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Abstract
Daytime heat is often associated with reduced soil moisture and cloud cover, while nighttime heat
is connected to high humidity and increased cloud cover. Due to these differing mechanisms,
compound daytime and nighttime heat events may respond differently to major anthropogenic
forcings (greenhouse gases, anthropogenic aerosols, land-use and land-cover change). Here, we use
GISS ModelE2.1-G historical single-forcing runs from 1955 to 2014 to examine how individual
anthropogenic forcings affect compound heat events—specifically warm daytime and nighttime
temperatures compounded with dry precipitation or high humidity conditions. We show that
greenhouse gases alone amplify the natural frequency of warm-dry events by 1.5–5 times and
warm-humid events by 2–9 times in tropical and extratropical latitudes. Conversely, aerosols and
land-use/land-cover change reduce the frequency of these events, resulting in more modest
increases and in some regions, declines, in the historical ‘all-forcings’ scenario. Individually, aerosol
effects are stronger and more widespread compared to land-use, oftentimes reducing the natural
frequency of these events by 60%–100%. The responses of these compound events are primarily
driven by changes in daytime and nighttime temperatures through large-scale warming via
greenhouse gases and cooling from aerosols and land-use/land-cover change. However, changes in
warm-dry events are amplified in regions with concurrent precipitation declines (e.g. Central
America, Mediterranean regions) and warm-humid events are amplified by global concurrent
humidity increases. Additionally, we find differences between daytime and nighttime compound
responses in the historical experiment that can be traced back to the individual forcings. In
particular, aerosols produce a greater cooling effect on daytime relative to nighttime temperatures,
which notably results in a historical reduction of Northern Hemisphere daytime warm-dry events
relative to natural conditions. Our analysis provides a more comprehensive understanding of the
significant impacts of different anthropogenic climate forcings on daytime and nighttime
warm-dry and warm-humid events, informing future risk and impact assessments.

1. Introduction

Human activities have caused regional and large-
scale changes in the Earth’s climate through sev-
eral anthropogenic forcings (IPCC 2021). Rising
greenhouse gas concentrations have driven significant
global temperature increases, changes in precipitation

patterns, and the increasing frequency and intensity
of extreme events, including heatwaves, extreme rain-
fall, and droughts (Hegerl et al 1997, Christidis et al
2005, Seneviratne et al 2012, Easterling et al 2016,
Marvel et al 2019). Anthropogenic aerosols have
cooled temperatures by increasing regional albedo
levels (Charlson et al 1992). Aerosols have also
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been hypothesized to influence large-scale circulation
changes through asymmetrical surface temperature
changes, resulting in late 20th century drying in
Northern Hemisphere monsoonal regions (Bollasina
et al 2011, Polson et al 2014). Moreover, land cover
and land management practices have driven changes
in regional climate conditions. Irrigation has mod-
erated temperatures through latent heat flux changes
(Cook et al 2015, Thiery et al 2017, Singh et al 2018),
while deforestation has been linked to contrasting
local and non-local climate changes (Christidis et al
2013, Findell et al 2017, Winckler et al 2019).

Of the many changes attributed to anthropogenic
climate change, changes in compound events will
contribute to some of the most severe societal and
environmental impacts, but are still not well under-
stood (Zscheischler et al 2020, Zhang et al 2021).
Compound events can be defined as the combin-
ation of multiple climate processes associated with
negative impacts (Zscheischler et al 2018), and those
associated with extreme heat are especially signific-
ant (Mazdiyasni and AghaKouchak 2015, Li et al
2020). Compound hot and dry precipitation events
have been shown to produce amplified impacts on
ecosystem health and food production, and can lead
to severe wildfires and power grid failures (Allen
et al 2015, AghaKouchak et al 2020, Ribeiro et al
2020). Compound hot and humid conditions are also
extremely dangerous for human health and can amp-
lify heat-related morbidity and mortality rates (Li
et al 2020, Raymond et al 2020). With future warm-
ing, compound hot events are expected to become
more frequent and intense due to changing temper-
ature distributions alongside changes in the depend-
encies of interrelated variables (Zscheischler et al
2020). Improving our understanding of compound
hot events is therefore relevant for climate change
preparedness. Critically, while daytime and night-
time temperatures are generally governed by the same
overlying atmospheric conditions (Perkins 2015),
different mechanisms may affect how these events
respond to climate forcings. Daytime heat is often
associated with dry soil moisture conditions, reduced
cloud cover, and can be sensitive to land-atmosphere
interactions; conversely, nighttime heat is typically
associated with high humidity and increased cloud
cover (Thomas et al 2020). It is therefore possible that
daytime and nighttime compound heat responses
may differ across anthropogenic forcings.

