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Abstract:
A metric-based mesh adaptation capability has been developed [1] for the advanced compressible
flow solver US3D [2]. Metric-based mesh adaptation is a solution informed mesh adaptation strat-
egy that improves the resolution of the mesh along anisotropic flow features, like strong shock waves
or shear layers. An anisotropic error indicator is reconstructed based on a provided Computational
Fluid Dynamics (CFD) solution which prescribes the locally desired element size and orientation.
The benefits of this mesh adaptation strategy is twofold: first, it simplifies the manual meshing
labor that typically needs to be carried out by the CFD engineer because the mesh adaptation is
informed by the provided solution. Second, the computational cost is kept to a minimum while
improving the resolution of the simulation.
The aim here is to demonstrate how anisotropic mesh adaptation can be employed to improve
the predictions of surface pressure for atmospheric entry vehicles. In this work, we compare CFD
simulations that use this newly developed anisotropic mesh adaptation capability for US3D [1]
with pressure data that was collected by Mars Entry, Descent, and Landing Instrumentation 2
(MEDLI2) during the atmospheric entry phase of Mars 2020.

Keywords: Anisotropic mesh adaptation, Computational Fluid Dynamics, Atmospheric entry
simulations, Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2).

1 Introduction
Atmospheric entry capsules experience a wide range of flow conditions during their entry trajectory from
hypersonic velocities down to subsonic velocities. In this work, we use the advanced compressible flow solver
US3D [2] in conjunction with the newly developed mesh adaptation capability [1] in order to study pressure
predictions on the heatshield and backshell during the supersonic atmospheric entry phase of Mars 2020.

The recently developed metric-based mesh adaptation capability [1] allows the user to apply anisotropic
mesh refinement to improve the resolution in the vicinity of anisotropic flow features, like shock waves and
shear layers. Furthermore, it has the capability to refine isotropically based on the Turbulent Kinetic Energy
(TKE) in order to target isotropic flow phenomena like small-scale turbulent eddies in the wake. However,
for this current work, we solely consider metric-based mesh adaptation based on the Mach number. This
capability allows the CFD engineer to start off with a coarse computational mesh and iteratively improve the
CFD simulation results by employing solution informed mesh refinement. Examples of this iterative mesh
refinement process applied to atmospheric entry vehicles are shown in [1].

The work presented here shows a comparison between pressure obtained at different mesh refinement
levels with the measured pressures obtained by the Mars Entry, Descent, and Landing Instrumentation 2
(MEDLI2) during the entry descent and landing phase of Mars 2020. The goals here are to demonstrate
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that the initial mesh generation can be highly simplified and that the resolution of the pressure predictions
can be improved by iteratively refining the computational mesh.

This paper is outlined as follows: first, a brief description is given of the measured pressures collected
by MEDLI2. Second, an introduction is provided of the newly developed metric-based mesh adaptation
capability that is linked to the US3D flow solver. This is followed by a detailed discussion of the numerical
results and how they compare against the Mars 2020 flight data. As a test case, we consider a supersonic flow
(M = 4.18) past a 70◦ sphere-cone entry vehicle that replicates the Mars 2020 capsule geometry. Finally,
conclusions are drawn based on the presented results.

2 Mars Entry, Descent and Landing Instrumentation 2 (MEDLI2)
The Mars Entry, Descent and Landing Instrumentation 2 (MEDLI2) collected pressure data during the
atmospheric entry phase of the Mars 2020 Perseverance rover through Mars’ atmosphere. One of the main
hardware components of MEDLI2 was the pressure measurement system, MEDLI2 Entry Atmospheric Data
System or MEADS. MEADS gathered accurate pressure data on seven different locations on the heatshield
and one location on the backshell. The collected pressure data and the corresponding locations of the pressure
transducers on the heatshield and the backshell are shown in Figure 2a and 2b respectively. In the figures
1 and 2a-2b MPH and MPB stands for "MEDLI2 Pressure heatshield" and "MEDLI2 Pressure backshell"
respectively.

Figure 1: Measured pressure data on the heatshield.

