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I. Introduction - Joe McLaughlin

The “Moon to Mars eXploration systems and Habitation” or X-Hab challenge is a challenge posed to various
universities with the goal of expanding our knowledge of how to create long term space habitats. This is to be
accomplished through challenging various universities to carry out tasks such as designing a food growth system or
redesigning an already proven CO2 scrubber. The University of Maryland was challenged with finding “Approaches to
Outfitting an inflatable habitat.” From this our team developed the following mission statement: “The goal of this team
is to design and test systems which will outfit the existing TransHab allowing it to support a sustained human presence
in micro and Lunar/Martian gravity environments.” This mission statement allows us to look at multiple approaches
while also creating complete and comprehensive designs for extended human habitation in various environments.

Specifically, as a team we designed the habitat interiors based off of two different environments: microgravity and
Martian or Lunar gravity. This allowed for two major designs to be created but also allowed for components of the
design to be switched out, upgraded, or changed as needed.

II. Mission Statement - Joe McLaughlin

The goal of this team is to design and test systems which will outfit the existing TransHab allowing it to support a
sustained human presence in micro and Lunar/Martian gravity environments.
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III. Mission Assumptions - Joe McLaughlin

A. The Transhab Architecture

The assumptions of the project can be split into two major categories: TransHab assumptions and Mission and
crew systems assumptions. The first assumption is that we will be using the current TransHab design which is a
“lightweight habitation module for space applications” [1]. The dimension assumptions for the TransHab are: 8.23
m diameter (7.62 m interior dimension) with a 12.19 m height for the exterior and a 3.35 m diameter with a 7 meter
height for the interior hard core. The TransHab shall be able to house six astronauts (with a surge of twelve) over
eight months. Currently, the TransHab has no living or working amenities, source of power generation, or life support
system and hence, these systems will have to be designed and implemented. Additionally, all critical subsystems will
be stored in the core.

Figure 1: Transhab Design [1]

13
University of Maryland



B. Gravitational Environments

The second mission assumption falls into two main categories. The first category is microgravity, whether that be
in interplanetary space or Low Earth Orbit, And the second category is either Lunar or Martian Gravity. There will be
one design for each category, each outfitted to allow for ergonomic working and living environments.

In the microgravity configuration, the habitat need to accommodate astronauts translating in all three dimensions. To
do this multiple floor panels will be removed and handrails placed in various locations.

In the Lunar/ Martian Gravity environment, both the structure and the layout of the Transhab must accommodate the
environment. The structure was designed to sustain loads on the martian surface and during launch. Therefore, this
structure is used throughout both the designs, as the structure will perform just as well in microgravity as it would in
martian gravity. The layout changes from micro to lunar/martian gravity to include ladders, a freight elevator/winch,
and a change in the storage configuration.

Figure 2: Lunar/Martian Gravity Configuration

Figure 3: Micro Gravity Configuration
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IV. Scope of Project - Ronak Chawla

The scope of this project is to research methods to outfit the existing TransHab architecture to allow for habitation
and research of structure, communications, life support and power. The scope also includes testing and evaluating the
feasibility of the design and its deployment process by analyzing astronaut comfort and timing of during deployment.
In addition, the team defined theoretical mission architectures the design could perform in.
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V. Mission Requirements - Ronak Chawla and Joe McLaughlin

The top level mission requirements (M-#) were developed from both NASA X-HAB requirements and require-
ments from the 484 capstone project. These requirements range from general habitation regulations to detailed loading

restriction.

Requirement- ID Requirement Source
M-1 Design Shall Integrate into the Existing TransHab Architecture NASA X-Hab
. o UMD ENAE484 &

M-2 Design shall allow for extended human habitation NASA X-Hab

M-3 Outfitted Hgbltat Shall be Able to Launch on a Current or Near-Term UMD ENAE484
Launch Vehicle

MoA Design Shall Allow for Flexibility in Mission Objective and Research UMD ENAFE484
Goals

M-5 Life support and. crew systems shall be able to operate with maximum UMD ENAE484
6-month resupplies

M-6 No loads may be transferred to the inflated walls NASA X-Hab
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VI. System Requirements - Ronak Chawla

The top level system requirements (S-#) were derived from the Mission Requirements and Mission Reference
Architecture. These requirements cover the high-level needs for the system.