To study the individual contributions of each
major anthropogenic forcing to changes in com-
pound heat event occurrences, we used data
from Goddard Institute for Space Studies (GISS)
ModelE2.1-G Coupled Model Intercomparison Pro-
ject: Phase 6 (CMIP6) Detection and Attribution
Model Intercomparison Project (DAMIP) single-
forcing runs (Gillett et al 2016). Using monthly max-
imum and minimum temperatures to represent day-
time and nighttime temperatures, we examined four

compound events representing ‘warm-dry’ (warm
maximum/minimum temperature co-occurring with
low precipitation) and ‘warm-humid’ (warm max-
imum/minimum temperature co-occurring with
high specific humidity) conditions. We focused on
meteorological drought and high humidity due to
the severe environmental and agricultural impacts
associated with these events (Madadgar et al 2017,
Harpold and Brooks 2018, Matthews 2018). With
these event pairs, we investigated how individual
anthropogenic greenhouse gas, aerosol, and land-
use/land-cover forcings affect the frequency of these
compound events.

2. Methodology

2.1. Data
We used monthly maximum and minimum tem-
peratures, precipitation, and specific humidity data
from five ensemble members (r[1–5]i1p1f2) from
GISS ModelE2.1-G CMIP6 DAMIP historical single-
forcing runs from the most recent 60 years of avail-
able data, 1955–2014 (NASA/GISS 2018). The GISS
Model E2.1-G is one of the latest configurations of the
GISS ModelE for CMIP6, coupling the atmospheric
general circulationmodel, ModelE, to the GISS ocean
model to produce 2-by-2.5 degree resolution output.
GISS ModelE2.1-G simulations have been shown to
accurately simulate observed climate conditions and
realistically respond to natural and anthropogenic cli-
mate forcings (Miller et al 2021, NASA/GISS 2018).

We used the historical natural-only (hist-nat)
experiment, which includes only natural (solar,
orbital, and volcanic aerosol) forcings, to find
baseline estimates of compound event occurrences
due to natural variability (Gillett et al 2016). We
then investigated the effects of anthropogenic for-
cings on compound events by comparing hist-nat
frequencies to four alternative experiments. The first
three are single-forcing experiments: historical green-
house gas-only (hist-GHG), anthropogenic aerosol-
only (hist-aer), and historical land use-only (land-
hist), which includes land cover (e.g. agricultural
expansion) and irrigation changes (Cook et al 2015).
The fourth experiment is the historical ‘all-forcing’
experiment, which includes natural forcings, ozone
depletion, and all anthropogenic forcings from the
three single-forcing experiments. We used the hist-
nat experiment in lieu of the pre-industrial control
(piControl) experiment to directly examine the con-
tributions of anthropogenic forcings to the recent
historical climate.

2.2. Parametric bivariate standardized index
For our study, we generated standardized precipit-
ation indices (SPIs), standardized humidity indices
(SHIs), and standardized maximum and minimum
temperature indices (STIs), to calculate bivariate
standardized indices and identify warm-dry and
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warm-humid events. We used the entire calendar
year to fully represent these events, as warm-dry and
warm-humid conditions produce significant impacts
in all seasons (Dierauer et al 2019, Ribeiro et al
2020). To construct the indices, we used a paramet-
ric approach and six month moving windows to cap-
turemedium-termmoisture andheat events. For each
grid cell, we pooled data from 1955 to 2014 from all
hist-nat ensemble members to serve as the reference
dataset for determining the appropriate distribution
parameters so the standardized values are comparable
across experiments.

