
Towards an Implementation of Di�erential Dynamic Logic
in PVS

J. Tanner Slagel,1 César Muñoz⇤,1 Swee Balachandran†,2

Mariano Moscato,2, Aaron Dutle,1 Paolo Masci,2
Lauren White1

1 NASA Langley Research Center 2National Institute of Aerospace
Hampton, VA, USA Hampton, VA, USA

j.tanner.slagel@nasa.gov blank

⇤ Currently at Amazon Web Services
† Currently at Xwing

June ���� @ SOAP ����: ��th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis

y0z0

y0 = f(y,u)

z0 = f(z,w)

Rn

1

Overview

• 𝐝𝐋: Differential Dynamic Logic for hybrid programs !

Result: Embedding of 𝐝𝐋 in PVS

• PVS: Interac7ve theorem prover "

• Formally verified soundness of 𝐝𝐋

• Fully operational in PVS

• Leveraging features of PVS to extend 𝐝𝐋

[1] Differen+al Dynamic Logic website, André Platzer: h@ps://symbolaris.com/logic/dL.html
[2] PVS website, SRI Interna+onal: h@ps://pvs.csl.sri.com

https://symbolaris.com/logic/dL.html
https://pvs.csl.sri.com/

Hybrid Systems

y0z0

y0 = f(y,u)

z0 = f(z,w)

Rn

1

• Hybrid system: dynamical
system that exhibits
• Con7nuous behavior
• Discrete behavior

Want

• Formal specification
of hybrid systems

• Formal reasoning
of hybrid systems

Hybrid Programs

Hybrid programs allow formal specifica>on of hybrid systems:
• Discrete jump set:

(𝑥! ≔ 𝜃!, … , 𝑥# ≔ 𝜃#)

• Differen7al equa7ons:
{𝑥!$ ≔ 𝜃!, … , 𝑥#$ ≔ 𝜃# & 𝜒}

• 𝑥% %&!
variables

• 𝜃% %&!
assignments (ex. – func7ons of past variable assignments)

• 𝜒 first order formula that describes domain

Hybrid Programs (con7nued)

For hybrid programs 𝐻𝑝!, 𝐻𝑝", first-order formula 𝜒:
• Union

𝐻𝑝! ∪ 𝐻𝑝"
• Sequence

𝐻𝑝!; 𝐻𝑝"
• Repeat

𝐻𝑝! ∗

• Test
? 𝜒

Example:
𝑎 ≔ 𝑎 + 1 ; 𝑥$ = 𝑣, 𝑣$ = 𝑎

∗

𝐝𝐋: Differen7al Dynamic Logic

𝐝𝐋 allows formal reasoning of hybrid programs:
• For hybrid program 𝐻𝑝 and predicate P
• All runs

[𝐻𝑝]P
• Some runs

⟨𝐻𝑝⟩P

Example: Let
𝐻𝑝 ≡ 𝑎 ≔ 𝑎 + 1 ; 𝑥$ = 𝑣, 𝑣$ = 𝑎

∗

P = 𝑥 = 10 ,
then

⊢ ⟨𝐻𝑝⟩P ⊢ [𝐻𝑝]P

𝐝𝐋: Differen7al Dynamic Logic

Another example:

𝑥 ≥ 1 ∧ 𝑣 ≥ 0 ∧ 𝑎 ≥ 0 ⊢

𝑎 ≔ 𝑎 + 1 ; 𝑥$ = 𝑣, 𝑣$ = 𝑎
∗
𝑥 ≥ 1

𝐝𝐋 allows formal reasoning of hybrid programs:
• For hybrid program 𝐻𝑝 and predicate P
• All runs

[𝐻𝑝]P
• Some runs

⟨𝐻𝑝⟩P

𝐝𝐋: Differen7al Dynamic Logic – Rule Schema 𝟑

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

Union axiom:

Loop rule:

Differen7al invariant
rule:

….and many more! ["]

[3] André Platzer. 2018. Logical Founda+ons of Cyber-Physical Systems. Springer, Cham. h@ps://doi.org/10.1007/978-3-319-63588-0
[4] 𝐝𝐋 ”Cheat Sheet,” André Platzer, h@ps://symbolaris.com/logic/dL-sheet.pdf

https://doi.org/10.1007/978-3-319-63588-0
https://symbolaris.com/logic/dL-sheet.pdf

• KeYmeara X: formal verifica7on tool for hybrid systems implemen7ng 𝐝𝐋
• Verifica7on of:
• Railway systems [)]

• Automo7ve systems [+]

• Avia7on transporta7on systems [,]

• Autonomous robo7cs [-]
• Etc.

