Porous Microstructure Analysis (PuMA)

Presenter: Federico Semeraro

AMA at Thermal Protection Materials Branch (ARC-TSM)

Lead Developers: J.C. Ferguson and F. Semeraro Other Contributors: J. Thornton, F. Panerai, A. Borner, N.N. Mansour, S. Fraile Izquierdo, J.B.E. Meurisse

June 16th, 2022

Predictive Material Modeling (PMM) group

Entry System Modeling (ESM) project

- Motivation and objectives
- Overview of PuMA
 - > Open-source release
 - Material properties computation
 - Artificial geometry generation
- Effective properties for anisotropic porous media
 - Fiber orientation
 - Conductivity
 - Elasticity
 - Permeability

Thermal Protection Systems (TPS)

Need for Thermal Protection Systems

P. Agrawal et. al. 2016.

Virgin PICA Sample

Charred PICA Sample

Ground-based Testing

Arcjet Testing of TPS

Computational Modeling

Radiation Analysis

Wavelength, A

19

Material Response

Modeling TPS

Full scale

Microscale

Mars Science Laboratory (MSL) heat shield

NASA Modeling Capabilities

S

Mars Science Laboratory (MSL) heat shield

Heat Shield Microstructures

3D carbon fabric prior to (left) and after (right) Arcjet exposure

3D printed material

Multiscale imaging of silica weave

X-ray Microtomography

Collect X-ray images of the sample as you rotate it through 180°

Use this series of images to "reconstruct" the 3D object

Courtesy of D. Parkinson (ALS)

Porous Microstructure Analysis (PuMA) v3 release

Installation: conda install -c conda-forge puma Open-source repository: <u>https://github.com/nasa/puma</u> Documentation: <u>https://puma-nasa.readthedocs.io</u> Community chat: <u>https://gitter.im/puma-nasa/community</u> Tutorials: <u>PuMA YouTube channel</u> and <u>online Colab notebook</u>

Ferguson, J.C., Semeraro, F., Thornton, J.M., Panerai, F., Borner, A., Mansour, N.N., 2021. Update 3.0 to "PuMA: The Porous Microstructure Analysis software", SoftwareX

Behind the scenes

Artificial domain generation

Triply Periodic Minimal Surface (TPMS)

Woven geometries

Advanced Material Property Computation

Local orientation. Computational Materials Science (2020)

Effective conductivity. Computational Materials Science (2021)

Effective elasticity. AIAA Scitech Forum (2022, 2023)

Effective permeability. npj Computational Materials (2022)

Particle Methods in PuMA

Oxidation

4D tomography

Dendrites in Batteries

Radiative Conductivity

Material Orientation

Tortuosity

Material Optimization

NASA

Micro-CT weaves: anisotropic at multiple scales

Weave segmentation and tow tracking

Allred, A., Abbott, L.J., Doostan, A., Maute, K. Automated processing of x-ray computed tomography images via panoptic segmentation for modeling woven composite textiles, Composite Structures (accepted)

Semantic Classes

Instances

Orientation methods

Structure tensor

Artificial flux

Ray casting

Semeraro, F., Ferguson, J.C., Panerai, F., King, R.J. and Mansour, N.N., 2020. Anisotropic analysis of fibrous and woven materials part 1: Estimation of local orientation. *Computational Materials Science*, *178*, p.109631.

$$\nabla \cdot \boldsymbol{q} = 0 \quad \text{where} \quad \boldsymbol{q} = -\boldsymbol{k}\nabla T = -\begin{bmatrix} k^{xx} & k^{xy} & k^{xz} \\ k^{xy} & k^{yy} & k^{yz} \\ k^{xz} & k^{yz} & k^{zz} \end{bmatrix} \begin{pmatrix} \partial T/\partial x \\ \partial T/\partial y \\ \partial T/\partial z \end{pmatrix}$$

Multi-Point Flux Approximation (MPFA-O)*: $\boldsymbol{q} = \boldsymbol{E} \boldsymbol{T}^N$

18/25

*Ivar Aavatsmark. Multipoint flux approximation methods for quadrilateral grids. 9th International forum on reservoir simulation 2007, Abu Dhabi, pages 9–13.

NASA

Conductivity solver validation: ADEPT

Semeraro, F., Ferguson, J.C., Acin, M., Panerai, F. and Mansour, N.N., 2021. Anisotropic analysis of fibrous and woven materials part 2: Computation of effective conductivity. Computational Materials Science, 186, p.109956.

Single fiber conductivity estimation

Experimental value at room temperature:

Single fiber thermal conductivity

$$[k_{//}, k_{\perp}] = [9.7, 5.5] \frac{W}{mK}$$

$$\boldsymbol{k}_{num}^{12ply} = \begin{bmatrix} 2.310 & -0.414 & 0.000 \\ -0.524 & 2.030 & 0.071 \\ 0.007 & 0.050 & 0.504 \end{bmatrix}$$

Elasticity solver

$$\nabla \cdot \boldsymbol{\sigma} = 0 \quad \text{where} \quad \boldsymbol{\sigma} = \boldsymbol{C}\boldsymbol{\varepsilon} = \begin{bmatrix} C^{11} & C^{12} & C^{13} & C^{14} & C^{15} & C^{16} \\ C^{12} & C^{22} & C^{23} & C^{24} & C^{25} & C^{26} \\ C^{13} & C^{23} & C^{33} & C^{34} & C^{35} & C^{36} \\ C^{14} & C^{24} & C^{34} & C^{44} & C^{45} & C^{46} \\ C^{15} & C^{25} & C^{35} & C^{45} & C^{55} & C^{56} \\ C^{16} & C^{26} & C^{36} & C^{46} & C^{56} & C^{66} \end{bmatrix} \frac{\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T}{2}$$

Multi-Point Stress Approximation (MPSA-W)*: $\boldsymbol{\sigma} = \boldsymbol{E} \, \boldsymbol{u}^N$

*Keilegavlen, E. and Nordbotten, J.M., 2017. Finite volume methods for elasticity with weak symmetry. Int. Journal for Numerical Methods in Engineering, 112(8), pp.939-962.

Elasticity solver validation: woven composite

Fraile Izquierdo, S., Semeraro, F., Acin, M., 2022. Multi-Scale Analysis of Effective Mechanical Properties of Porous 3D Woven Composite Materials. AIAA Scitech Forum

• Governing equation for Stokes flow (valid for slow creeping regimes, $Re \approx 0$):

- Solved with Finite Element (FE) scheme with Q1-Q1 discretization in velocity and pressure (plus pressure stabilization) using Element-By-Element (EBE) technique
- By imposing a unit body force *f_i* in the three Cartesian directions, the permeability is homogenized as:

$$\begin{bmatrix} k^{xx} & k^{xy} & k^{xz} \\ k^{xy} & k^{yy} & k^{yz} \\ k^{xz} & k^{yz} & k^{zz} \end{bmatrix} = \frac{l^3}{|V|} \int^V u^i \, dV$$

Permeability validation: Fiberform

- Three 500³ samples with voxel size = $2.6\mu m$
- Run on NVIDIA V100 GPUs with matrix-free PCG

*Pedro C. F. Lopes, Rafael S. Vianna, Victor W. Sapucaia, Federico Semeraro, Ricardo Leiderman, and Andre M. B. Pereira. Simulation Toolkit for Digital Material Characterization of Large Image-based Microstructures. *npj Computational Materials* (under review)

Questions?

Predictive Material Modeling (PMM) group

Entry System Modeling (ESM) project