For SPI, we calculated hist-nat six month mov-
ing sums and fit the pooled precipitation sums from
each month to the appropriate gamma distribution
(McKee et al 1993). We used the non-parametric
Kolmogorov-Smirnov test to evaluate the goodness of
fits of the selected distributions and found that more
than 97%ofmonths in all grid cells achieved adequate
fits (Massey 1951). We then used each month’s fitted
distribution to approximate the cumulative probabil-
ities associated with the precipitation sums from each
experiment (historical, hist-nat, hist-GHG, hist-aer,
and land-hist). We transformed the probabilities into
standardized values with:

SPI= ϕ−1 (p) (1)

where p is the cumulative probability of precipitation
and ϕ is the standard normal distribution function.

For SHI and STI, we calculated six monthmoving
averages for specific humidity, maximum and min-
imum temperature. We used appropriate beta dis-
tributions to construct the SHI index (Price 2001)
and normal distributions to construct the STI index
(Hansen et al 2012, Zscheischler et al 2014). For these
indices, we found that greater than 98% of distri-
butions achieved adequate fits. Then, as was done
for SPI, we associated cumulative probabilities with
the raw humidity and temperature values from each
experiment and transformed the probabilities into
standardized values with equation (1).

Following similar approaches used in the liter-
ature, we constructed the bivariate index with cop-
ula theory (Hao and AghaKouchak 2013, Li et al
2021). The copula is a multivariate distribution func-
tion which can model the dependence between mul-
tiple variables and can be used to study hydro-
meteorological multivariate dependencies (Michele
and Salvadori 2003). With the VineCopula R pack-
age, we selected the copula with the lowest Bayesian
information criterion and verified goodness-of-fit
with White’s information matrix equality to repres-
ent the dependence between the reference indices
for each month of each grid cell (White 1982,
Nagler et al 2019). We used Gaussian, Clayton,
Gumbel, Frank, and Joe copulas, which have previ-
ously been used to represent the monthly bivari-
ate dependencies (Sadegh et al 2017, Zscheischler

and Seneviratne 2017, Li et al 2021). For months
where the variables are statistically independent, we
employed the Independence copula (Genest and Favre
2007). Based on Sklar’s theorem, the joint cumulative
distribution function F of STI (X) and SPI (Y) can be
expressed in terms of a copula and its marginals:

FXY (x,y) = C [FX (x) , FY (y)] (2)

where C is the fitted copula’s cumulative distribu-
tion function, and FX(x) and FY(y) represent themar-
ginal cumulative distribution functions of STI and
SPI where FX (x) = P(X⩽ x) and FY (x) = P(Y⩽ y)
(Sklar 1959).

The joint cumulative probability of warm and dry
conditions can be calculated with:

P= Pr(X⩽ x, Y > y) = u−C(u,v) (3)

where u and v are the univariate temperature and pre-
cipitation probabilities.

The joint cumulative probability of warm and
humid conditions can be calculated with:

P= Pr(X⩽ x, Y ⩽ y) = C(u,v) (4)

where u and v are the temperature and humid-
ity probabilities. Finally, to generate our bivariate
indices, we transformed the joint cumulative probab-
ilities into standardized values with equation (1).

2.3. Compound event analysis
Using our bivariate indices, we identified compound
warm-dry and warm-humid events as consecutive
months exceeding the 90th percentile of the cumulat-
ive joint probability. Our primary analysis examined
the frequency of compound events during 1955–
2014. In the supplemental materials, we compare
ModelE2.1-G historical output to the Modern-Era
Retrospective Analysis for Research and Applications,
Version 2 (MERRA-2) reanalysis data to demonstrate
that ModelE2.1-G adequately represents the frequen-
cies of these compound events (SM figure 1). In addi-
tion, we examined how the compound events are zon-
ally distributed by pooling land grid cells from all
ensemble members in each latitude band. We addi-
tionally pooled each SREX region’s land grid cells
from all ensemble members and evaluated median
differences from the hist-nat baseline with Mood’s
median test using an alpha of 0.05 (Mood 1950, Field
et al 2012). In the supplemental materials, we include
plots of compound event duration and intensity,
defining duration as the number of months and
intensity as the sum of standardized values associated
with each event (SM figures 2–7) and results using 3-
and 12 month moving windows as well as 80th and
95th percentile thresholds (SM figures 8–15). We also
examined how anthropogenic forcings have impacted
the background climate conditions during 1955–2014
to provide additional context for our results.
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3. Results

