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ABSTRACT12

We present a first-principles model of pitch-angle and energy distribution function evolution as13

particles are sequentially accelerated by multiple flare magnetic islands. Data from magnetohydrody-14

namic (MHD) simulations of an eruptive flare/coronal mass ejection provide ambient conditions for15

the evolving particle distributions. Magnetic islands, which are created by sporadic reconnection at16

the self-consistently formed flare current sheet, contract and accelerate the particles. The particle17

distributions are evolved using rules derived in our previous work. In this investigation, we assume18

that a prescribed fraction of particles sequentially “hops” to another accelerator and receives an addi-19

tional boost in energy and anisotropy. This sequential process generates particle number spectra that20

obey an approximate power-law at mid-range energies and presents low and high-energy breaks. We21

analyze these spectral regions as functions of the model parameters. We also present a fully analytic22

method for forming and interpreting such spectra, independent of the sequential acceleration model.23

The method requires only a few constrained physical parameters, such as the percentage of particles24

transferred between accelerators, the energy gain in each accelerator, and the number of accelerators25

visited. Our investigation seeks to bridge the gap between MHD and kinetic regimes by combining26

global simulations and analytic kinetic theory. The model reproduces and explains key characteristics27

of observed flare hard X-ray spectra, as well as the underlying properties of the accelerated particles.28

Our analytic model provides tools to interpret high-energy observations for missions and telescopes,29

such as RHESSI, FOXSI, NuSTAR, Solar Orbiter, EOVSA, and future high-energy missions.30

Keywords: magnetic reconnection — acceleration of particles — Sun: flares — Sun: coronal mass31

ejections (CMEs)32

1. INTRODUCTION33

Sudden large-scale reconfigurations of the solar coro-34

nal magnetic field manifest as the most powerful explo-35

sions in the solar system: eruptive solar flares (EFs) and36

coronal mass ejections (CMEs). Flare emissions are ob-37

served across the electromagnetic spectrum, from γ rays38
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to radio waves. Understanding the mechanism that ef-39

ficiently accelerates prodigious numbers of electrons to40

the high energies required to produce the observed flare41

γ-ray, hard X-ray (HXR), and microwave emissions is42

a long-sought goal in heliophysics. Observations point43

indirectly to magnetic reconnection as the fundamental44

process involved in flare particle acceleration (see review45

by Zharkova et al. 2011), but the mechanism that trans-46

fers the released magnetic energy to ambient electrons47

and ions remains under debate.48
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In the standard flare model (Carmichael 1964; Stur-49

rock 1966; Hirayama 1974; Kopp & Pneuman 1976), op-50

positely directed field lines reconnect across a large-scale51

current sheet. Particles could be accelerated directly by52

the current-sheet electric field, in the flows driven by53

the retracting field lines, by shocks, or by the merger54

or contraction of islands formed by reconnection in the55

current sheet. The work presented here is focused on56

the last mechanism.57

Flare X-rays are emitted predominantly by high-58

energy electrons scattering off background ions59

(bremsstrahlung). The source electrons are generally60

agreed to be energized in the corona, but most of the61

observed HXR radiation emanates from flare arcade62

footpoints where the accelerated particles encounter the63

dense chromosphere and photosphere. This is the so-64

called thick-target model for X-ray production (Brown65

1971). When this dominant source is occulted, however,66

HXR emission is also observed above the top of the67

soft X-ray loops (e.g., Masuda et al. 1994; Krucker et al.68

2010), both below and above the presumed reconnection69

site (e.g., Battaglia et al. 2019).70

Typically, the flare X-ray energy spectrum can be di-71

vided into two components: 1) at low energies, a thermal72

component emitted by bulk flare-heated plasma; and 2)73

at higher energies, a non-thermal power-law component74

(or double power law, Alaoui et al. (2019)), ε−γ , where ε75

is the photon energy and γ is the photon spectral index.76

The index usually falls in the range γ ∼ 2-10 (Brown77

1971; Dennis 1985; Petrosian et al. 2002; Holman et al.78

2003; Krucker & Lin 2008; Krucker et al. 2008; Hannah79

et al. 2008; Christe et al. 2008).80

The differential energy of the electrons responsible for81

the nonthermal portion of the HXR spectrum is gen-82

erally assumed to follow a power law, E−δ
′

(Holman83

2003), where E is the electron energy and δ′ is the spec-84

tral index (to avoid confusion, we are using the notation85

of Oka et al. (2018) for spectral indices). To ensure that86

the energy of the injected electrons is finite, the elec-87

tron spectrum is usually assumed to cut off sharply or88

flatten below a low-energy cutoff (Holman 2003; Kontar89

et al. 2008; Alaoui & Holman 2017; McTiernan et al.90

2019). Some observations also indicate the need for91

a cutoff or other change in the spectral shape at high92

energies (e.g., Holman 2003). The total energy in the93

accelerated electrons strongly depends on the cutoff en-94

ergies and on the shape of the distribution at low ener-95

gies (Emslie 2003; Saint-Hilaire & Benz 2005; Galloway96

et al. 2005). The relationship between the photon and97

electron energy spectral indices depends on how parti-98

cles lose their energy as they interact with the ambient99

plasma. A thick-target source yields γthick = δ′ − 3/2100

(Brown 1971; Hudson 1972), whereas for a thin-target101

source γthin = δ′ + 1/2 (Tandberg-Hanssen & Emslie102

1988). Recent advances in particle-ambient interactions103

have taken into account propagation mechanisms such104

as return-current losses (Alaoui & Holman 2017), en-105

ergy diffusion in a “warm” target (Kontar et al. 2015),106

and non-uniform ionization of the thick target (Su et al.107

2011).108

Observations of rapid temporal intermittency in HXR109

and microwaves during the flare impulsive phase (Inglis110

& Dennis 2012; Inglis & Gilbert 2013; Inglis et al. 2016;111

Hayes et al. 2016, 2019), as well as bright plasma blobs112

traveling in both directions along the flare current sheet,113

provide strong evidence for the formation of magnetic is-114

lands during flare reconnection and particle acceleration115

within them (Kliem et al. 2000; Karlický 2004; Karlický116

& Bárta 2007; Bárta et al. 2008; Liu et al. 2013; Ku-117

mar & Cho 2013; Takasao et al. 2016; Kumar & Innes118

2013; Zhao et al. 2019). Numerous theoretical and high-119

resolution numerical studies have demonstrated that ex-120

tended current sheets with large Lundquist numbers de-121

velop multiple reconnection sites with strong spatial and122

temporal variability on both kinetic and magnetohydro-123

dynamic (MHD) scales (e.g., Daughton et al. 2006, 2014;124

Drake et al. 2006b; Loureiro et al. 2007; Samtaney et al.125

2009; Fermo et al. 2010; Uzdensky et al. 2010; Huang126

& Bhattacharjee 2012; Mei et al. 2012; Cassak & Drake127

2013; Shen et al. 2013).128

Kinetic-scale particle-in-cell (PIC) simulations have129

shown that particles can be energized in contracting and130

merging magnetic islands (Drake et al. 2005, 2006a,b,131

2010, 2013; Dahlin et al. 2016, 2017), and that the result-132

ing electron energy spectra can achieve power laws (Guo133

et al. 2015; Ball et al. 2018; Li et al. 2019). However,134

even the most advanced PIC simulations (Daughton135

et al. 2014; Guo et al. 2015) are incapable of modeling136

the large dimensions and numbers of particles involved137

in flares (Dahlin et al. 2017).138

In Guidoni et al. (2016) (henceforth referred to as139

GUID16), we applied the contracting-island scenario140

to a simulated eruptive solar flare, where intermittent141

reconnection forms macroscopic islands (Karpen et al.142

2012). Combining analytical calculations for individ-143

ual test particles with data from the global simulation,144

which self-consistently modeled formation and reconnec-145

tion onset at the flare current sheet, we found that com-146

pression and contraction of a single island increased the147

particle energies by a factor up to ∼ 5. The results148

were confirmed subsequently by numerically integrating149

the particle guiding-center trajectories (Borovikov et al.150

2017). Although these initial findings were encourag-151

ing, such small energy boosts are insufficient to produce152
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either the required energies or power laws needed to ex-153

plain flare emission spectra.154

The objective of this paper is to construct and evolve155

distribution functions as particles are accelerated se-156

quentially by several magnetic islands in the flare cur-157

rent sheet. The ambient particle distribution is assumed158

to be Maxwellian initially. It evolves as particles “hop”159

from one contracting island to another, receiving a mod-160

erate energy boost in each island. We demonstrate an-161

alytically that this mechanism can generate power-law162

indices, high-energy cutoffs, and flat low-energy spectra163

consistent with observations of solar flares.164

2. PARTICLE ACCELERATION IN A SINGLE165

MAGNETIC ISLAND166

Here we briefly describe the relevant results from167

GUID16 and add figures, calculations, and explanations168

needed for the present work. In that study, we developed169

an analytic method to estimate energy gain for particles170

assumed to be orbiting within single flux ropes formed171

by flare magnetic reconnection in an MHD simulation of172

a breakout solar eruption. The method is based on the173

assumption that the particles’ parallel action and mag-174

netic moment are conserved as particles gyrate around175

magnetic field lines, and is applicable to moderately su-176

perthermal electrons and strongly superthermal ions.177

The evolving flux-rope properties were extracted from178

an ultra high-resolution (8 levels of refinement), cylindri-179

cally axisymmetric (2.5D), global MHD numerical simu-180

lation of a CME/EF, using the Adaptively Refined MHD181

Solver (ARMS; e.g., DeVore & Antiochos 2008). Ac-182

cording to the well-established breakout CME model183

(Antiochos 1998; Antiochos et al. 1999), a multipolar184

active-region magnetic field forms a filament channel by185

shearing (through motions or helicity condensation) of186

the field immediately surrounding the polarity inversion187

line. The stressed core flux expands and distorts the188

overlying null into a current sheet, enabling breakout re-189

connection that removes restraints on the rising core. As190

the filament-channel flux stretches out into the corona,191

a lengthening flare current sheet (CS) forms beneath it,192

leading to flare reconnection. Field lines retracting sun-193

ward after the onset of fast flare reconnection create the194

flare arcade, while those retracting in the opposite di-195

rection form the large CME flux rope (for more details196

see Karpen et al. 2012, and GUID16).197

Temporally and spatially intermittent reconnection198

across the flare CS forms small flux ropes (islands, in199

2.5D), which are expelled along the CS in opposite di-200

rections from a slowly rising main reconnection null.201

We found little evidence for island merging, in con-202

trast to kinetic simulations of reconnection in preex-203

isting current sheets with periodic boundary conditions204

(e.g., Drake et al. 2006a).205

b) Island 2, t = 90740 s
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Figure 1. Snapshot of Island 2. Selected flux surfaces
(accelerators) are color-coded and labeled from 0 to 15 (as
shown at right) from innermost to outermost with respect
to the island’s O-null (red dot). Black crosses are X-null lo-
cations. The simulation grid is shown in white. The x-axis
is parallel to the plane of the flare CS, and the z-axis per-
pendicular to the CS plane. Both axes are in units of solar
radius RS . Flux surface level “8” is referred as accelerator
A2 in this paper.