One strain-gauge type pressure transducer (MPH01) is located at the hypersonic stagnation point which
has a full scale pressure range of 35kPa. This pressure transducer was able to measure the pressure with
an uncertainty of 20Pa. Next to that, there are six peizo-resistive type pressure transducers spread over
the lower half of the heatshield. These transducers have a range of 7kPa and measured pressure with an
uncertainty of 13.3Pa. They were used to improve the pressure measurement resolution during the supersonic
flight regime of Mars 2020. Saturation happens during the hypersonic flight regime due to their lower range
which can be observed in Figure 1. One of these pressure transducers is located at the supersonic trim
angle stagnation point (MPH02) and one of them is located on the vehicles apex (MPH05). Furthermore
two pairs of supersonic pressure transducers, (MPH03,MPH04) and (MPH06,MPH07), were spread over the
lower side of the heatshield. Finally, Mars 2020 was instrumented with a single variable-reluctance type
pressure transducer on the backshell which has a range of 700Pa and which has an uncertainty of 3Pa. The
locations of all pressure transducers are also listed in the Table 1.

Karlgaard et al. [3] and Dutta et al. [4] utilized the MEADS pressure data in conjunction with other
on-board measurements in order to reconstruct the trajectory of the vehicle and the free-stream quantities
experienced during the entry phase. The reconstructed data [3] is used here to determine appropriate free-
stream conditions and vehicle attitude in order to perform an informed comparison between the in-flight
measurements and the CFD simulations.
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(a) Locations of the MEADs pressure transducers on
the heatshield.

(b) Locations of the MEADs pressure transducers on
the backshell.

Figure 2: Collected pressure data by MEADS during the atmospheric entry phase of Mars2020.

MPH01 MPH02 MPH03 MPH04 MPH05 MPH06 MPH07 MPB01
x [m] 0.293 0.323 0.518 0.518 0.0 0.522 0.523 2.127
y [m] 1.005 1.089 1.092 1.092 0.0 0.365 0.365 1.078
z [m] 0.0 0.0 −1.200 1.200 0.0 −1.593 1.593 0.0

Table 1: Locations of the pressure transducers on the heatshield.

Recently, laminar and turbulent CFD simulations were compared against the MEADS pressure data by
Edquist et al. [5]. Good agreement was found between the CFD simulations and the pressure measurements.
The results shown by Edquist et al. [5] were calculated using structured hexahedral meshes. However, the
goal here in this work is to determine the effect of anisotropic mesh adaptation of highly unstructured hybrid
meshes that consist of prisms and tetrahedra. Hybrid meshes that consist of prisms and tetrahedra provide
greater flexibility when it comes to mesh adaptation. Furthermore, these meshes have shown to provide
accurate predictions of the pressure at the wall [6]. However, they do cause oscillations when predicting
quantities of interest that are proportional to the first derivative of the flow quantities, like the heat flux at
the wall for example [6, 7]. This will be a topic of research in the near future.

3 Metric Informed Mesh Improvement Capability (MIMIC) for
US3D

This section describes the Metric-Informed Mesh Improvement Capability (MIMIC) for the US3D flow
solver [1]. MIMIC consists of three main components. First, it computes the metric tensor field based
on a provided mesh and initial solution field. Second, it passes the calculated metric tensor field to an
open-source anisotropic mesh adaptation Application Programming Interface (API) called ParMMG [8, 9].
ParMMG then computes a new mesh that is aligned with the underlying metric. The last component
involves the output into HDF5 format where the distributed adapted mesh is stored in a single mesh file
that is compatible with the US3D flow solver. In this way a new flow solution can be calculated on the
adapted mesh.

3.1 Reconstruction of the metric tensor field
The goal of metric-based mesh adaptation is to derive a mesh that optimally fits the underlying set of
equations and the numerical scheme used to achieve the optimal solution resolution while keeping the com-
putational cost low. Metric-based mesh adaptation achieves this by aligning and sizing the local edges in
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the mesh with the directionality and size of the local interpolation error. This idea has been first introduced
by Hecht and Mohammadi [10] and various formulations for error indicators that prescribe the desired ori-
entation and mesh size followed [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In this work, we use the formulation
introduced by [18, 19, 20]:

∥uh −Πhuh∥Lp
≤ N− 2

3

(∫
Ω

(det |Ha|)
p

2p+3 dΩ

) 2p+3
3p

(1)

