Progress and Challenges in Spacecraft Fire Detection

Claire Fortenberry, PhD

Universities Space Research Association at NASA Glenn Research Center

June 15, 2022

claire.fortenberry@nasa.gov

Mir Space Station Fire: February 23-24, 1997

Image taken by Dr. Jerry Linenger following Mir fire; spaceflight.nasa.gov/history/shuttle-mir/multimedia/linengerphotos/linenger-p-003.htm

- Crew **fire safety strategies** are more challenging
- Reduced gravity challenges early-stage fire detection
- Reduced gravity can change characteristics of the fire itself
- Post-fire cleanup of toxic combustion products challenged by low gravity and limited short-term resources → long term health effects for crew

Spacecraft Fire Detection History

- Mercury, Gemini, Apollo: no fire detection systems (short mission durations)
- Skylab: UV fire detector
 - Big issue: false alarms
- Space Shuttle: ionization detector
- ISS: photoelectric detector
 - Light scattering calibrated to an obscuration alarm threshold

Spacecraft fire detection systems developed based on most advanced terrestrial technology of the time

https://www.nasa.gov/mission_pages/station/mai n/index.html

Smoke Detection Methods

Spacecraft Smoke Detection Challenges

- In microgravity, no buoyancy → plume does not rise to ceiling
- How much smoke needs to be produced to reach detector alarm thresholds?

Urban et al., 46th Int. Conf. Environ. Sys., Vienna, Austria, ICES-2016-318, July 2016.

The Smoke Aerosol Measurement Experiment (SAME)

SAME = First major effort to characterize smoke from early-stage microgravity fires!

- Target particles from **oxidative pyrolysis** rather than flaming combustion
- Identify relevant particle sizes/morphologies from spacecraftrelevant fuels
- Evaluate detector performance for these particles

SAME Publications:

- Urban et al., 070FR-0171, 8th U. S. National Combustion Meeting, Salt Lake City, UT, May 2013.
- Meyer et al., Aerosol Sci. Tech., 49:5, 299-309, 2015.
- Mulholland et al., Aerosol Sci. Tech., 49:310–321, 2015.
- Meyer et al., Fire Safety Journal, 98. 74-81, 2018.

Image credit: NASA, SAME experiments, grc.nasa.gov/space/iss-research/msg/same/#lightbox-gallery-1-2

Summary of SAME Results

- "Aging" occurs over time scales relevant to detection
- Below a flow threshold, air flow influences smoke particle size
- Detector response dependent on particle size and detection mechanism:
 - ISS forward light scattering detector had diminished response to smallest particles
 - Space shuttle ionization detector had slightly better response to smallest particles
 - "One size fits all" detector does not exist!

Summary of Detection Challenges

- 1. Different smoke detector designs are biased towards different particle sizes
- 2. Particle sizes/morphologies vary by fuel type and oxidative pyrolysis conditions
- 3. Particles can grow/evolve over time depending on flow conditions

- Need for particle size/morphology measurements from large-scale flaming combustion in microgravity
- Need for "emission factors"

 (amount of smoke produced relative to amount of fuel burned)
 to improve models for predicting fire outcomes and smoke transport

Spacecraft Fire Safety (Saffire) Experiments

Opportunity to study **large-scale fires** in microgravity with **lower risk to crew**

- Saffire I-III (2016-2017):
 - Measured flame spread rate, fuel mass consumption, heat release
- Saffire IV-VI (2020, 2021; S-VI TBD):
 - In addition to flame properties, measure combustion products from variety of fuels
 - Test novel post-fire cleanup technology: "Smoke Eater"

nasa.gov/feature/northrop-grumman-cygnus-launchesarrivals-and-departures/

Image credits: NASA

Saffire-IV and V Experiment Description

- Fire experiments housed within the Saffire Flow Unit (SFU)
- Plume transport through cabin tracked by remote CO₂ sensors
- Far-field diagnostics (FFD) unit located at the opposite end of the cabin from the SFU
- Materials tested: cotton/fiberglass blend ("SIBAL"), cotton jersey, PMMA (one-sided, two-sided, structured)

Urban et al., "Preliminary Results from Saffire IV and V Experiments on Large Scale Spacecraft Fires," 50th Int. Conf. Environ. Sys., ICES-2021-266, July 2021.