We studied two long-lived, well-resolved, Sunward-206

moving islands, named “Island 1” and “Island 2”. Fig-207

ure 1 shows color-coded flux surfaces of Island 2 at a time208

between its formation and its arrival at the top of the209

flare arcade. The z = 0 plane corresponds to the plane210

of the flare CS. The island’s enclosed magnetic flux, de-211

limited by the flux surfaces near the X-nulls (black Xs212

in Figure 1), was elongated along the CS (note hori-213

zontal and vertical scale differences in Figure 1). The214

islands evolved to a rounder configuration due to the215

Lorentz force acting on the highly bent field lines near216

the tapered ends. The field lines on each side of the217

CS confine an island and limit its expansion perpendic-218

ular to the CS. The island’s cross-sectional area shrinks,219

thereby increasing the magnetic field strength. As a re-220

sult, particles orbiting the island are accelerated mostly221

by the betatron process, which relies on magnetic-field222

compression, rather than Fermi acceleration (GUID16;223

Borovikov et al. 2017; Li et al. 2018, 2019).224

When scaled to average active-region sizes and char-225

acteristic times, the lifetime of these simulated islands,226

defined as the time between their creation by two adja-227

cent reconnection episodes and their arrival at the top228

of the flare arcade, is of the order of 10-15 s. Similarly,229

their typical lengths along the flare CS (x-axis in Figure230

1) are ∼ (2-4)×10−3Rs ≈ 2-4 arcsec, where Rs is the231

solar radius. Flare plasmoids of similar sizes have been232

observed (Kumar & Cho 2013), and typical HXR pul-233

sation periods are comparable to these island lifetimes234

(Inglis & Dennis 2012; Inglis & Gilbert 2013; Inglis et al.235

2016; Hayes et al. 2016, 2019),.236

Particles were assumed to be frozen-in, orbiting field237

lines wrapping selected flux surfaces of the studied is-238
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Figure 2. 2.5D and 3D illustrations of the flare system, its accelerators, and particle trajectories. In all panels, a representative
flux-rope field line is shown in blue, the flare CS plane in green, and sheared flare arcade in red. Transiting (mirroring) particle
trajectories are shown with curved black (magenta) arrows. The kinetic-scale gyration of the particles around the field lines
is not shown. a) Key features of a 2.5D system projected onto a plane perpendicular to the flare CS plane (translationally
invariant direction is out of the image plane). Here the flare CS is vertical, whereas the flare CS is horizontal in Figure 1. b)
Left: Expanded view of the cross-section (light blue) of an accelerator. Numbered locations are explained in the text. Right:
angled view of 2.5D trajectories of mirroring (one field-line turn) and transiting particles. c) Angled view of a 3D island: a flux
rope with a finite axial length. Black arrows show the overall direction of motion for transiting particles along the flux rope. d)
Top view of c).

lands. Each flux surface represents a finite volume of239

plasma inside a cylinder-like shell of small thickness,240

which we denote an “accelerator”. Figure 2a illustrates241

a generic field line of such a flux rope (blue) as the flare242

CS (green) above the sheared flare arcade (red) is viewed243

head-on. Figure 2b illustrates the cross-sectional area244

(light blue) of a generic accelerator.245

In GUID16, we parameterized the selected accelera-

tors’ magnetic-field strength along representative flux-

rope field lines as

B = B1 + (B2 −B1) sin2

(
2π

l

L

)
, (1)

where L is the length of one full turn of the field line246

and l is the field line arc-length. The flux surface is247

symmetric both left/right and up/down, and possesses248

two equal minima in B near the X-nulls (labeled “1”249

in Figure 2b) and two equal maxima in B at its points250

furthest from the CS plane (labeled “2” in the same251

figure). B1 and B2 are the minimum and maximum252

field strengths, respectively, at those locations.253

We extracted the evolution of L, B1, and B2 over254

each accelerator’s lifetime from the simulation data. L255

decreased rapidly as the flux surface contracted, and B1256

increased due to plasma compression. The evolution of257
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B2 resulted in an accelerator mirror ratio, B2/B1, that258

was initially larger than 1 (≤ 1.6 for Island 1 and ≤ 8259

for Island 2) and decreased to values close to 1 as the260

islands became circular.261

Two distinct particle populations orbit each accelera-262

tor: transiting and mirroring. If a particle’s pitch angle263

is smaller (larger) than the loss-cone angle of the accel-264

erator, defined as θlc = arcsin
(√

B1/B2

)
, the particle265

transits (mirrors) along the accelerator. Mirroring par-266

ticles bounce at regions of high field strength; their tra-267

jectories are marked by the curved magenta arrows in268

Figures 2a,b. For visual simplicity, particle gyromotions269

are not shown. As long as the mirror ratio is larger than270

unity, relatively large populations of mirroring particles271

can be trapped near the plane of the flare CS. The length272

of the flux-rope axis does not matter in this case, be-273

cause mirroring particles are trapped in one single turn274

of the flux rope (see example on the right side of Fig.275

2b.) As the islands are carried by the reconnection ex-276

haust, mirroring particles stay near the flare CS region277

until the island merges with the top of the flare arcade278

or the bottom of the CME.279

Transiting particles follow the helical field lines, as280

illustrated by curved black arrows in Figures 2a,b.281

In a translationally invariant (2.5D) simulation (e.g.,282

GUID16), transiting particles are trapped in the toroidal283

flux rope. In a 3D configuration, where the flux rope is284

anchored at the solar surface, transiting particles are285

free to stream along the legs of the flux rope and could286

be lost at the footpoints before they are accelerated.287

Some of this streaming population could mirror near288

the footpoints, due to the increase in field strength with289

decreasing altitude (not considered here or in GUID16).290

Figures 2c,d illustrate lateral and top views of a flux rope291

with a finite length axis (3D island) and the overall tra-292

jectories of transiting (black) and mirroring (magenta)293

populations.294

As particles orbit the time-dependent field line de-295

scribed by Eq. 1, their kinetic energy E and pitch angle296

θ change. Assuming conservation of the particle par-297

allel action and magnetic moment, GUID16 estimated298

the changes in E and θ as particles pass location “1” of299

the accelerator. Henceforth, all initial and final kinetic300

energies and pitch angles refer to this location. Only301

pitch angles 0 ≤ θ ≤ 90◦ were considered as the system302

is symmetric about θ = 90◦ (parallel or anti-parallel303

motion with respect to the magnetic field).304

We determined the final pitch angle θf and final-to-305

initial energy ratio E = Ef/Ei as functions of the ini-306

tial pitch angle, θi, by solving Equations 25 and 26 in307

GUID16. These transcendental equations depend on L,308

B1, and B2, which we obtained from the simulation. Ex-309

amples of E and θf as functions of θi are shown as solid310

and dashed curves, respectively, in Figure 3. Results311

presented in Sections 3 and 4 are based on these data.312

The blue (red) lines represent the selected accelerator313

in Island 1 (2) labeled “1” (“8”) in GUID16, which we314

refer here to as A1 (A2). A2 corresponds to the out-315

ermost green flux surface inside the island of Figure 1.316

An initially isotropic distribution in pitch angle would317

be anisotropic at the end of the lifetime of both accel-318

erators (in Figure 3, dashed curves differ from straight319

lines of slope 1), as shown in the next Section.320
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Figure 3. Energy ratios (solid lines, left axis) and fi-
nal pitch angle (dashed lines, right axis) as functions of
θi for accelerators A1 (blue) and A2 (red). Final values
correspond to the end of the lifetime of both accelerators.
Vertical (horizontal) dotted black lines show initial (final)

θlc for the accelerator labeled where the dotted lines in-
tersect. Light grey areas show ranges in pitch angle where
initially mirroring particles are transiting at the final time.
Files named “A1 energy gain and pitch angle data.txt” and
“A2 energy gain and pitch angle data.txt” with the data of
this figure are part of the supplemental material of this pub-
lication. Results presented in Sections 3 and 4 are based on
these data.