The formulation given in Equation (1) relies on the fact that the local interpolation error for a given flow
quantity is approximated by the Hessian, Ha. In the examples shown in this paper, we use the local Mach
number. The local metric tensor at each vertex of the mesh is then approximated by:

Ma = DLp
(det |Ha|)

1
2p+3 R(x)|Λ|(x)R(x)−1 (2)

where |Λ| is a diagonal matrix with modified eigenvalues h−2
i = min(max(ξ|λi(x)|, h−2

max), h
−2
min). The values

for hmin and hmax are set by the user and define the minimum and maximum allowed edge length in the
mesh. The scalar ξ can be used to amplify the metric field. The global scaling constant, DLp

is defined as:

DLp
= N

2
3
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det(|Ha|)

p
2p+3

)− 2
3

(3)

and is evaluated by integrating the determinant on the Hessian over the computational domain, Ω.
The Hessian is reconstructed using a weighted least-squares gradient reconstruction approach. For a

scalar u0 at a vertex x0 = [x0, y0, z0]
t, we approximate the gradients, ∂ux,0 = [∂u/∂x, ∂u/∂y, ∂u/∂z]t0,

by considering the solution values, ui, in the centers of the neighboring elements, xi = [xi, yi, zi]
t, where

1 ≤ i ≤ n and where n represents the number of surrounding neighboring elements for x0. By considering
the Taylor series expansion of the solution at xi, and considering the local stencil of direct neighboring
elements, we can approximate the gradient at x0 by solving the following overdetermined linear system:

W∂ux,0 = S (4)

where the matrix W and the right-hand side S are defined as:

W =


w1a1, w1b1 w1c1
w2a2, w2b2 w2c2

...
. . .

wnan, wnbn wncn

 ,S =


w1(u1 − u0)
w2(u2 − u0)

...
wn(un − u0)

 (5)

where wi denotes the inverse distance between the neighboring vertex xi and x0 and where the Taylor series
coefficients ai, bi and ci are defined by xi and x0 as follows:

an = (xn − x0) (6)
bn = (yn − y0) (7)
cn = (zn − z0) (8)

Equation (4) is solved using QR factorization. Once the gradients are reconstructed, we can repeat this
process to reconstruct the second derivatives i.e. Hessian at each location in the computational mesh. The
Hessian is then diagonalized in order to obtain the eigenvalues and eigenvectors. The absolute Hessian is
created by recombining the absolute values of the eigenvalues with the eigenvectors in order to ensure that
the Hessian is symmetric positive definite as shown in Equation (2). The eigenvalues essentially prescribe
the local sizing of the element in each direction while the eigenvectors prescribe the local orientation of the
element.

More recently, an extended stencil has been implemented in MIMIC that considers the solution values of
the neighboring elements of neighbors as well. This allows us to expand the gradient vector to also include

4



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, HI, USA 2022

ICCFD11-2022-xxxx

the second derivatives:
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(9)

The matrix W and right-hand side S in Equation (4) can now be expanded so that we can perform a quadratic
gradient reconstruction. Considering more than nine surrounding data points, so n > 9, W becomes:

W =


w1a1, w1b1 w1c1 w1a

2
2 w1a1b1 w1a1c1 w1b

2
1 w1c1b1 w1c

2
1

w2a2, w2b2 w2c2 wna
2
2 w2a2b2 w2a2c2 w2b

2
2 w2c2b2 w2c

2
2

...
. . .

wnan, wnbn wncn wna
2
n wnanbn wnancn wnb

2
n wncnbn wnc

2
n

 (10)

The right-hand-side vector S remains the same form as what is shown in Equation (5) but it now also includes
additional coefficients that correspond to the solution values in the neighboring elements of neighbors. With
the quadratic gradient reconstruction approach we are able to reconstruct both the first and second order
gradients in one loop over the elements and no recursive gradient reconstruction is required. The results
shown in the next section all utilize the new quadratic gradient reconstruction methodology in order to
construct the metric tensor field.