The Far-Field Diagnostics Unit (FFD)

- Three main flow paths: CO₂ scrubber, smoke eater, and bypass
- Gas sensors: CO, CO₂, acid gas (HF/HCl), Combustion Products Monitor (CPM: CO, CO₂, HF, HCl, H₂O, O₂; Vista Photonics)
- Particle measurements: DustTrak DRX (TSI, Inc.), ionization smoke detectors (First Alert)

Particle Instrumentation

DustTrak DRX (Model 8533, TSI, Inc.)

- Combination of photometry (measurement of particle ensemble) and single-particle counting
- Provides particle mass concentrations (mg m⁻³) for five size ranges: PM₁, PM_{2.5}, PM₄, PM₁₀, total mass concentration
- Wang et al., Aerosol Sci. Tech., 43:939-950, 2009

Ionization Chamber (First Alert)

- Chambers modified/ rehoused from a commercial device
- Approximately proportional to aerosol diameter concentration (mm cm⁻³): average d_p × total number concentration
- Placed at inlet and outlet of FFD to evaluate smoke eater filtration capability

Saffire-IV Particle Mass Distributions

- Particle mass concentration dominated by submicron particles (PM₁) in all five burn events
- PMMA event produced higher concentrations of larger particles (d_p > 4 μm) compared to SIBAL (cotton/fiberglass blend)
- Avionics temperatures and images indicate clogging of SFU outlet screen – FFD measurements likely missed a significant fraction of larger particles

Saffire-V Particle Mass Distributions

- As in Saffire-IV, particle mass concentration dominated by submicron particles (PM₁) in all five burn events
- PMMA events produced higher concentrations of larger particles (d_p > 4 μm) compared to cotton jersey

What can we do with Saffire measurements?

- Goal: relate mass concentration measurements to detection readings (e.g., obscuration)
- Major challenge: Detection methods depend on aerosol properties (size, shape, optical parameters)

Future Fire Safety Challenges: Lunar Missions

In future lunar missions (e.g., Artemis), will need to **distinguish smoke particles from lunar dust.**

- Park et al. (2008): lunar dust samples from Apollo missions have lognormal distribution, with modes 100-200 nm
 - Distinguishing smoke and dust particles for smoke detection based on size could be challenging
- Lunar dust (d $_{\rm p}$ < 20 μm) is harmful to crew health
 - Sharp, irregularly-shaped shards
 - During Apollo missions, astronauts experienced eye, nose, throat irritation
 - Health effects will dictate air flow and filtration strategies

Future Fire Safety Challenges: Lunar Missions

- Lunar gravity ~ 1/6 g
 - Some buoyant flow and settling expected, but smaller particles will stay in air for longer
 - Sacksteder and T'ien (1994): "flammability zone" different in partial-g compared to either 1g or 0g, but limited data exist
- Novel mission parameters \rightarrow new risks
 - Longer mission durations → need to store more oxygen and/or ignitable/reactive materials (e.g., batteries)
 - Increased extravehicular activities → oxygen handling, dust transport, use of oxygen to mitigate decompression sickness, etc.

Image credit: NASA, Artemis Lunar Exploration Program Overview nasa.gov/specials/artemis/

Ruff et al., Int. Conf. Environ. Sys., ICES-2020-173, 2020.

Sacksteder and T'ien, 25th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1685-1692, 1994

Future Fire Safety Challenges: Lunar Missions

- How can we design an optimal detector for a lunar habitat? Martian habitat?
- How much does buoyancy contribute to plume transport in lunar gravity? Does smoke rise to the ceiling even if air returns are on the floor?

Acknowledgements

- Saffire FFD analysis coauthors: Michael Casteel, John Graf, John Easton, Justin Niehaus, Marit Meyer, Gary Ruff, David Urban
- International Saffire Science Team
- ZIN Technologies Saffire team
- Universities Space Research Association (USRA) Glenn Engineering and Research Support Contract No. 80GRC020D0003
- Dr. Carol Kory
- Advanced Exploration Systems Life Support Systems Project