A1’s (A2’s) initial and final θlc are ' 56◦ (' 24◦)321

and ' 80◦ (' 66◦), respectively (shown with dotted322

lines in Fig. 3). For initially isotropic distributions,323

' 38% (' 74%) of A1’s (A2’s) population would be324

mirroring. The maximum energy gain overall for A1325

(A2) is Emax ' 2.13 (' 4.47). For mirroring popula-326

tions, A1’s (A2’s) maximum energy gain occurs at 90◦327

with Emax ' 1.57 (' 4.47). For all of the studied cases328

in GUID16, E varied from one flux surface to another,329

reaching a maximum value Emax < 5.330

As pointed out in GUID16, such small energy gains331

are well below the magnitudes required to explain the332
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observed flux and power-law index of flare electron en-333

ergy spectra. However, particles may increase their en-334

ergy substantially by “visiting” a few accelerators se-335

quentially. For example, visiting only five accelerators336

with an average energy gain of E = 4 per visit would in-337

crease some particle energies by 45 = 1024. This is the338

main idea underlying the sequential particle-acceleration339

model described next.340

3. SEQUENTIAL ACCELERATION IN MULTIPLE341

ACCELERATORS342

3.1. Initial Distribution Function343

We assume that the ambient corona is characterized344

by a Maxwellian particle distribution function at tem-345

perature T and with an isotropic distribution in pitch346

angle, f0(E, θ) = f0(E)/90◦. The fractional number of347

particles with energies in the range (E,E + dE) is348

f0(E)dE=
2√
π
e
−
(

E
kBT

)√(
E

kBT

)
dE

kBT
, (2)

where kB is the Boltzmann constant.349

In terms of the dimensionless kinetic energy, defined350

as E = E
kBT

, the initial distribution is351

f0(E) =
2√
π
e−E

√
E. (3)

Spectrum f0(E) is shown as the solid black curve in352

Figure 4 (labeled j = 0). For easier comparison to ob-353

servations, the top horizontal axis of the figure shows354

energy in keV for an assumed background temperature355

T = 2 MK.356

To numerically track the particle energies and pitch357

angles as they evolve in time inside an accelerator, we358

represent the E-θ phase space with a 2D grid of energy359

and angle bins. The range of E is from 0 to Em = 50, 000360

(appropriately large to study high energy acceleration),361

and 0 ≤ θ ≤ 90◦. Each dimension is binned at regular362

intervals, ∆E = 0.1 and ∆θ = 0.1◦.363

We will refer to the fractional number of particles in364

the energy range (Ej , Ej + ∆E) and pitch angle range365

(θk, θk + ∆θ) as a “macroparticle” N(j, k). The initial366

macroparticle distribution is367

N0(j, k) =
∆θ

90◦

∫ Ej+∆E

Ej

f0(E)dE (4)

=
∆θ

90◦
[
N (Ej + ∆E)−N (E)

]
,

where N (E) is the normalized number of particles be-368

tween energies 0 and E given by369

j=0 j=1 j=2 j=3 j=4 j=5

1 10 100 1000 10000
È (kBT)

1 10 100 1000 10000
È (keV) (T=2MK)

10
-20

10
-15

10
-10

10
-5

10
0

f j(
È

)

Figure 4. Normalized energy spectra for different cycles
(cycle number j is shown next to each colored curve) of A2
accelerators. The units of the bottom horizontal axis (loga-
rithmic bins of size log(1.02)) are kBT , where T is the ambi-
ent coronal temperature of f0, and the top energy axis is in
keV, for an assumed temperature T = 2 MK. (This double-
unit horizontal-axis setup continues in subsequent figures.)
Black dashed lines show the corresponding fitted functions

e−E/R/R.

N (E) = erf
(√

E
)
− 2√

π

√
Ee−E (5)

and erf is the error function.370

The initial isotropic distribution of macroparticles371

f0(E, θ)is shown in Figure 5a. Those macroparticles372

with θ > θlc are mirroring; the rest are transiting.373

3.2. Macroparticle Evolution in One Accelerator374

At the end of the lifetime of an accelerator, each375

macroparticle initially in f0(E, θ) at Ei, θi will have a376

final Ef , θf determined by the method described in the377

previous section (Fig. 3.) The macroparticle is assigned378

to the location on the 2D grid closest to Ef , θf . Hence,379

at this final time, each grid cell in the E-θ phase space380

may have one, several, or no macroparticles. Those par-381

ticles that achieve energies larger than Em are lost, but382

this is a negligible number in our calculations. In this383

section, several figures present results for A2, which has384

the largest energy gains and the largest proportion of385

mirroring population. Similar conclusions were drawn386

for A1 but are not shown.387

We estimated the distribution of macroparticles at the388

end of the lifetime of the accelerator f1(E, θ) by sum-389

ming macroparticles inside each cell of the E-θ phase390

space. f1(E, θ), shown in Figure 5b, has the same to-391

tal number of particles N (normalization factor for all392
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Figure 5. Normalized particle distributions fj(E, θ) for A2
accelerators, saturated at the maximum of the color table.
a) f0, b) f1, c) f2. In panels b) and c), data have been
resampled to logarithmic bins of size log(1.02) and ∆θ = 1◦.
θlc (same for accelerators of the same type) is shown with a
horizontal dashed line.

distributions) as f0, redistributed across the grid. The393

spikiness of f1 is due to the discretization of the phase394

space: some of the bins do not have macroparticles at395

this particular time.396

f1 is highly anisotropic in pitch angle. Particles with397

large θ have larger final energies than their counterparts398

at small θ. All of the macroparticles have increased their399

pitch angle θ, consistent with the sharp initial slope of400

θf (dashed red curve) in Figure 3. Both of these fea-401

tures reflect the dominant role of betatron acceleration,402

which strongly increases the energy of motion perpendic-403

ular to the magnetic field direction as the field strength404

increases.405

Some macroparticles switch from mirroring to transit-406

ing populations: the percentage of mirroring particles in407

f1 is 58%, as opposed to 74% in f0. This is due to the re-408

duction in the magnetic mirror ratio of the accelerator,409

as it evolves from highly elongated to nearly circular.410

Nevertheless, for A2, mirroring particles in f1 are the411

largest population and possess the highest energies. In412

contrast, the opposite is true for A1: its mirroring per-413

centages are 21% (f1) and 38% (f0), and the energies414

are highest for transiting particles. This reflects the less415

prominent role of betatron acceleration for A1, whose416

magnetic-field compression is much less than that of A2.417

A2’s f1 has more particles at high energies than f0.418

Its energy spectrum is shown as the blue curve (j = 1)419

in Figure 4. The average particle energy
〈
E
〉

has in-420

creased from 1.5 in f0 to 4.3 in f1, nearly a factor of421

three. This energy increase is modest but not insignifi-422

cant. In the next section, we examine the consequences423

of having particles “visit” several accelerators sequen-424

tially, receiving a boost in energy at each stage.425

3.3. Sequential Accelerators426

To investigate the effect of sequential accelerators of427

the same type on the particle distribution, we take the428

final distribution f1 from the single-accelerator experi-429

ment above and evolve it using the same rules used to430

evolve f0 into f1. Processing f1 through the same type431

of accelerator results in a new final distribution func-432

tion f2, which has more particles at higher energies and433

a more anisotropic pitch-angle distribution than f1. For434

example, f2 for A2 accelerators is shown in Figure 5c.435

This process is repeated sequentially multiple times,436

yielding a distribution function fj after j cycles. During437

each cycle, the total number of particles in each fj , N ,438

is conserved, but the number of particles at high (low)439

energies increases (decreases) as the particles are accel-440

erated, and ever more particles achieve large pitch angles441

resulting in an increasingly anisotropic distribution.442

The energy spectra for the particles gaining energy by443

sequentially visiting A2 accelerators are shown in Figure444

4 with colored lines, up to j = 5 cycles. In later cy-445

cles, there are large fluctuations in the distributions at446

low energies because not many particles are left in that447

energy range. Every new cycle has a spectrum with448

more high-energy particles and higher average energy449

than the previous one. The last distribution in the se-450

quence, f5, presents a very hard spectrum with a small451

spectral index. We find that the exponential functional452

form e−E/R/R fits all of the distributions reasonably453

well, as shown in Fig. 4 (dashed black lines); we will454

make use of this form in our analytical treatment in §5.455



8 Guidoni et al.

A1, r =  2.117
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Figure 6. Average energy of cycled distributions. Crosses
show

〈
E
〉

of fj as functions of cycle j for accelerators A1

(blue) and A2 (red).
〈
E
〉
0

= 1.5 for both accelerators (not
shown). The left vertical axis is in units of kBT , where T
is the ambient coronal temperature of f0; the right energy
axis is in keV, for an assumed temperature T = 2 MK. (This
double-unit vertical-axis setup continues in subsequent fig-
ures.) Circles show R from fitting fj ’s spectra with function

e−E/R/R (e.g., see Figure 4), for which R =
〈
E
〉

(See §5).
Dashed lines show R fitted as rj (j ≥ 1). The fitted r is
shown in the color-coded annotations.〈

E
〉
j

of each cycle increases with the number of cycles,456

as shown with crosses in Figure 6 for sequences of ac-457

celerators A1 (blue) and A2 (red). Circles show R from458

fitting fj ’s spectra with function e−E/R/R, for which459

R =
〈
E
〉
.460

It is unrealistic to expect that all of the particles in any461

accelerator will be transferred to and cycled through a462

new accelerator. A more plausible scenario is that some463

fraction of each accelerator’s population will be trans-464

ferred to a new accelerator, to participate in another465

round of energization in a succeeding cycle. This is the466

basis for the model discussed in the next section.467

t

Figure 7. Cartoon depicting a sequence of islands and par-
ticles being transferred between them. t is the fraction of
particles transferred from one accelerator to another one (pa-
rameter of the model).

3.4. Transfer of particles between accelerators468

We generalize the cycling algorithm presented above469

by transferring only a fraction of the particles from the470

preceding to the following accelerator, and by allowing471

the new accelerator to entrain ambient particles along472

with the previously accelerated particles. This emulates473

a continuously reconnecting flare current sheet in which474

new islands form that contain fresh coronal plasma but475

that also capture energetic particles that have escaped476

a previously formed island.477

To represent the fraction of particles from one accel-478

erator transferred to the next accelerator (see cartoon479

in Fig. 7), we define a typical transfer factor, t ≤ 1.480

We assume that t is the same for all accelerators. For481

simplicity, we further assume that particles at all ener-482

gies are equally likely to be transferred from island to483

island, and that the particles’ pitch angles in the new484

accelerator are the same as in the preceding one. As we485

show below, all of these simplifying assumptions allow us486

to make analytical progress in calculating the evolving487

particle distribution function.488

As before, if the first accelerator in the sequence has

an initial distribution f0 (Figure 5a), after one cycle its

final distribution is f1 (e.g., A2’s f1 is shown in Figure

5c). We express this result in the form

f
(1)
i = f0, (6)

f
(1)
f = f1, (7)

where the subscripts i, f represent the initial and final489

distributions and the superscript (1) indicates the first490

cycle in the model sequence. The subsequent accelerator491

will have an initial distribution that is characterized in492

part by the background distribution f0, plus a fraction493

t of the previously accelerated distribution f1.494

We express the initial distribution function for the sec-

ond accelerator in the form

f
(2)
i = (1− t)f0 + tf

(1)
f (8)

= (1− t)f0 + tf1 (9)

f
(2)
i has lost a fraction t of background particles and

gained a fraction t of f1. For t << 1, f
(2)
i deviates

slightly from an isotropic Maxwellian distribution. If

this population is now cycled through accelerators of the

same type following the prescribed rules from §2 (Fig.