[5] André Platzer and Jan-David Quesel. European Train Control System: A case study in formal verifica+on. 11th Interna*onal Conference on Formal Engineering
Methods, ICFEM, Rio de Janeiro, Brazil, 2009
[6] Sarah M. Loos, André Platzer, and Ligia Nistor. Adap+ve cruise control: Hybrid, distributed, and now formally verified. 17th Interna*onal Symposium on Formal
Methods, FM, Limerick, Ireland, 2011
[7] André Platzer and Edmund M. Clarke. Formal verifica+on of curved flight collision avoidance maneuvers: A case study 16th Interna*onal Symposium on Formal
Methods, FM, Eindhoven, Netherlands 2009
[8] Stefan Mitsch, Khalil Ghorbal and André Platzer. On provably safe obstacle avoidance for autonomous robo+c ground vehicles Robo*cs: Science and Systems,
RSS, 20139, 2013

KeYmeara X

• Introduc7on
• Hybrid programs
• 𝐝𝐋

• 𝐝𝐋 in PVS
• PVS
• Extensions of 𝐝𝐋

in PVS
• Examples

• Concluding remarks

L("!, $%!, $&!)

("", $%", $&")

("#, $%#, $&#)

$%" $&"

Outline

PVS

• “Prototype Verifica/on System” developed by SRI Interna/onal
• Interac/ve theorem prover
• Higher order logic
• Completely typed, dependent types

• Automa/on
• Customizable tac/cs and strategies

• PVSio anima/on and rapid prototyping
• NASA PVS library [#]
• 58 libraries

• Visual studio code extension [%&]

[9] NASAlib, maintained by NASA Langley Formal Methods Group: h@ps://github.com/nasa/pvslib
[10] VSCode-PVS, Paolo Masci: h@ps://github.com/nasa/vscode-pvs

https://github.com/nasa/pvslib
https://github.com/nasa/vscode-pvs

Specifica7on (.pvs) Interactive theorem prover

PVS – Prototype Verifica7on System

Proof (.prf) Interactive theorem prover

PVS – Prototype Verifica7on System

Hybrid Programs in PVS

Values of variables Func7ons on environments

Assignments

Hybrid Programs in PVS

Syntax of hybrid programs Semantics of hybrid programs

Seman7cs of

Hybrid Programs in PVS

𝑥 ≥ 1 ∧ 𝑣 ≥ 0 ∧ 𝑎 ≥ 0 ⊢

𝑎 ≔ 𝑎 + 1 ; 𝑥$ = 𝑣, 𝑣$ = 𝑎 ∗ 𝑥 ≥ 1

In PVS:

Recall:

𝐝𝐋 in PVS - Results

• Formal verification of soundness of 𝐝𝐋 !!

• Fully operational embedding 𝐝𝐋

• Extensions of 𝐝𝐋 in PVS

[11] Previous Formal Verifica+on of soundness of 𝐝𝐋 in Coq and Isabelle/Hol:
Brandon Bohrer, Vincent Rahli, Ivana Vuko+c, Marcus Völp, and André Platzer. 2017. Formally verified differen+al dynamic logic.
In Proceedings of the 6th ACM SIGPLAN Conference on Cer+fied Programs and Proofs.208–221. h@ps://doi.org/10.1145/3018610.3018616

https://doi.org/10.1145/3018610.3018616

Formal Verifica7on of Soundness of 𝒅𝐋

Loop rule:

Differen7al
invariant

rule:

81 proven rules/axioms of 𝐝𝐥 in PVS

Fully Opera+onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera7onal 𝐝𝐋 within interac7ve prover console

of PVS

• Proof rules implemented as strategies in PVS
• Fully operational 𝐝𝐋 within interactive prover console

of PVS

Fully Opera+onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera7onal 𝐝𝐋 within interac7ve prover console

of PVS

Fully Opera+onal Embedding of 𝐝𝐋

Fully Opera+onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully operational 𝐝𝐋 within interactive prover console

of PVS

Fully Opera+onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera7onal 𝐝𝐋 within interac7ve prover console

of PVS

Fully Operational Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera7onal 𝐝𝐋 within interac7ve prover console

of PVS

Fully Opera+onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera7onal 𝐝𝐋 within interac7ve prover console

of PVS

𝐝𝐋 𝐢𝐧 𝐏𝐕𝐒 – Generalized Reasoning of Hybrid Programs

• Fully typed specification of hybrid programs
• Reasoning at the type level (properties of groups of hybrid programs)
• Reasoning for arbitrary hybrid programs (e.g., arbitrarily many variables)

• A hybrid program of type slow is always of type behind

PVS Math
Libraries:
NASAlib

Formal
Reasoning for

Hybrid
Systems:
DDL-PVS

Floating Point
Analysis: PRECiSA

Animation
& Rapid

Prototyping:
PVSio

Usable
Interface:

VSCode-PVS

Automation
with SMT

solver: meti-
Tarski

Auto-code
Generation

with Frama-C

Proof
automation
using ML &

AI

Summary

• 𝐝𝐋: Differential Dynamic Logic for hybrid programs

Result: Embedding of 𝐝𝐋 in PVS

• PVS: Interac7ve theorem prover

• Formal verifica7on 𝐝𝐋 (done)

• Fully opera7onal in PVS (close)

• Leveraging features of PVS to extend 𝐝𝐋
(ongoing)