Requirement- ID Requirement Source

S-1 Shall continuously support 6 crew members and with a surge of 12 peo- M1, M2
ple [2]

S Shallo be deS{gned with two configurations: Microgravity and Lunar/- M-2, M4
Martian gravity

S-3 Shall have a deployable floor mechanism to the inflated area M-2, M-4, M-6

S.4 Shall be able to communicate and facilitate data transfer internally and M2, M4, M.5
externally

3.5 Shall provide a working laboratory environment for scientific research M-4
and crew experiments

S-6 Shall provide power to meet habitation and working needs M-5

Subsequently, additional system requirements that are more specific to the sub elements of the design were derived
from the top-level system requirements. These include requirements for: Crew Systems (CS); Mission Planning and
Analysis; Loads, Structures and Mechanisms; Avionics; and Power, Propulsion and Thermal sub-teams.

A. Crew Systems Requirements

Requirement- ID Requirement Source

CS-1 Shall'provide a breathable atmosphere to allow for a max load of 12 S|
working astronauts

CS-2 Shall provide potable water through recycling and resupply S-1

CS-3 Shall provide temperature control S-1

CS-4 Shall protect crew from radiation S-1

CS-5 Shall provide waste management (Human and Other) S-1

CS-6 Shall provide fire protection S-1

CS-7 Shall monitor critical systems S-1

CS-8 Sha.ll provide private and comfortable crew quarters for long duration S-1
habitation

CS-9 Shall prf)vide. food, both supplied and habitat grown to sustain the max S.1
load of inhabitants

CS-10 Shall provide crew with options to exercise S-1

CS-11 Shall provide sufficient lighting for crew living (Simulated Day/Night) | S-1

CS-12 Shall be comprised of interchangeable parts and easily repaired in emer- S
gency

CS-13 Shal.l abﬁc}e by NASA-STD-3OOI: ”Crew Health” & “"Human Factors, S-1
Habitability, and Environmental Health” [3]

CS-14 (Slllllflrl; nriiz\t]side minimum lab space and capabilities to meet mission re- $.5.52

CS-15 Shall provide the internal aspects of EVA support S-5

B. Mission Planning and Analysis Requirements
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Requirement- ID Requirement Source
MPA-1 B.oth desllgns shal.l prov1d.e. ergonomic working and living amenities $2.55
given their respective gravities
MPA-2 Both designs shall gllow for easy transitioning through various spaces S
throughout the Habitat
Shall provide protection from various space phenomena and environ-
MPA-3 o S-2
mental hazards within our scope
MPA-4 Both mlcrqgrav1ty apd Lt}na.r/Martlan grav1.ty designs shall be able to M.5, S-2
support their respective missions for a duration of 180 days
Each design shall accommodate deployment and unpacking of the core
MPA-5 . . o S-2
for their respective gravities
C. Loads, Structures and Mechanisms Requirements
Requirement- ID Requirement Source
LSM-1 Shall be autonomously deployed to the inflatable area S-3
LSM-2 Shall have three floors that match the levels of the core S-3
LSM-3 Sha.ll be able to support working load of equipment, amenities and in- S-1.53. 54
habitants
LSM-4 Shall not deflect more than 5.9 mm [4] S-3
LSM-5 Shall adhere to NASA-STD-5001 for all safety factors S-1, S-3, S-4
D. Avionics Requirements
Requirement- ID Requirement Source
AV-1 Shall provide robust and redundant internal communication methods S-4
AV-2 Shall provide robust and redundant communication to ground stations S-4
AV-3 Shall support video and audio communication per CCSDS standards S-4
AV-4 Shall provide communication methods while on EVA S-4
AV-5 Shall provide sufficient lighting for working on mission systems S-5
E. Power, Propulsion and Thermal Requirements
Requirement- ID Requirement Source
PPT-1 Shall provide 12.5 kW of power under normal operating conditions S-6, S-1
PPT-2 Shall provide 15.5 kW of power during maximum demand S-6, S-1
PPT.3 Shall include redundant batteries to support the system for 24 hours S6

under emergency conditions
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VII. Design Reference Mission - Hajime Inoue

The design reference mission guides through the basic overview of the TransHab missions in different configura-
tions we designed for.

A. Microgravity Configuration

Figure 4 visualizes the journey of the TransHab. Following its launch from Earth, the TransHab will enter the
parking orbit of Earth. It will then be rendezvoused with the crew. The crew, as illustrated, will be launched separately
and dock on the TransHab in order to allow crew members to ultimately move into the habitat. The Transhab will be
deployed and outfitted to house the crew in the inflated region of the TransHab. Once the TransHab is successfully
in orbit, inflated, and outfitted, crew members will move in. The TransHab will be supplied food, water, and other
resources on a recurrent basis.

Figure 4: DRM: Microgravity Configuration

B. Lunar/Martian Gravity Configuration

Figure 5 provides an overview of the TransHab being launched from Earth to enter a different destination orbit
then land on either Mars or the Moon. Like in the design reference