3), each component distribution, f0 and f1, will evolve

to the next cycled distribution, f1 and f2 (e.g., A2’s f2 is

shown in Figure 5c), respectively. The final distribution

then will be

f
(2)
f = (1− t)f1 + tf2. (10)

For t << 1, f
(2)
f deviates slightly from the anisotropic495

distribution f1.496
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This process can be applied recursively, prescribing497

that at each cycle a fraction t of the preceding acceler-498

ator’s population is transferred to the new accelerator.499

We tacitly assume that the particles are collisionless,500

so populations do not interact over the time scale of the501

full acceleration process. Consequently, each component502

distribution fj evolves separately to fj+1.503

We summarize this procedure in Table 1. The final504

distribution after n cycles is the linear combination of505

component distributions506

f
(n)
f (n, t) =

(
1− t
t

) n∑
j=1

tjfj + tnfn (11)

The last contribution is negligible at low energies when507

n is large. f
(n)
f has the same total number of particles508

N as each of the cycled distributions fj .509

We constructed f
(n)
f for sequences of accelerators of510

the same type (A1 or A2) for different transfer parame-511

ters t and cycle numbers n. To reduce computer memory512

usage, each fj(E, θ) in Equation 11 was resampled into513

logarithmic bins of size log(1.02) and ∆θ = 1◦ (e.g., Fig-514

ures 5b,c). The chosen values of t range from 10−5 to 0.7,515

arranged in multiples of 10 of the triplet (1, 5, 7)×10−5.516

We study the resulting spectra of the sequential final517

distribution functions in the next section.518

For small t, f
(n)
f resembles f1, except for a small in-519

crease of particles at high energy and large pitch angle520

at the expense of a loss of particles at low energies (see521

example of the differences between these distributions522

in Figure 8 for n = 5, t = 0.001 and accelerator A2.)523

Figure 8. Absolute value of the difference between the se-
quential final distribution f

(5)
f (Equation 11) and f1 (Figure

5b) for accelerator A2 with t = 0.001. Red (blue) color indi-
cates positive (negative) difference.

4. SPECTRA524

We calculated the energy spectra of all our simulated525

f
(n)
f by summing over pitch angle. In general, the spec-526

trum after a few cycles has the following features: 1) a527

A2, n = 5 , r =  4.446
d¢= 5.651 ±  0.001

A1, n = 9 , r =  2.117
d¢= 10.2743 ± 0.0003

t = 0.001

1 10 100 1000 10000
È (kBT)

1 10 100 1000
È (keV) (T=2MK)

10
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f f (
n
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Figure 9. Energy spectra for sequences of accelerators A1
(blue) and A2 (red) with transfer factor t = 0.001 (solid
curves = simulated data; dashed curves = analytical func-
tion, Equation 12 in §5 with α = 0, and annotated efficiency
r and final cycle n), shifted downward by a factor of 10 for
visual clarity. Black lines have slopes equal to the fitted
color-coded spectral indices δ′, whose estimated uncertain-
ties are given. Fitted Eleb (left) and Eheb are shown with
color-coded vertical dotted lines.

flat spectrum at low energies, consisting mainly of con-528

tributions fj with small j; 2) a power-law-like shape529

∼ E−δ
′

at intermediate energies; and 3) a rapid de-530

crease at high energies. Examples are shown in Figure531

9 for accelerators A1 (blue) and A2 (red), both for the532

transfer parameter t = 0.001. The number of cycles533

used is n = 9 for A1 and n = 5 for A2: these numbers534

were found to yield similar power-law energy ranges for535

the two accelerators. Because A1 is less efficient at ac-536

celerating particles than A2, more cycles are required537

to produce similar high-energy breaks. As expected, A2538

presents the hardest power law.539

A smooth transition between the Maxwellian-like dis-540

tribution at low energies and the power-law region of541

the spectrum shown in Figure 9 supplants the usually542

assumed low-energy cutoff where the power-law distri-543

bution ends abruptly. In the next section, we will es-544

timate the energy above which the distribution can be545

well approximated as a power law, which we denote the546

low-energy break Eleb. We note that the transition is547

smooth and, hence, there is no well-defined precise value548

for this energy.549

The middle, power-law-like region of the spectrum is550

gently modulated due to small-amplitude bumps associ-551

ated with the discrete cycles(Figure 9). Although A2’s552

distribution is more sinuous than A1’s, both curves are553

fit well by power laws, using the method explained in554

the Appendix.555
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Table 1. Model distribution functions.

Cycle Initial distribution Final distribution

1 f
(1)
i = f0 f

(1)
f = f1

2 f
(2)
i = (1− t)f0 + tf

(1)
f = (1− t)f0 + tf1 f

(2)
f = (1− t)f1 + tf2 = f1 + t(f2 − f1)

3 f
(3)
i = (1− t)f0 + tf

(2)
f = (1− t)f0 + t [(1− t)f1 + tf2] f

(3)
f = (1− t)f1 + (1− t)tf2 + t2f3

= f1 + t(f2 − f1) + t2 (f3 − f2)

...
...

...

n f
(n)
i = (1− t)f0 + tf

(n−1)
f f

(n)
f = f

(n−1)
f + tn−1 (fn − fn−1)

f
(n)
i = (1− t)

n−1∑
j=0

tjfj + tnfn−1 f
(n)
f =

(
1− t
t

)
n∑
j=1

tjfj + tnfn

Each sequential cycle extends the range of energies for556

which the spectrum shows a power-law shape, i.e., the557

high-energy break Eheb increases with the number of vis-558

ited accelerators. The tail after Eheb has approximately559

the shape of an exponential decay and corresponds to560

the last terms of the sequence in Equation 11 and Table561

1. Examples of A2’s spectra are shown in Figure 10 for562

different final cycles n (color-coded) with transfer factor563

t = 0.001. Only n = 5 accelerators and a particle trans-564

fer factor t = 0.001 were needed to increase the energies565

of some particles by two orders of magnitude and form566

a power law.567

Three features of the distribution do not change much568

as the number of cycles increases. First, Eleb is essen-569

tially set by the initial cycle, and changes little for addi-570

tional cycles. Second, as shown in Figure 10, the spec-571

tral index does not change significantly as the number572

of visited accelerators increases. Third, as indicated in573

the annotations,
〈
E
〉

is nearly invariant. The process574

does not add much energy to the system, because only575

a very small fraction of energized particles is transferred576

to the next accelerator. The average energy is essen-577

tially that of f1, i.e., it is dominated by the acceleration578

of the ambient Maxwellian particles in f0.579

We emphasize that the transfer of particles between580

accelerators is assumed to be uniform across all ener-581

gies. Therefore, the large number of high-energy parti-582

cles is not an artifact of particle-acceleration or trans-583

fer mechanisms that favor particles with high ener-584

gies. The number of particles at lower/higher energies585

decreases/increases with each cycle, redistributing the586

population from one cycle to the next in such a way587

that the area under the curve and the average energy588

are maintained nearly unchanged throughout.589

To determine Eleb and Eheb, as well as spectral indices590

of final distributions, we modeled the central region as a591

power law CE−δ
′
, where C is a normalization constant.592

n = 1<È>
(1)

 = 4.3
n = 2<È>

(2)
 = 4.3

n = 3<È>
(3)

 = 4.3
n = 4<È>

(4)
 = 4.3

n = 5<È>
(5)

 = 4.3

A2
d¢= 5.651 ±  0.001
t = 0.001
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Figure 10. Each color-coded line shows f
(n)
f for different n

(annotated) and fixed t = 0.001 for a sequence of A2 accel-

erators. The final distribution f
(5)
f (red) overlaps the other

distributions except at high energies. The average energy
of each distribution is shown with color-coded annotations.
The black straight line is the fitted power-law ∼ E−δ

′
(δ′

is annotated in black) for the case n = 5, plotted between

fitted Eleb and Eheb for f
(5)
f . This line is shifted upward by

100.5 for visual clarity.