3.1. Global evaluation of compound warm events
Here, we first examine the global frequency of com-
pound warm-dry and warm-humid events in the
hist-nat experiment in 1955–2014 (figure 1). In the
absence of anthropogenic forcings, warm-dry events
aremostly found in tropical and extratropical regions,
while warm-humid events occur more frequently in
the higher latitudes. These distributions reflect the
strengths of the dependencies between warm and dry
conditions and warm and humid conditions due to
natural variability, and have been shown in observa-
tions (Dai 2006, Zscheischler and Seneviratne 2017)
and in MERRA-2 (SM figure 1). In hist-nat condi-
tions, daytime (Tmax) warm-dry events occur more
frequently relative to nighttime (Tmin) warm-dry
events in most regions. In contrast, nighttime warm-
humid events are more frequent relative to daytime
warm-humid events across the globe. These dissim-
ilarities may stem from underlying differences in the
drivers of daytime and nighttime high temperatures.
As previously mentioned, daytime heat is generally
associated with dry land surface conditions and low
cloud cover, while nighttime heat has been connec-
ted to high humidity and cloud cover (Thomas et al
2020).

In general, daytime and nighttime warm-dry
events have similar responses to the individual for-
cings (figure 2). Compared to hist-nat conditions,
greenhouse gases (figures 2(e) and (f)) drive large-
scale increases in event frequency, while anthro-
pogenic aerosols and land-use/land-cover changes
(figures 2(i), (j), (m) and (n)) cause broad decreases.
In the hist-GHG experiment, tropical and extratrop-
ical regions display the largest increases in daytime
and nighttime warm-dry events, amplifying hist-nat
baseline frequency patterns. In the hist-aer experi-
ment, the hist-nat frequencies of daytime and night-
time warm-dry events are suppressed by aerosols.
Meanwhile, most regions do not show significant
warm-dry changes in land-hist. In the historical
experiment (figures 2(a) and (b)), the combination of
these individual forcings strikingly results in modest
decreases in daytime warm-dry events relative to hist-
nat conditions in theNorthernHemisphere, as well as
substantial increases in the Southern Hemisphere for
both event types.

For daytime and nighttime warm-humid events,
we also see general event frequency increases in the
hist-GHG experiment (figures 2(g) and (h)) and
decreases in the hist-aer and land-hist experiments
(figures 2(k), (l), (o) and (p)). The presence of green-
house gases amplifies the hist-nat frequency of warm-
humid events, resulting in large increases in the
Northern polar regions, as well as increases in the
tropics and extratropics (e.g. North America, Sub-
Saharan Africa, Europe, and East Asia) where high
frequencies of nighttime warm-humid events occur

under hist-nat baseline conditions. However, the
presence of aerosols and land-use/land-cover change
also substantially impacts theNorthern polar regions.
Consequentially, in the historical experiment, we see
increases concentrated in the tropics and extratropics
relative to the baseline (figures 2(c) and (d)). Overall,
we see a greater absolute increase in nighttime warm-
humid events in the historical experiment, especially
in tropical and polar latitudes, reflecting differences
in the responses of daytime and nighttime events to
the combination of anthropogenic forcings.