3.2 Metric-aligned mesh generation using ParMMG
Once the metric tensor field is computed, we provide it to the anisotropic mesh adaptation library Par-
MMG. The ParMMG library is the parallel version of the open-source mesh adaptation MMG3D and it
performs anisotropic Delaunay mesh adaptation in parallel based on the provided metric tensor field [21].
The adaptation is performed solely on tetrahedral shaped elements. At the start of the adaptation procedure,
the mesh is partitioned and each partition carries out a local adaptation keeping the shared faces between
partitions fixed. ParMMG makes sure that the vertices on those shared interfaces are accounted for as
well by iteratively re-partitioning and re-adapting the mesh. Hence, after each partition is done adapting,
a re-partitioning of the global mesh is carried out such that the vertices and faces that were shared are
now internal and therefore taken into account during the next adaptation phase. Typically four to six re-
partitioning iterations are used for each adaptation iteration in order to ensure that all vertices in the mesh
are accounted for.

3.3 MIMIC Workflow
First, a coarse initial hybrid mesh, T0, is generated that consists of prisms and tetraheda. We define a
prismatic boundary layer mesh in order to maintain a specified resolution of the mesh that is consistent
with the y+ requirements for a given flow configuration and vehicle geometry. The rest of the computational
domain is tessellated using tetrahedra. A first statistically convergence solution, S0, is calculated using this
coarse mesh. S0 provides a first indication of where the important flow features like the bow shock and
shear layers will be located in the computational domain. The metric tensor field is computed in parallel
using this first coarse solution approximation. Next, the tetrahedra are separated from the prisms and are
redistributed over the available processors before providing them to ParMMG. This redistribution is done
to ensure optimal load-balancing when carrying out the adaptation procedure. The distributed prisms are
stored in memory and once ParMMG has computed a new anisotropic tetrahedra mesh, we patch the
adapted tetrahedra back onto the distributed prisms. The new adapted mesh, T1, is outputted. We then
interpolate the stationary state S0 that was obtained using T0 onto T1 and use that interpolated solution,
S1,init, as a new initial condition. S1,init is then used to obtain a new stationary state, S1, on T1. This
process is carried out iteratively to improve the resolution of the solution. The process discussed in this
subsection is described in further detail in [1]. The results shown in [1] demonstrates the first application of
iterative anisotropic mesh adaptation in the context of atmospheric entry simulations using the US3D flow
solver.
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4 Supersonic flow (M = 4.18) past a 70◦ sphere cone entry vehicle
Reconstructed trajectory data [3, 4] is used in order to determine free-stream conditions and the vehicles
attitude that define the flow configuration of the simulations presented here. The examples shown in previous
work mostly demonstrate metric-based mesh adaptation being applied to low supersonic or transonic flows
[1]. Consequently, a slightly higher Mach number is considered here and free-stream conditions were picked
that occur approximately 149 s after Entry Interface (EI). The free-stream quantities were reconstructed and
tabulated by [3] as part of the MEDLI2 post-flight data analysis effort. Based on that data, the following
free-stream conditions were picked:

U∞ [ms ] T [K] ρ [ kgm3 ] M [−] α [◦] β [◦] t− tEI [s]
939.54 198.13 4.36E − 03 4.18 19.35 −0.159 149

Table 2: Free-stream conditions.

We consider CO2 and we assume that the gas behaves as a perfect gas. Furthermore, a smooth outer
mold line (OML) of a 70◦ sphere cone entry vehicle is considered that replicates the Mars 2020 capsule. The
flight scale geometry is considered here which has a diameter of D = 4.57m. Furthermore, we are using the
Detached Eddy Simulation (DES) approach that is available in US3D [22] to model turbulence.

First, a coarse initial mesh is generated in order to calculate a first approximation of the flow. One of
the benefits of employing MIMIC in the context of US3D flow simulations is that the initial mesh generation
process is highly simplified. The geometry of the vehicle is depicted in Figure 3a. The computational domain
that surrounds the 70◦ sphere cone geometry is a simple box with dimensions Ω ∈ [−80, 80]3. The inflow faces
with the geometry in the center of the computational domain are shown in Figure 3b. The coarse solution

(a) Computational mesh of the smooth outer mold
line of a 70◦ sphere cone entry vehicle at flight scale.

(b) The computational domain looking in upstream
direction with the outflow boundary surfaces re-
moved and the flow direction indicated by the red
arrow.