To estimate these parameters and their uncertainties,593

we developed an automatic curve-fitting procedure that594

requires minimal human intervention, as described in595

the Appendix. Examples of fitted power laws for t =596

0.001 are shown in Figures 9 and 10 (black solid lines).597

4.1. Dependence of Fitted Parameters on Transfer598

Factor t599

Previously, we presented results for accelerators A1600

and A2 using the fixed value t = 0.001 for the transfer601

factor t. The larger the transfer factor, the greater the602

number of particles that are transferred from one ac-603

celerator to the next. Hence, we expect more energetic604
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d¢= 8.8, t = 0.00001
d¢= 7.2, t = 0.0001
d¢= 5.7, t = 0.001
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Figure 11. Spectral index as a function of t. A2 distribu-
tions with n = 5 are shown in black and their fitted power-
law curves (color-coded solid lines) for several values of the
transfer factor t (color-coded annotations). Color-coded ver-
tical dotted lines show fitted low-energy breaks Eleb (left)
and high-energy breaks Eheb (right).

particles and harder spectral indices in the distributions605

with larger t. Figure 11 illustrates these effects for A2606

with n = 5. In addition, as t increases, we find that the607

bumps in the distribution become less pronounced. As608

explained in §5, this occurs because the weight of each609

cycle on the overall curve decreases.610

A visual inspection of Figure 11 suggests that all of611

the distribution functions converge to a single point near612

E = 15, which might imply a common low-energy break613

for all the curves. However, fitted Eleb and Eheb values614

(color-coded vertical dotted lines in the figure) decrease615

with transfer parameter t. Fitted low-energy breaks for616

A1 (blue) and A2 (red) are shown with crosses as func-617

tions of the transfer factor t and fixed n in Figure 12.618

Interestingly, although the low-energy breaks change619

with transfer factor, they are quite similar for the two620

accelerators. The reason for this weak dependence is621

explained in §5. The curves have an approximate log-622

arithmic dependence on t, with the low-energy breaks623

decreasing as the number of particles transferred be-624

tween accelerators increases and the number of particles625

in the power-law range increases. The range in low-626

energy breaks is small, varying over about 1 to 6 keV627

for an assumed background temperature of 2 MK (larger628

background temperatures would increase the low-energy629

breaks.)630

We found a similar decreasing trend for the fitted high-631

energy breaks as functions of the transfer factor t, plot-632

ted in Figure 13 for A1 (blue) and A2 (red). These633

curves show more pronounced differences between the634

accelerators than those in Figure 12. The high-energy635
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Figure 12. Eleb as a function of t. Crosses show fitted low-
energy break Eleb for A1 (blue) and A2 (red) as functions
of the transfer factor t for fixed n (annotated). The average
percent error is < 2%. Color-coded dashed lines are theoret-
ically predicted values of Eleb (Equation 22 in §5, with the
color-coded annotated r shown in Figure 6 and with α = 0).
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Figure 13. Eheb as a function of t. Crosses show fitted
high-energy break Eheb for A1 (blue) and A2 (red) as func-
tions of the transfer factor t for fixed n (annotated). The
average percent error is < 2.3%. Color-coded dashed lines
are theoretically predicted values of Eheb (Equation 23 in §5,
with the color-coded annotated r shown in Figure 6 and with
α = 0).

break shifts to lower energies as the transfer factor in-636

creases, as is evident in the A2 distributions in Fig-637

ure 11, although this seems counterintuitive: the curves638

roll over into their steep decline at higher energies for639

smaller transfer factors t, but the curves also have much640

smaller values at those higher-energy breaks. As t de-641
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creases, the somewhat arbitrary definition of Eheb for a642

smooth rollover has larger uncertainties for those cases643

with large bumps in the distribution (e.g., accelerator644

A2 in Figure 11).645
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A2, n = 5
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Figure 14. Number of particles in units of N (total number
of particles in each accelerator) in the power-law region as
a function of the transfer factor t for fixed n (annotated).
Accelerators A1 (A2) are represented by blue (red) crosses.
The largest relative error is of a factor of 2.25. Color-coded
dashed lines are theoretically predicted values of Npl (Equa-
tion 28 in §5, with the color-coded annotated r shown in
Figure 6 and with α = 0).

We also calculated the fractional number of high-646

energy particles in the power-law region between the647

low- and high-energy breaks, Npl. The results are shown648

in Figure 14 for A1 (blue) and A2 (red) as functions of649

the transfer factor t for fixed n (annotated). Npl closely650

follows a positive power-law trend versus t, showing how651

transferring more particles between accelerators yields652

more particles in the most energized region of the final653

distribution. The stronger accelerator, A2, has substan-654

tially more energized particles than the weaker accelera-655

tor, A1, especially at small transfer factors t. However,656

the number of particles is more sensitive to t for A1657

compared to A2, as indicated by the steeper slope of658

the blue curve in the figure. Augmenting the number659

of visited accelerators, n, in either case results in more660

particles in the power-law region of the spectrum as the661

high energy break occurs at higher energies.662

The fitted spectral indices δ′ as function of t for663

A1(blue) and A2 (red) are shown with crosses in Fig-664

ure 15. The indices follow a logarithmically decreasing665

dependence, indicating increasingly hard spectra, as the666

transfer factor t increases. The errors in the fitted spec-667

tral indices generally are less than 0.1%. A1’s spectral668
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Figure 15. Spectral index as a function of t for fixed n
(annotated). Fitted δ′ for A1 (A2) are shown with blue (red)
crosses. The average percent error is < 1%. Color-coded
dashed lines are theoretically predicted values of δ′ (Equation
17 in §5, with the color-coded annotated r shown in Figure
6 and with α = 0).

indices are larger (softer) than A2’s because A1’s energy669

gains in each cycle are smaller and, hence, change more670

slowly with t. The hardening of the spectrum for A2 at671

increasing values of t is evident in Figure 11.672

5. ANALYTICAL MODEL673

This section demonstrates that the key features of the674

numerical spectra from the previous section can be re-675

produced and analyzed with a fully analytical model676

with a simple assumption: particle acceleration is per-677

formed sequentially in accelerators with modest energy678

gains. This model emulates basic features of the fi-679

nal particle distribution, such as spectral index, energy680

breaks, bumps in the distribution, and other details of681

the energy distributions as functions of very few physical682

parameters.683

In this model, each accelerator evolves an initial par-684

ticle distribution into another distribution by means of685

an unspecified acceleration mechanism,. We simplify the686

details of the mechanism by assuming that each cycle in-687

creases the average particle energy by a factor r, which688

we denote the “efficiency” of the accelerator. This re-689

sults in a strictly exponential increase in the average690

energy, similar to that of the island-acceleration mech-691

anism shown in Figure 6. Distributions are assumed to692

be summed over pitch angle, so only energy dependence693

is considered. As before, all accelerators are assumed to694

have the same average characteristics, specifically t, r,695

and N . (Definitions of the model parameters are sum-696

marized in Table 2.)697
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Based on the distributions obtained for accelerator698

A2 (Figure 4), we assume that each cycle results in699

a final population described by an analytical function700

that scales in a self-similar way from its initial popula-701

tion, with the average energy increasing by the factor702

r. Two simple, well-known such distributions are rep-703

resented by the Maxwellian and exponential functions.704

These are special cases of a more general function of705

variables R (proportional to the average energy of the706

distribution) and α (α = 0 for exponential and α = 1/2707

for Maxwellian), all of which are listed in Table 3. In708

the Maxwellian case, the thermodynamic temperature709

is well defined, and each cycle simply heats the particles710

from temperature T to temperature rT .711

Table 2. Model parameters.

Symbol Definition

t Fraction of particles transferred

between accelerators

r Accelerator efficiency.

n Number of accelerators

visited by particles

N Total number of particles

in each accelerator

(distribution function

normalization constant)

712

713

Empirically, we found that the exponential function714

was a better fit for our simulated distributions from §4715

than the Maxwellian. Exponential fits e−E/R/R to A2716

distributions are shown in Figure 4 as black dashed lines717

for each cycled distribution. Fitted R values for A1 and718

A2, which are equal to
〈
E
〉

for exponential functions,719

are shown in Figure 6 with color-coded circles. The720

characteristic efficiency r for each accelerator was found721

by fitting the derived values of R as a function of each722

cycle j with function rj (see Table 3), resulting in r '723

2.117 for A1 and r ' 4.446 for A2 (also annotated in724

Figure 6). These values quantify in a simple way how725

much more efficient A2 is at accelerating particles than726

A1.727

For the sake of greater generality, however, we adopt728

the general analytical form from Table 3 in the follow-729

ing calculations because Maxwellian distributions are730

assumed so widely in solar-flare studies. With these as-731

sumptions, we construct the final distribution of a popu-732

lation formed by sequential acceleration with efficiency r733

and transfer factor t by explicitly substituting the gen-734

eral form of the functions fj (Table 3) into the final735

distribution function f
(n)
f (Equation 11):736

f
(n)
f =

(
1− t
t

) n∑
j=1

e−E/r
j

Γ(α+ 1)

(
E

rj

)α(
t

r

)j

+
e−E/r

n

Γ(α+ 1)

(
E

rn

)α(
t

r

)n
, (12)

where Γ(x) = (x− 1)! is the complete Gamma function737

(see footnote on Table 3).738
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A2, n = 5, r = 4.446

t = 0.001, α = 0

Figure 16. Final distributions as functions of E from Equa-
tion 12, with color-coded annotated parameters. r values are
fitted values for A1 and A2 (see Figure 6). Thick black curves
show Equation 26 evaluated for the finite sum j ∈ [−50,+50]

(Equation 24); thin black curves show the power law CE−δ
′

(shifted up slightly for clarity) using C from Equation 27 and
δ′ from Equation 17.

The supplemental Wolfram Mathematica note-739

book “Guidoni etal Suppl Math Notebook.nb” provides740

a widget that plots f
(n)
f (Equation 12), where the user741

can explore the parameter space (t, r, n, α).742

As an intermediate check, we constructed distribu-743

tions from Equation 12 using t = 0.001, α = 0, and744

the fitted values of r for A1 and A2 and compared them745

to the simulated data in Figure 9. The analytical curves746

in that figure (dashed lines) have been shifted down for747

visual clarity because they overlap the simulated curves,748

corroborating our results. These curves are also plotted749

with blue and red solid lines in Figure 16 to be compared750

to other curves presented in this section.751

The average energy of f
(n)
f is evaluated (using Table 3752

and Equation 12) and expressed in the alternative forms753

〈
E
〉(n)

=
Γ(α+ 2)

Γ(α+ 1)

[
r(1− t)− (tr)n(r − 1)

1− tr

]
(13)

=
Γ(α+ 2)

Γ(α+ 1)

[
r + (r − 1)tr

1− (tr)n−1

1− tr

]
.
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Table 3. Distribution functions for the analytical model.