3.2. Latitudinal and regional evaluation of
compound events
To summarize the global results, we provide pooled
ensemble median and interquartile ranges of event
frequency across latitude bands for the forced exper-
iments relative to the hist-nat baseline (figure 3).
For compound warm-dry conditions, daytime and
nighttime events generally display similar patterns,
with the median hist-GHG event frequency increas-
ing by approximately 150%–500% in the trop-
ics and extratropics (40◦ N–40◦ S) and the hist-
aer event frequency experiencing declines ranging
from 60% to 100% in similar latitudes (figures 3(a)
and (b)). Events also substantially decline in the
land-hist experiment, although aerosols provide a
stronger dampening effect across almost all latit-
ude bands. With these plots, we can also high-
light the strong impact of aerosols on daytime
events, with historical daytime events being notice-
ably reduced by 30%–50% relative to the baseline
at 35◦–55◦ N. The latitudinal profiles of warm-
humid events also display the strong effect of green-
house gases, with increases ranging from 200% to
900% across most latitudes between 40◦ N–40◦ S
(figures 3(c) and (d)). Meanwhile, historical warm-
humid events are strongly moderated by aerosols
and land-use/land-cover change, resulting in more
modest increases between 100% and 300% in similar
latitudes.

Next, we use boxplots to show compound event
frequency distributions in select regions. We dis-
play results from Central North America (CNA),
Central Europe (CEU), South Asia (SAS), East Asia
(EAS), the Amazon (AMZ), and East Africa (EAS) to
present a range of climate regions across the globe.
Greenhouse gases significantly increase the hist-nat
baseline median of daytime warm-dry events by
approximately 200%–350% for all regions presen-
ted (figure 4(a)). Meanwhile, aerosol and land-use/
land-cover change significantly decrease daytime
warm-dry event frequency, reducing the median fre-
quency to 0 in most regions. As demonstrated with
figure 3, we can see the strong moderating effect
of aerosols and land-use/land-cover on the histor-
ical daytime warm-dry events in Northern Hemi-
sphere regions (CNA, CEU, SAS, and EAS), res-
ulting in 25%–50% median decreases relative to
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the baseline. In contrast, the historical warm-dry
frequency is significantly higher than the hist-nat
frequency in the Southern Hemisphere (AMZ, EAF),
due to the reduced contribution of aerosols and land-
use/land-cover to the historical event frequency in
these regions. Greenhouse gases also increase night-
time warm-dry events by approximately 300%–500%
for all regions relative to the hist-nat (figure 4(b)). In
addition, aerosols and land-use/land-cover changes
also provide a moderating effect on the historical
event frequency in the Northern regions. However, in
contrast to daytime conditions, we still see evidence
of significant increases in nighttime warm-dry events
under historical conditions, with increases ranging
from 30% to 300% in most regions (excluding SAS).

Daytime (figure 4(c)) and nighttime (figure 4(d))
warm-humid events also show consistently large
event frequency increases with the hist-GHG forcing,
which highlight the far-reaching impact of green-
house gases. In the hist-aer experiment, we can see the
almost complete suppression of warm-humid event
frequency, highlighting the joint effect of cooling and
drying from aerosols. Although land-use/land-cover
changes provide more moderate reductions in warm-
humid events, regional event frequencies are still
significantly different from hist-nat conditions. Over-
all, between daytime and nighttime warm-humid
events, the frequency of nighttime events is still sub-
stantially higher under historical conditions, amplify-
ing the underlying hist-nat patterns.

3.3. Background climate conditions
To provide context for how anthropogenic activity
has influenced these events, we examine how the for-
cings have impacted average climate conditions. In
general, responses in average maximum and min-
imum temperature are similar to the compound event
responses, with broad temperature increases in hist-
GHG conditions and decreases in hist-aer and land-
hist (figure 5). In the hist-aer experiment, we see evid-
ence that maximum temperature is more sensitive to
aerosols, resulting in a greater decrease in maximum
relative to minimum temperature, especially in the
Northern Hemisphere. In the historical experiment,
we can further highlight the differences between
maximum and minimum temperature in the North-
ern Hemisphere, underscoring the stronger impact
of aerosols on maximum temperatures. The different
sensitivities of maximum andminimum temperature
to aerosols are present in the compound responses to
the anthropogenic forcings, and is especially notice-
able for warm-dry events. In the land-hist experi-
ment, we also see local mid-latitude and non-local
upper-latitude declines in both maximum and min-
imum temperature stemming from native vegetation
loss and irrigation activity, agreeing with previous
findings (Singh et al 2018). Although land-use/
land-cover drive both local and non-local changes,

these changes are not as widespread and are generally
more modest compared to aerosol-driven changes,
apart from the irrigation-driven cooling of the Indo-
Gangetic Plain (Puma and Cook 2010, Singh et al
2018).

