]

Fully Operational Embedding of dL

* Proof rules implemented as strategies in PVS
* Fully operational dL within interactive prover console

DLAND(val(x) >= cnst(1),
DLAND(val(v) >= cnst(@), val(a) >= cnst(0)))

ALLRUNS (SEQ(ASSIGN ((a, val(a) + cnst(1)))
DIFF((: (x, val(v)), (v, val(a)) :), DLBOOL(NN
DLAND(val(x) >= cnst(1),
DLAND(val(v) >= cnst(@), val(a) >= cnst(0)))))

Fully Operational Embedding of dL

* Proof rules implemented as strategies in PVS

* Fully operational dL within interactive prover console
of PVS

~~." ‘ j,‘,

((: val(x) >= cnst(1), val(a) >= cnst(0) |-
ALLRUNS (DIFF((: (x, val(v)), (v, val(a)) :), val(v) >= cnst(9)),
val(x) >= cnst(1)) :))

fdl-diffinvii

Fully Operational Embedding of dL

* Proof rules implemented as strategies in PVS

* Fully operational dL within interactive prover console
of PVS

val(v) >= cnst(0), (val(x) >= cnst(1)), val(a) >= cnst(0) |-
(val(x) >= cnst(1)) :))

[ldl-assert]}

Fully Operational Embedding of dL

* Proof rules implemented as strategies in PVS

* Fully operational dL within interactive prover console
of PVS

A LY < = il i NS :
diff_inv_ex.2 :

|—

{1} ((: val(v) >= cnst(Q) |- val(v) >= cnst(0Q) :))

[ld1-assert))

Q.E.D.J}

dL in PVS — Generalized Reasoning of Hybrid Programs

* Fully typed specification of hybrid programs

» Reasoning at the type level (properties of groups of hybrid programs)
» Reasoning for arbitrary hybrid programs (e.g., arbitrarily many variables)

behind: TYPE
= {hp: (diff?) |
(: behind?(odes(hp)) :) |- (: ALLRUNS(hp,behind?(odes(hp))) :)}

slow: TYPE
= {hp: (diff?) |
(:) |- (: slower?(odes(hp)) :)}

* A hybrid program of type Bl is always of type

slow_is_behind: JUDGEMENT

slow SUBTYPE_OF behind

Summary

* dL: Differential Dynamic Logic for hybrid programs

* PVS: Interactive theorem prover

/Result: Embedding of dL in PVS

N

* Formal verification dL (done)

* Fully operational in PVS (close)

(ongoing)

<

* Leveraging features of PVS to extend dL

4

PVS Math
Libraries:

NASAlib

Animation
& Rapid

Prototyping:
PVSio

Al

Floating Point
Analysis: PRECiSA

Proof Usable
automation Interface:
using ML & VSCode-PVS

Auto-code
Generation
with Frama-C

Systems:
DDL-PVS

Automation
with SMT
solver: meti-
Tarski