Type Functional Form f Iterative Form fj Average Energy

with R = rj
〈
E
〉
j

=
〈E〉j
kBT

General Form
1

Γ(α+ 1)

(
E

R

)α
e−E/R

R

1

Γ(α+ 1)

(
E

rj

)α
e−E/r

j

rj
Γ(α+ 2)

Γ(α+ 1)
R =

Γ(α+ 2)

Γ(α+ 1)
rj

Exponential (α = 0)
e−E/R

R

e−E/r
j

rj
R = rj

Maxwellian (α = 1
2
)

2√
π

√
E

R

e−E/R

R

2√
π

√
E

rj
e−E/r

j

rj
3

2
R =

3

2
rj

Γ: complete Gamma function, where Γ(x) = (x− 1)!, with x ∈ R (Γ(1) = 1,Γ(3/2) =
√
π/2).

In the limit tr � 1, only the leading r term in the754

brackets above is important, and
〈
E
〉(n) ≈

〈
E
〉(1)

, the755

average energy after the first cycle. In this case, as ex-756

plained in §4, not much additional energy is gained sub-757

sequently by the system. This is illustrated in Figure 10,758

where
〈
E
〉(n)

essentially is unchanged as more cycles are759

added beyond n = 1.760

We demonstrate that the middle-energy range of f
(n)
f761

approximates a power law in E by writing Equation 12762

in the form763

f
(n)
f =

(
1− t
t

)
E
−δ′

Γ(α+ 1)
g

(n)
f , (14)

where764

g
(n)
f =

n∑
j=1

e−E/r
j

(
E

rj

)α
E
δ′
(
t

r

)j
+

(
t

1− t

)
e−E/r

n

(
E

rn

)α
E
δ′
(
t

r

)n
. (15)

The above equation takes a simple form if we define the765

auxiliary variable x,766

x≡ logE, (16)

and choose767

δ′= 1− log t

log r
, (17)

whence t/r = r−δ
′
. Note that δ′ > 1 because t < 1 and768

r > 1; furthermore, δ′ is large if tr � 1.769

We then obtain the expression770

g
(n)
f (x) =

n∑
j=1

g (x− j log r)

+

(
t

1− t

)
g (x− n log r) . (18)

The function g(x) is defined by771

g(x) = e−10x+(α+δ′) ln 10x

. (19)

xxm xm,1

g(x) g(x - log r)

Δxm = log r

Δxw

Figure 17. Sketch of the function g(x) in Equation 19 (red)
and its parameters, along with the next shifted pulse (green).
For this example, α = 0, r = 4.446 (fitted value for A2), and
t = 0.001 (same t as in Figure 9).

Equation 18 is a sum of positive, equally-shaped pulse-772

like functions g(x) spaced at equal intervals log r. Two773

examples of consecutive pulses, g(x) and g(x−log r), are774

shown in Figure 17. g(x) attains its maximum value at775

xm = log (α+ δ′) and decays in both directions from its776

peak, at the rate (α+ δ′) ln 10 in the negative direction777

and at rate −10x ln 10 in the positive direction. Each j778

term in the g
(n)
f expansion, peaks at779

xm,j =xm + j log r (20)

The sum of the pulses in Equation 18 results in780

a function localized in the region between xm,1 and781

xm,n, which quickly decays to zero outside this inter-782

val. An example of g
(n)
f is shown in Figure 18 (solid783
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1 2 3 4
x= log E

Figure 18. Sketch of the function g
(n)
f (x) (Equation 18,

solid blue). For this example, α = 0, r = 2.117 (fitted value
for A1), and t = 0.001 (same t as in Figure 9). Each term
of the sum in Equation 18 is drawn with a black dashed
line (pulse-like curves). The left (right) vertical segment in
black is located at the maximum of the first (last) pulse,
xm,1 (xm,n), marking the approximate start (end) of the

power-law-like region of f
(n)
f . Black circles indicate fitted

logEleb (left) and logEheb (right) for A1 accelerators (§4.1,
dashed vertical blue lines in Figure 9). Sinusoidal dashed
blue curve shows Equation 24 evaluated for the finite sum
j ∈ [−10n,+10n] with n = 9. Horizontal dashed blue line
shows F0, the Fourier coefficient k = 0 in Equation 25.

blue), where each term (pulse) of the sum in Equa-784

tion 18 is shown with a dashed black line. g
(n)
f oscil-785

lates about an approximate constant value (e.g., hori-786

zontal blue dashed line in Figure 18) in the region be-787

tween xm,1 and xm,n (vertical black segments in Fig-788

ure 18). The supplemental Wolfram Mathematica note-789

book “Guidoni etal Suppl Math Notebook.nb” provides790

a widget that plots g
(n)
f as in Figure 18, where the user791

can explore the parameter space (t, r, n, α).792

The oscillation amplitude of g
(n)
f decreases (increases)793

as the overlap between its pulses increases (decreases)794

because the weight of each pulse (cycle) on the overall795

curve decreases (increases). It is straightforward to show796

from Equation 19 that, at the location of its maximum,797

xm = log (α+ δ′), the maximum value of g(x) and its798

second derivative are respectively799

g(xm) =

(
α+ δ′

e

)α+δ′

and (21)

g′′(xm) =− (α+ δ′) g(xm)(ln 10)2.

The above second derivative g′′ (xm) shows that the800

pulse typically is localized about x = xm. The801

pulse width is then ∆xw ' 2
√
−g(xm)/g′′(xm) =802

2 (α+ δ′)
−1/2

/ ln 10. Therefore, for a fixed pulse peak803

separation (fixed r), the width of a pulse (and conse-804

quently its overlap with neighboring pulses) increases805

with t (δ′ decreases with t, see Equation 17). In Figure806

11, for example, the oscillations of the distributions de-807

crease in amplitude with increasing t because the width808

of the pulses that compose g
(n)
f increase with that pa-809

rameter.810

For a large portion of the (t, r, n) parameter space,811

therefore, f
(n)
f can be approximated by a power-law with812

spectral index δ′ modulated by the g
(n)
f oscillations (see813

Equation 14). Figure 15 shows the predicted δ′ val-814

ues for A1 and A2 from Equation 17 (dashed), which815

agree closely with the fitted values determined in §4.1816

(crosses).817

Converting xm,1 to energy, we obtain for the approx-818

imate location of the low-energy break819

Eleb∼10xm,1 = (α+ δ′) r = (α+ 1) r − r log t

log r
. (22)

This result is consistent with accelerators A1 and A2820

having Eleb with an approximate logarithmic depen-821

dence on t, as shown in Figure 12 (where Equation 22 is822

shown with color-coded dashed lines for r = 2.117 and823

r = 4.456). The nearly identical slopes for A1 and A2,824

despite their very different efficiencies — r ≈ 2 (A1) and825

r ≈ 4 (A2) — are a consequence of the similar ratios:826

r/ log r ≈ 2/ log 2 ≈ 4/ log 4. For comparison, the cor-827

responding fitted Eleb in log space from Section 4.1 is828

shown with the left black circle in Figure 18.829

Similarly, the high-energy break of the power law oc-830

curs near the last (j = n) peak,831

Eheb≈10xm,n ≈ (α+ 1) rn − rn log t

log r
. (23)

This result is consistent with A1 and A2 having sim-832

ilar high-energy breaks Eheb, as illustrated by Fig. 13833

(where Equation 23 is shown with color-coded dashed834

lines). Essentially, the difference in the number of vis-835

ited accelerators compensates for the difference in effi-836

ciencies. The high-energy breaks for A1 and A2 differ837

somewhat more than their low-energy breaks, and the838

variations with log t deviate rather more from the linear839

relationship indicated by Equation 23. The fitted Eheb840

in log space from Section 4.1 is marked by the right black841

circle in Figure 18.842

The extent of the power law is then Eheb/Eleb '843

10(n−1) log r. The smaller (larger) the efficiencies of the844

accelerators, the larger (smaller) the number of cycles845

required to develop a power law of a given range. Fig-846

ures 9 and 16 demonstrate that A1 accelerators need 9847

cycles to achieve a similar power-law range as 5 cycles848

of A2 accelerators (8 log 2.12 ' 4 log 4.45 ' 2.6). Ad-849

ditional cycles with a given efficiency also extend the850

region of the power law.851

To determine the approximate constant value about852

which g
(n)
f oscillates, we note that in that region the853
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contributions of terms in Equation 18 that peak toward854

the ends of the power-law energy range become increas-855

ingly small near the center of the range; in particular,856

if t is small, the pulses are narrow and the last term in857

the sum is negligible. As an approximation, therefore,858

we extend the summation in Equation 18 to include all859

integers j < 1 and j > n:860

g
(n)
f ≈ g

∞
f ≡

+∞∑
j=−∞

g (x− j log r) . (24)

An example of Equation 24 evaluated for the finite sum861

j ∈ [−10n,+10n] with n = 9 is shown with the sinu-862

soidal blue dash line in Figure 18. Using more terms863

does not change the results at the resolution of the864

graph. The approximate form g∞f in Equation 24 is865

explicitly periodic in x with period log r. Hence, it can866

be expressed as a Fourier series867

g∞f =

+∞∑
k=−∞

ei2πkx/ log rFk, (25)

where Fk is the Fourier coefficient of mode k in the868

space x/ log r ∈ [−1/2, 1/2]. g∞f oscillates about F0,869

the value of the Fourier coefficient for k = 0. Figure870

18 shows F0 for A1 with a horizontal blue dashed line.871

The remaining coefficients for k 6= 0 are the amplitudes872

of oscillatory contributions to the full distribution that873

cause the latter to deviate from the strict power law.874

From Equation 14, in the power-law region875

f
(n)
f ≈

(
1− t
t

)
E
−δ′

Γ(α+ 1)
g∞f . (26)

Thick black lines in Figure 16 show Equation 26 solved876

with g∞f from Equation 24, evaluated for the finite sum877

j ∈ [−50, 50]. Using more terms does not change the878

results at the resolution of the graph. For both cases879

shown in the Figure, the results very closely overlay the880

exact (blue and red) curves within the relevant power-881

law ranges, and extend them smoothly to energies be-882

yond both the low- and high-energy breaks.883

The normalization constant of the power law is884

C ≈
(

1− t
t

)
F0

Γ(α+ 1)
, (27)

C is displayed in Figure 19. Analytical values (Equa-885

tion 27, dashed) coincide with the fitted values (crosses)886

for accelerators A1 (blue) and type A2 (red) from Sec-887

tion 4.1, determined with the method described in the888

Appendix. The thin black curves in Figure 16 show the889

analytical power-law CE
−δ′

(shifted up slightly for clar-890

ity) with C from Equation 27 and δ′ from Equation 17.891
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A2, n = 5, r = 4.446
A1, n = 9, r = 2.117

Figure 19. Analytical values of normalization constant C
(Equation 27, dashed lines) for the color-coded annotated
parameters. r values are fitted values for A1 and A2 (see
Figure 6). Crosses show fitted C for A1 (blue) and A2 (red)
from fitting power-laws to the distributions in §4.1, as de-
scribed in the Appendix.