Figure 3: Computational domain.

that is calculated on this mesh serves as an initial driver for the iterative mesh refinement procedure. The
surface of the wall is tessellated into triangles and these triangles are extruded in normal direction. This
procedure creates a layer of prismatic elements near the wall. For this test case, we used an initial spacing
of ∆xw = 1.0E − 05m in order to satisfy the y+ < 1 criteria. The prisms are growing with a factor of 1.1
in normal direction with respect to the geometry. The prismatic boundary layer mesh consists of 69 prisms
in normal direction which results in an initial mesh that consists of np = 7.97E06 prisms clustered near the
geometry and nt = 5.71E06 tetrahedra in the remainder of the domain.
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A first statistically converged solution of the flow is obtained using the free-stream conditions and ge-
ometrical orientation of the body listed in Table 2. Convergence is monitored by monitoring the L2 norm
between each time step and looking at the body forces that act on the vehicle. For this initial mesh, the
solution appears to be in steady state which can be ascribed to the high numerical dissipation due to the
coarseness of the mesh. A stationary state is achieved relatively quickly after approximately ten Convective
Time Units (CTU) where CTU = D/U∞. Figure 4a shows the mesh in the (x, y) plane at z = 0 and
Figure 4b shows the corresponding mean Mach contours. The Mach contours shown in Figure 4b show the

(a) Initial mesh, T0 (nt,0 = 5.71E06). (b) Mean Mach contours for T0.

Figure 4: Comparing mesh adaptation based on Mach number with mesh adaptation for the three adaptation
cycles.

strong bow shock that is created upstream of the vehicle. On the upper side of the vehicle, the flow is being
expanded and accelerated past the shoulder and then compressed again due to the wake that is formed.
This causes a secondary weaker shock wave downstream of the body. Meanwhile at the lower side of the
vehicle, the flow is expanded around the shoulder as well and the flow appears to follow the geometry closely.
The flow is expanded due to the convexity of the geometry resulting in further acceleration after which it is
deflected upwards into the wake due to the sharp corner towards the end of the back shell. The flow then
impinges on the lower side of the wake structure creating a weak shock that bounds off the wake region.
Overall, the solution is very coarse however it does provide a useful first indication of where important flow
features are located in the computational domain.

MIMIC computes the anisotropic error indicator based on the Mach contours shown in Figure 4b. The
error indicator is then used to compute a new adapted mesh, T1 which is shown in Figure 5a. We used
minimum and maximum edge length values of hmin = 1.0E − 02m and hmax = 20.0m in order to compute
the metric tensor field which is defined in Equation (2). The number of prisms in this mesh is kept constant
(np = 7.97E06) however, the number of tetrahedra is decreased since nt,1 = 4.96E06. Figure 5a shows that
the mesh is significantly refined in a relatively wide band that surrounds the strong bow shock upstream of
the vehicle. However, significant coarsening of the mesh is performed in the farfield. Additionally, significant
refinement is achieved near the weaker compression shocks that bound the wake flow. Subtle mesh refinement
can be noted near the closure of the wake. Three refinement regions downstream of the wake can now be
identified. The top one refines the solution near the weak shock that is formed due to the fact that the
flow is directed upwards by the thinner wake region. The lower two refinement areas are targeting the shear
layers down stream.

The solution shown in Figure 4b is interpolated onto T1 and used as a new initial condition from which
the simulation is restarted. The errors induced by the interpolation routine are flushed out first. A new
stationary state is obtained and the mean Mach number is calculated by considering the last 80− 100CTU.
The mean Mach number contours (S1) for T1 are plotted in Figure 5b. A drastic improvement of the solution
is observed in the vicinity of the bow shock, when comparing the mean Mach contours plotted in Figure 5b
with the contours plotted in Figure 4b Furthermore, the flow on the lower side of the back shell changes
significantly after the first adaptation iteration. Figure 5b shows a small separation bubble that generates
a weak shock after the first deflection of the back shell. S1 is now used to derive a new metric tensor field
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(a) First adapted mesh, T1 (nt,1 = 4.96E06). (b) Mean Mach contours for T1.

(c) Second adapted mesh, T2 (nt,2 = 3.50E06). (d) Mean Mach contours for T2.

(e) Third adapted mesh, T3 (nt,3 = 7.67E06). (f) Mean Mach contours for T3.