We also examine how average precipitation, spe-
cific humidity, and cloud area fraction have respon-
ded to the individual forcings (figure 6). Under
hist-GHG conditions, there are average precipitation
increases in the higher latitudes and decreases in the
Mediterranean, Northern Africa, the Middle East,
and Central America. Coupled with changes in aver-
age temperature, the tropical and extratropical areas
of concurrent robust drying andwarming correspond
well with where warm-dry events increase under
greenhouse gas conditions. In the hist-aer experi-
ment, we see a general drying effect stemming from
aerosols; however, due to associated significant large-
scale decreases in temperature, drying from aero-
sols does not meaningfully increase warm-dry events
on an individual basis. Meanwhile, although land-
use/land-cover change produces a strong regional
wetting signal in parts of Northern Africa and the
Middle East, this ultimately does not result in signi-
ficant changes in warm-dry events.

Changes in average specific humidity are more
widespread: specific humidity increases globally in
the hist-GHG experiment, and decreases in the hist-
aer and land-hist experiments. With greenhouse
gases, concurrent increases in specific humidity and
temperature directly increase the number of warm-
humid events across the globe shown in figure 2.
Meanwhile, aerosols and land-use/land-cover change
generally provide both cooler and drier conditions
that moderate the frequency of warm-humid events
relative to warm-dry events.

Differences in average cloud area fraction strongly
relate to average maximum and minimum temperat-
ures, and contribute to the overall differences between
daytime and nighttime compound events. Relative to
hist-nat conditions, increases in historical cloud area
fraction are most influenced by the presence of aero-
sols. As cloud area fraction provides a much stronger
effect on daytime temperatures, maximum temperat-
ure is more sensitive to this forcing, contributing to
the identified differences in daytime and nighttime
event responses.

Ultimately, this analysis of average climate condi-
tions reveals the contributing factors driving changes
in compound warm-dry and warm-humid event fre-
quency. Under hist-GHG conditions, tropical and
extratropical regions experiencing concurrent warm-
ing and drying show pronounced increases in warm-
dry events, while aerosols and land-use/land-cover
changesmoderate these increases through their influ-
ences on temperature. Greenhouse gases also pro-
duce substantial increases in warm-humid events by
influencing both average temperature and specific
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Figure 5. Forced differences in average maximum and minimum temperatures relative to historical natural-only conditions in
1955–2014 based on GISS ModelE2.1-G r[1–5]i1p1f2 simulations. Each column presents the historical, hist-GHG, hist-aer, and
land-hist absolute difference in average monthly temperature relative to historical natural-only conditions. Grid cells where not
all ensemble members agree on the sign of the forced difference relative to hist-nat are hatched.

humidity. Nevertheless, these same events are mod-
erated strongly by the presence of aerosols and
land-use/land-cover changes that cause concurrent
declines in temperature and specific humidity. Dif-
ferences in daytime and nighttime compound event
frequencies are influenced by differences in day and
night temperature responses to cloud area fraction,
generally resulting in larger increases in historical
nighttime compound events relative to the hist-nat
baseline.

4. Discussion

Under warming temperatures, compound events
will produce severe impacts across sectors. Previ-
ous studies have documented how compound warm-
dry and warm-humid events have and will con-
tinue to increase due to climate change, but have
not delved into how individual anthropogenic for-
cings contribute to the occurrence of these events
(Zscheischler and Seneviratne 2017, Li et al 2020).
Additionally, the degree to which these events will

change in response to anthropogenic forcings, and
the underlying mechanisms driving these changes,
is not well understood. Most studies have also used
average or maximum temperature to represent com-
pound hot events (Alizadeh et al 2020), and have not
examined how compound events defined by night-
time temperatures may respond differently.