We estimated the number of particles in the power-law892

region by integrating893

Npl =

∫ Eheb

Eleb

CE
−δ′

dE

=

(
1− t
t

) F0

(
E

1−δ′
heb − E

1−δ′
leb

)
Γ(α+ 1)(1− δ′)

(28)

Figure 14 compares the analytical (dashed) and numer-894

ical (crosses) values of Npl. The analytical calculations895

underestimate the number of non-thermal particles be-896

cause the analytical approximations for Eleb (Equation897

22) and Eheb (Equation 23) are larger and smaller, re-898

spectively than the fitted values (crosses in Figure 12899

and 13). Almost identical results are obtained by inte-900

grating the distribution function in Equation 12. Ana-901

lytical Equations B7, B8, and B9 in the Appendix can902

be used to estimate the differences in Npl between a903

power law and the distribution function in Equation 12.904

In summary, in this section we have shown that, for905

a large range of the (t, r, n) parameter space, sequen-906

tially accelerated-particle distributions have a range in907

energy where they can be approximated by a power law908

with spectral index δ′ (Equation 17). In addition, key909

features of the power law, such as energy breaks and910

number of non-thermal particles, can be estimated an-911

alytically and easily interpreted from few physical pa-912

rameters.913

6. DISCUSSION914

We have investigated the acceleration of particles in915

the flaring solar corona by sequences of magnetic is-916

lands that form, contract, and are transported within917
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the flare current sheet. Numerous islands populate the918

sheet, as has been shown by many eruptive-flare simula-919

tions, and by high-resolution, high-cadence observations920

of the Sun. In our previous study (Guidoni et al. 2016),921

we analyzed the evolution of a few of these islands and922

their enclosed flux surfaces to determine their efficacy923

at accelerating particles. We found a maximum energy924

multiplication factor Emax ≈ 4 for the cases examined.925

This is significant, but it is not nearly sufficient to ex-926

plain the high energies and power-law distributions of927

the electrons that generate hard X-rays in flares.928

Consequently, in this paper we have investigated the929

effect of accelerating particles through multiple islands.930

With an energy gain E = 4 in each island, particles must931

visit only a few islands to increase their energies by or-932

ders of magnitude. For example, n = 5 such accelerators933

increase the energies of some particles by a cumulative934

factor Etot ≈ 1000. We constructed sequences of dis-935

tribution functions by assuming that a fraction t of the936

particles accelerated in one island are transferred to the937

next island to receive another energy boost by a factor938

r.939

The distribution of ambient non-accelerated particles940

at each stage is assumed to be an isotropic Maxwellian.941

For the island acceleration process studied here, the dis-942

tribution of accelerated particles becomes increasingly943

anisotropic at each stage in the sequence. The degree of944

anisotropy depends upon the relative roles of betatron945

and Fermi acceleration in the contracting island, i.e., on946

the detailed changes in the island’s size and shape as it947

traverses the flare current sheet.948

For our analysis, we did not separate mirroring from949

transiting populations as particles jump among accelera-950

tors because it is not clear how to characterize a change951

in pitch angle as particles move between accelerators.952

The total population (mirroring and transiting) was con-953

sidered for the calculation of final spectra.954

We showed that the fitted spectra of the resulting en-955

ergy distribution functions consist of a smooth, flat re-956

gion at low energies, an approximately power-law region957

at intermediate energies, and a region with a sharply de-958

creasing profile at high energies. The three regions are959

separated by low- and high-energy breaks. The power-960

law-like region presents some small bumps due to each961

acceleration cycle. For our simple model, we have as-962

sumed that particles are accelerated in a bath of accel-963

erators whose properties can be described by averaged964

quantities. On the Sun, it is likely that the signal will965

come from this process will occur in multiple acceler-966

ators with different populations and values of the key967

parameters. The effect of inhomogeneous accelerators968

on the electron and photon spectra needs to be investi-969

gated.970

We found that increasing the number n of visited ac-971

celerators shifts the high-energy break to ever-higher en-972

ergy, as expected, but it does not significantly change973

the spectral index δ′ of the power-law region. In con-974

trast, δ′ depends sensitively upon the efficiency r of the975

accelerators: larger r broadens the distribution of each976

cycle more effectively than smaller r, so the index de-977

creases and the spectrum becomes harder as r increases.978

This is illustrated by the contrast between the distribu-979

tions obtained with accelerators A1 and A2. Similarly,980

larger t also broadens the distribution more effectively981

than smaller t, so that as with r, the index decreases982

and the spectrum becomes harder as t increases.983

To gain further insight into the results, we explored984

a simplified analytical model that emulates the aver-985

age energy-amplification effect of the multiple-island986

acceleration mechanism while ignoring the effects on987

the isotropy of the distribution function. We found988

an analytical expression for the spectral index, δ′ =989

1−(log t)/(log r), that replicates not only the qualitative990

features of our numerical results for the multiple-island991

model, but also the quantitative values of the index pre-992

dicted by our numerical model. The analytic expression993

shows explicitly how changes in the transfer factor t and994

the efficiency r modify the index of the central power-995

law region of the energy spectrum.996

Our results also can be used to determine the transfer997

factor t required to produce a measured spectral index998

δ′, given an input efficiency r: t = r1−δ′ . For an ef-999

ficiency r = 4 (our accelerator A2) and index δ′ = 5,1000

for example, t = 4 × 10−3. This is a tiny fraction of1001

the particles resident in any island, but it is sufficient to1002

produce a power law in the range typically inferred from1003

solar-flare observations. The required transfer factor t1004

depends strongly upon the efficiency r, however. For1005

r = 2 (our accelerator A1), as an example, t = 6×10−2,1006

more than an order of magnitude greater than for the1007

first case. On the other hand, we expect that efficiencies1008

larger than r = 4 might result for islands formed in flare1009

current sheets with different parameters than those in1010

our original simulated eruptive flare/CME (a more com-1011

pact active-region source, higher field strengths, lower1012

plasma β, etc.). If so, the necessary transfer factor t1013

would be smaller for the same index δ′, or the index1014

would be smaller for the same transfer factor.1015

For simplicity, we assumed that t is independent of en-1016

ergy in both the detailed modeling of the multiple-island1017

mechanism and the streamlined analytical model. Our1018

aim was to avoid artificially skewing the results toward1019

producing power laws by supposing that the transfer1020
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of high-energy particles is more probable than that of1021