Figure 5: Comparing mesh adaptation based on Mach number with mesh adaptation for the three adaptation
cycles.
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that will inform where to refine the mesh further.
The next adaptation iteration is shown in Figure 5c and Figure 5d. T2 has a reduced number of tetrahedra

compared to T1 since nt,2 = 3.50E06. The refinement process mostly targets the anisotropic features of the
flow like the bow shock and shear layers. Particularly the weak shock that is generated in the lower side
of the wake region is being refined significantly. Furthermore, the weak shock that emanates from the first
deflection on the lower side of the back shell appears to be captured further downstream. Next to that,
the second weak shock that emanates from the second deflection on the lower side of the back shell, which
is visible in Figure 5b, appears to have vanished in Figure 5d. This can be ascribed to the fact that the
separation bubble on the lower side further increased in size which removes the sharp deflection of the flow
towards to wake region.

Finally, the third adaptation iteration is shown in Figures 5e and 5f. In this case the minimum allowable
spacing is reduced to hmin = 1.0E − 03m and hmax = 20.0m and as a results the number of elements is
increased. The number of tetrahedra in T3 is more than doubled with respect to T2 and counts nt,3 = 7.67E06.
The bow shock definition becomes even more sharp compared to the second adaptation iteration. Figure 5e
indicates that the additional mesh element are mostly dedicated to refining the areas in the computational
domain where the anisotropic features are present.

Ultimately, the effect of mesh adaptation on pressure predictions is studied. As mentioned in section 2,
the pressure on the heatshield and backshell has been recorded during the atmospheric entry phase of the
Mars 2020. The pressure data is collected during the CFD simulations discussed above at similar locations
on the heatshield and backshell as the ones listed in Table 1. The numerical pressure predictions are referred
to as pn and the pressure values that were measured in flight are referred to as pf . We compare the CFD
simulations with the pressure measurements taken at t− tEI ≈ 149s as indicated in Table 2. The locations
of the pressure probes at the wall in the CFD simulations are not matching exactly with the locations listed
in Table 1 since we are limited by the local spatial resolution of the surface mesh. However, the probes are
within a radius of 1.5cm of the requested locations listed in Table 1. As a first comparison, the percentage
difference is computed between the measured pressure data at t ≈ 149s after EI, (pf ) and the computed
pressure that was obtained using the CFD (pn). The computed pressure is recorded over the same time
span that is used to compute the mean Mach number for the next adaptation cycle (80 − 100CTU). The
percentage difference is then taken for each pressure transducer at each kth adaptation iteration and the
results are shown in Figure 6a.

(a) Percentage differences between the measured and cal-
culated pressure values for each pressure transducer (col-
ors) at each adaptation iteration (x-axis).

(b) L2-norm based on the difference between the mea-
sured and calculated pressure values over all pressure
transducers for each adaptation iteration (x-axis).

Figure 6: Comparison between the MEADS data and the calculated pressure values that follow from CFD
simulations that employ metric-based mesh adaptation.

The original mesh that was shown in Figure 4a corresponds to k being equal to zero. The colors and
symbols shown in Figure 6a correspond to the colors and symbols used in Figures 2a and 2b. Figure 6a
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illustrates that the error in pressure predictions for MPH03, MPH04, MPH05 and MPH06 are already below
5% compared to the measure pressure in flight using the initial computational mesh. The difference is largest
for the backshell pressure (MPB01). The percentage differences for the pressure data collected by MPH01,
MPH02 and MPH07 are above 10%. This difference is diminished after a single adaptation iteration is
reduced to approximately 3%. The difference in backshell pressure requires an additional two adaptation
iterations to reduce the percentage difference to approximately 5%.

Furthermore, the L2-norm is calculated by taken the differences between the computed and the measured
pressure values for all locations, eight in total, at each adaptation iteration. For the kth adaptation iteration,
the L2-norm is computed as:

L2,k =

√√√√ 8∑
i=1

(pn,i − pf,i)
2 (11)

This L2 norm is computed for each adaptation iteration and normalized by the L2 that is computed using
the initial mesh T0. The calculated values for each adaptation iteration are plotted in Figure 6b. It can be
seen that the error is significantly decreased after the first adaptation cycle. However, not much is gained
after during the refinement iterations that follow.