Here, we conducted a comprehensive analysis
of the effects of greenhouse gases, aerosols, and
land-use/land-cover change on daytime and night-
timewarm-dry andwarm-humid events. Greenhouse
gases increase warm-dry event frequencies in trop-
ical and extratropical latitudes through large-scale
daytime and nighttime temperature increases, while
aerosols and land-use/land-cover changes reduce
warm-dry event frequencies in similar latitudes
through cooling. In the historical experiment, we
see net decreases in daytime warm-dry events in
the Northern mid-latitudes, and net increases in
both daytime and nighttime warm-dry events in the
Southern Hemisphere. Meanwhile, greenhouse gases
substantially amplify warm-humid event frequencies
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in tropical, extratropical, and polar regions, while
aerosols and land-use/land-cover changes consid-
erably dampen warm-humid events in the North-
ern polar regions. Overall, we see net increases in
historical daytime and nighttimewarm-humid events
acrossmost latitudes, although we see larger increases
in the Southern Hemisphere.

Our results generally agree with established tem-
perature, precipitation, and humidity changes asso-
ciated with greenhouse gas and aerosol emissions.
Previous studies have tied global temperature and
specific humidity increases and regional drying pat-
terns from dynamic and thermodynamic changes in
the hydrological cycle to greenhouse gases (Seager
et al 2010, Marvel and Bonfils 2013). Large-scale
cooling and drying from aerosols has also been well
established, and GISS E2.1 G has been shown to
produce similar temperature responses to aerosols
relative to the CMIP6 multi-model mean; however,
there are still existing model biases related to aer-
osols (Tokarska et al 2020). With regards to land-
use/land-cover changes, our results agree with pre-
vious studies that have attributed cooling to native
vegetation loss and irrigation increases (Pitman et al
2012, Christidis et al 2013). However, this stands
in contrast to studies which have identified forest
loss-related regional warming signals (Alkama and
Cescatti 2016, Findell et al 2017). These discrepancies
may stem from model assumptions regarding non-
radiative land cover characteristics (Bright et al 2017)
and observational underestimations of non-local sur-
face cooling (Winckler et al 2019).

Overall, substantial differences between daytime
and nighttime compound events emerge in the his-
torical experiment that can be traced back to the indi-
vidual forcings. Due to the impacts of aerosols and
associated cloud cover increases on maximum tem-
perature, we even see historical decreases in the fre-
quency of daytime warm-dry events in the Northern
Hemisphere. The temperature responses seen here
agree with previous studies investigating diurnal tem-
perature changes (Hansen et al 1995).

Although CMIP models produce temperature-
precipitation and temperature-humidity dependence
patterns similar to observations, we acknowledge that
the strengths of the dependencies are overstated in
mostmodels, including GISS (Dunn et al 2017).Most
CMIP6 models also underestimate the diurnal tem-
perature range relative to observations due to aero-
sol and cloud model biases, which can be reflected in
our results (Wang and Clow 2020). Precipitation and
humidity biases in GISS ModelE2.1 may also impact
our results (Kelley et al 2020). Separately, we acknow-
ledge that the methodological choices we have made
can also influence our results. For example, using
alternative models with different representations of
land-atmosphere coupling may impact these com-
pound events and how sensitive they may be to the
various forcings.

5. Conclusion

We have demonstrated how anthropogenic forcings
influence daytime and nighttime warm-dry and
warm-humid events at regional and global scales.
By examining the single-forcing experiments, we
have characterized how responses in average climate
conditions contribute to differences in event fre-
quencies. Because daytime and nighttime compound
events can lead to distinct impacts, our analysis offers
a more comprehensive assessment of current and
future compound event risks to human health, eco-
system health, and infrastructure. As greenhouse gas
emissions are expected to continue impacting our
global climate, we expect to see greater frequencies of
warm-dry and especially warm-humid events. Addi-
tionally, due to the expected 21st century decline in
anthropogenic aerosols, we may expect to see even
greater increases in daytime and nighttime warm-dry
and warm-humid conditions.
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