low-energy particles. Because the high-energy particles1022

actually are responsible for the power-law distribution,1023

however, it seems likely that the transfer factor at the1024

high-energy end of the spectrum ultimately determines1025

the effective value of the transfer factor. In any case, a1026

quantitative determination of t, via test-particle simula-1027

tions or transport theory or some other means, would be1028

invaluable, but is well beyond the scope of the present1029

investigation.1030

Also for simplicity, we further assumed that both t1031

and r were the same throughout the sequence, as the1032

particles were accelerated from one island to the next.1033

Changes in the temperature T of the bulk distribution1034

over the lifetime of an island were ignored, as well. In1035

the strongly time-varying environment of a flaring cur-1036

rent sheet, all of these assumptions oversimplify the ac-1037

tual coronal evolution but enable us to make analyti-1038

cal progress and to interpret the results readily. On the1039

other hand, the analytical model shows that the spectral1040

index varies only logarithmically with the parameters r1041

and t. This weak dependence moderates the influence of1042

relatively small – factor-of-two or so – variations in the1043

parameters from time to time, or from point to point,1044

within a single flare current sheet, or even from the cur-1045

rent sheet in one flare to that in another. The ranges in1046

the parameters r and t that are relevant to solar flares1047

might be sufficiently limited to yield only a relatively1048

narrow range of expected spectral indices δ′.1049

The spectra of our analytical model can be easily used1050

as injection populations in codes that model the trans-1051

port of flare-accelerated particles from the top of flare1052

arcades to their eventual thermalization at the solar sur-1053

face (e.g., Allred et al. 2020). The small number of1054

parameters of our model simplifies the parameter-space1055

exploration of the injection population when comparing1056

the output of these codes with observed photon spectra.1057

Determining r, t, and n in this way provides average1058

physical conditions of the acceleration region.1059

The hardest spectrum, i.e., the smallest value of the1060

spectral index δ′, is determined by the largest attain-1061

able values of r and t in combination. The highest en-1062

ergy that can be attained by a significant population of1063

accelerated particles then is determined by n, the num-1064

ber of islands that a particle visits before it leaves the1065

acceleration region. Assuming that thermal particles in1066

the initial distribution are efficiently accelerated, the fi-1067

nal distribution of particles is expected to extend over1068

an energy range from E ≈ 1 to E ∼ rn. The number1069

of particles in the distribution falls by a factor rn as1070

the number of particles is conserved during the accel-1071

eration process. For large transfer factors t . 1, these1072

limits roughly define the extent of the power-law region1073

of the distribution function. For smaller transfer fac-1074

tors t � 1, on the other hand, the power-law region1075

shifts toward higher energies on both the low- and high-1076

energy sides. The number of particles in the distribution1077

declines steeply as the energy breaks shift. Hence, al-1078

though the power-law region continues to span a large1079

range in energy, it contains an increasingly small frac-1080

tion of the particles as the transfer factor t decreases.1081

Altogether, our results suggest that particle accelera-1082

tion during the contraction of multiple magnetic islands1083

in current sheets may produce the high-energy particles1084

that emit observed hard X-rays and microwaves in solar1085

flares. Given a characteristic energy amplification factor1086

r within single islands in the sheet, ultimately accelerat-1087

ing many particles to high energies requires a significant1088

fraction, t, of the particles to be transferred from one1089

island to the next in the sequence, and for the parti-1090

cles to visit a sufficient number of islands, n, to achieve1091

the needed energies. Our MHD simulations of eruptive1092

flares have yielded initial values of r . 5 by exploring1093

a limited parameter space that should be extended to1094

include more compact flare source regions with higher1095

magnetic-field strengths. Such simulations also could1096

be used to determine the achievable values of the trans-1097

fer factor t and the number of visited accelerators n,1098

by coupling the MHD model with a test-particle track-1099

ing model. This ambitious goal must be left to future1100

investigations.1101

Additional effects beyond the purview of MHD and1102

test-particle tracking are important in a fully rigorous1103

treatment of the problem of flare-particle acceleration1104

in coronal current sheets. First, we find the particle1105

distributions that result from the process to be highly1106

anisotropic. In a fully self-consistent kinetic calcula-1107

tion using PIC methods or the Vlasov-Maxwell equa-1108

tions, such particle distributions could initiate microin-1109

stabilities that induce electromagnetic field fluctuations.1110

These fluctuations, in turn, would scatter the charged1111

particles, altering the distribution of particle energies1112

and angles from those calculated here. We point out1113

that such effects could become important for any model1114

of flare-particle acceleration that generates anisotropic1115

distributions; this outcome is not limited to our sim-1116

ple model based on adiabatic invariants of the particle1117

motion.1118

Second, as in any test-particle calculation, there is1119

no back reaction from the accelerated flare particles to1120

the bulk plasma and magnetic field. In addition to in-1121

ducing electromagnetic fluctuations, as just mentioned,1122

the energized particles will exert their own thermal- and1123

kinetic-pressure forces on the bulk plasma, carry electric1124
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currents, and drain energy from the magnetic field. All1125

of these effects would modify the evolution of the sys-1126

tem away from any elementary MHD description that1127

does not account for them. This outcome, also, is not1128

limited specifically to our model, and it could substan-1129

tially alter the calculated particle distributions from the1130

feedback-free case.1131

These very challenging issues are being addressed by1132

recent model advances developing from multiple per-1133

spectives. If kinetic-scale electric fields are not essential1134

to the evolution of the system, as has been suggested by1135

analyses of PIC simulations of particle acceleration by1136

magnetic islands, one can apply a nonlinearly coupled,1137

hybrid fluid/particle model suitable for collisional plas-1138

mas (Drake et al. 2019; Arnold et al. 2019; Arnold et al.1139

2021). If the plasma is collisionless and turbulent, on1140

the other hand, as is the case in the solar wind, guiding-1141

center kinetic transport theory can be used to develop1142

reduced prescriptions, including focused-transport the-1143

ory and Parker transport equations, that describe the1144

acceleration of particles by contracting and merging in-1145

terplanetary flux ropes (Zank et al. 2014; le Roux et al.1146

2015, 2018; Zhao et al. 2018; Adhikari et al. 2019). All of1147

these developments seek to bridge the immense gulf be-1148

tween the governing macroscopic and microscopic scales1149

at the Sun and in the heliosphere, and, at least in part,1150

to explain the origin of high-energy particles in the solar1151

system.1152
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APPENDIX1153

A. SPECTRAL FITTING METHOD1154

Here we describe the automatic curve-fitting procedure used to estimate Eleb, Eheb, power-law parameters C and1155

δ′, and their uncertainties that requires minimal human intervention.1156

The following procedural steps are performed with a (preferably) large number of iterations m, in each of which a1157

small percentage p of randomly selected points (3 points for the results in this paper) is withheld from the distribution1158

to validate the model. For each resampled subset of points:1159

1. Manually initialize the high-energy break of the distribution, Eheb: Visually determine an approximate1160

value for Eheb. This is the only manual step of the whole procedure, and the selected value does not have to be1161

very accurate.1162

2. Fit a power law in the energy range (Ei, Eheb), for all Ei below Eheb: For each Ei, perform a linear fit1163

to determine C and δ′.1164

3. Estimate the low-energy break Eleb : For each fitted power law, perform a Kolmogorov-Smirnov goodness-1165

of-fit statistical test by computing the maximum of the absolute value of the difference between the empirical1166

and theoretical complementary cumulative functions for each Ei (Clauset et al. 2009; Virkar & Clauset 2014).1167

The complementary cumulative functions are computed between energies Ei < Ed < Eheb and 0 < Ei < Eheb1168

as follows1169

F (p)(Ei, Ed) =

∫ Ed

Ei

CE
−δ′

dE (A1)

F (f)(Ei, Ed) =

∫ Ed

Ei

f
(n)
f dE. (A2)

Define a function F (Ei) as the maximum of the absolute value of the difference between the above complementary1170

cumulative distributions1171

F (Ei) = Max
∣∣∣F (p)(Ei, Ed)− F (f)(Ei, Ed)

∣∣∣ . (A3)

F (Ei) may have several local minima due to the bumps in the distributions of each cycle. Eleb is chosen as the1172

energy Ei that corresponds to the first local minimum (lowest energy) of F (Ei).1173
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4. Estimate the high-energy break Eheb: Due to the much smaller values of the particle distribution function1174

at high energies, we chose a method where small fluctuations have less impact. We computed the difference1175

in area under the logarithm of the empirical and theoretical distribution functions. These areas in logarithmic1176

space x = logE are1177

logF (p)(Ed) =

∫ xd

xleb

log
(
CE
−δ′)

dx =

∫ Ed

Eleb

[
log(C)− δ′ log[E]

] dE

E ln(10)
(A4)

logF (f)(Ed) =

∫ xd

xleb

log[f
(n)
f ]dx =

∫ Ed

Eleb

log[f
(n)
f ]

dE

E ln(10)
. (A5)

Then, we define a function logF as the absolute value of the difference between the areas defined above1178

logF (Ed) =
∣∣∣logF (p)(Ed)− logF (f)(Ed)

∣∣∣ . (A6)

Eheb is chosen as the Ed that corresponds to the last local minimum (highest energy) of logF (Ed). It is worth1179

noticing that the bump at t = 0.05 for the A1 high-energy break in Figure 13 remains after changing the seed of1180

the random generator of the fitting method.1181

5. Determine C and δ′: Perform a final linear fit in the energy range (Eleb, Eheb), to determine C and δ′.1182

The final Eleb, Eheb, C, and δ′ and their uncertainties are calculated as the mean and the standard deviation over1183

the m iterations of the quantities estimated in the above procedure. To find local minima in noisy data, we smoothed1184

differences in empirical and theoretical data with a box of width = 11 points.1185

B. ANALYTICAL PROCEDURE1186

Here we provide an alternative method to estimate energy breaks for the analytical distribution functions in §5 using1187

a similar method to the one described in §A.1188

1. Use Equation 23 as initial approximation for Eheb.1189

2. Use C and δ′ from Equations 27 and 17, respectively.1190

3. The complementary cumulative functions (Equations A1 and A2) in this case are1191

F (p)(Ei, Ed) =

(
1− t
t

)
F0

Γ(α+ 1)(1− δ′)

(
E

1−δ′
d − E1−δ′

i

)
(B7)

F (f)(Ei, Ed) =
−1

Γ(α+ 1)

(1− t
t

) n∑
j=1

tjΓ
(
α+ 1, E/rj

)
+ tnΓ

(
α+ 1, E/rn

)∣∣∣∣∣∣
Ed

Ei

, (B8)

where Γ (α+ 1, y) = −
∫
e−yyαdy is the Incomplete Gamma Function.1192

Here, we set Eleb equal to the Ei that corresponds to the first local minimum (lowest energy) of F (Ei) (Equation1193

A3 with F (p) and F (f) from Equations B7 and B8, respectively).1194

4. It is straightforward to show that in this case Equation A6 can be expressed as1195

logF (xd) =

∣∣∣∣∫ xd

xleb

log
[
g

(n)
f

]
dx−F0 (xd − xleb)

∣∣∣∣ . (B9)

Here, we set Eheb equal to Ed = log(xd) with xd equal to the last minimum (highest energy) of logF (xd).1196

Even though more consistent with the method of §A, the above method is considerably computationally more1197

expensive than estimating energy breaks from the approximative Equations 22 and 23.1198

REFERENCES

Adhikari, L., Khabarova, O., Zank, G. P., & Zhao, L. L.1199

2019, ApJ, 873, 72, doi: 10.3847/1538-4357/ab05c61200

Alaoui, M., & Holman, G. D. 2017, ApJ, 851, 78.1201

https://arxiv.org/abs/1706.038971202

http://doi.org/10.3847/1538-4357/ab05c6
https://arxiv.org/abs/1706.03897


Spectral Power-law Formation by Sequential Particle Acceleration 21

Alaoui, M., Krucker, S., & Saint-Hilaire, P. 2019, Solar1203

Physics, 294, 105, doi: 10.1007/s11207-019-1495-61204

Allred, J. C., Alaoui, M., Kowalski, A. F., & Kerr, G. S.1205

2020, The Astrophysical Journal, 902, 16,1206

doi: 10.3847/1538-4357/abb2391207

Antiochos, S. K. 1998, ApJL, 502, L1811208

Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999,1209

ApJ, 510, 4851210

Arnold, H., Drake, J. F., Swisdak, M., & Dahlin, J. 2019,1211

Physics of Plasmas, 26, 102903, doi: 10.1063/1.51203731212

Arnold, H., Drake, J. F., Swisdak, M., et al. 2021, PhRvL,1213

126, 135101, doi: 10.1103/PhysRevLett.126.1351011214
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