Finally, the direct values of the predicted pressure for each adaptation iteration are compared against the
measured pressures. As mentioned before, the MPH01 transducer was used at the trim angle stagnation point
during hypersonic flight. This pressure transducer measures the pressure with an uncertainty of 20Pa (σh)
. The other six pressure transducers on the heatshield measure pressure with an uncertainty of 13.3Pa (σs).
The pressure transducer located on the backshell measures pressure with an uncertainty of approximately
3Pa (σl). The comparisons for all eight pressure measurement locations are shown in Figure 7. The measured
values with the corresponding 3σ is indicated by the errorbars and gray shade. The predicted pressure at
each adaptation iteration is indicated by the symbols. Figures 7a-7h show a similar trend as shown in
Figures 6a and 6b. The symbols trend towards the shaded domain for all pressure measurement location
which indicates that the pressure predictions improve with each adaptation iteration. The biggest gain is
achieved after the first adaptation iteration.

5 Concluding remarks
Metric-based mesh adaptation has been applied to a set of US3D flow simulations using the Metric-Informed
Mesh Improvement Capability (MIMIC). In this work, a supersonic flow (M = 4.18) past a 70◦ sphere cone
entry vehicle is considered. The simulations were performed using CO2 and assuming that the gas behaves as
a perfect gas. Free-stream conditions and vehicle attitude have been determined based on the reconstructed
trajectory that was reconstructed during the post-flight analysis of the Mars 2020 EDL phase [3, 4]. First,
An initial simulation using a coarse mesh was performed and used to initiate three mesh adaptation cycles.
Each new mesh was determined by reconstructing a metric tensor field based on the mean Mach number.
The adaptation iterations show significant refinement near the bow shock and shear layers that emanate
from the shoulder of the vehicle.

The pressure was recorded at the same locations on the heatshield and the backshell as where the pressure
transducers were located on the Mars 2020 entry capsule (see Table 1 and Figures 2a-2b). The maximum
error/difference in probe location between the CFD simulations and the in-flight pressure transducers is
approximately 1.5cm. This discrepancy is due to the local sizing of the mesh on the wall. Improvement is
observed in pressure predictions after a single adaptation iteration particularly for the pressure at nose of
the vehicle. The percentage difference between the simulations and measurements is below 5% for MPH03,
MPH04, MPH05 and MPH06 when using the initial mesh. For MPH01, MPH02 and MPH07 the percentage
difference lies above 10% as shown in Figure 6a but this error is reduced to below 5% after a single adaptation
iteration. The biggest reduction in percentage difference is observed on the backshell (MPB01). For the
initial mesh the percentage difference is around 40% while after finishing the three adaptation cycles, this
difference is reduced to about 5%.

Additionally, the L2 norm is computed based on the difference of the simulated results and the measured
pressure data over all pressure measurement locations on the heatshield and backshell. This is done for each
adaptation iteration and this error measure also indicates that the L2-norm drops by approximately 70%
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(a) CFD versus measurement with 3σh for MPH01. (b) CFD versus measurement with 3σs for MPH02.

(c) CFD versus measurement with 3σs for MPH03. (d) CFD versus measurement with 3σs for MPH04.

(e) CFD versus measurement with 3σs for MPH05. (f) CFD versus measurement with 3σs for MPH06.

(g) CFD versus measurement with 3σs for MPH07. (h) CFD versus measurement with 3σl for MPB01.

Figure 7: Comparing the predicted pressure at each adaptation iteration against the measured pressure with
their 3σ error bounds where σh = 20Pa, σs = 13.3Pa and σl = 3Pa.

after a single adaptation iteration as shown in Figure 6b.
Finally, a direct comparison between the predicted pressure values and the measured pressure data is

plotted in Figure 7. We see that for all of the pressure transducer locations, the predictions improve with the
number of adaptation iterations that are applied. However, the results also indicate that the biggest gain is
achieved after the first adaptation iteration and that not all predictions lie within the 3σ error bounds of the
measurement. Multiple sources of error could be at play here. One factor can be that the vehicle is oscillating
slightly around a trim angle of attack and similar oscillatory behaviour has been observed regarding the slip
angle. The CFD simulations consider the vehicle to travel at at fixed velocity while maintaining a fixed
attitude.
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