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Abstract: 31 

It has been over ten years since the successful launch of the first-ever dedicated satellite 32 

for global soil moisture monitoring; Soil Moisture and Ocean Salinity (SMOS). Looking 33 

towards the future, P-band (0.3-1 GHz) is a promising technique to replace or enhance the L-34 

band (1.4 GHz) SMOS and SMAP (Soil Moisture Active Passive) missions because of an 35 

expected reduction in roughness and vegetation impact, leading to an improved soil moisture 36 

accuracy over rougher soil surfaces and more densely vegetated areas. Accordingly, this 37 

investigation evaluated the tau-omega model at P-band (0.75 GHz) using a tower-based 38 

experiment in Victoria, Australia, where brightness temperature observations were collected 39 

concurrently at P- and L-band over bare and wheat-covered flat and periodic soil surfaces. The 40 

potential to retrieve soil moisture without discriminating periodic and flat surfaces was 41 

investigated by applying the roughness and vegetation parameters calibrated for flat soil to 42 

retrieve the moisture of periodic soil. Results showed that P-band had a comparable RMSE 43 

across different roughness configurations (variations less than 0.016 m3/m3) for both bare and 44 

wheat-covered soil, while the L-band RMSE was only comparable for wheat-covered soil, 45 

indicating that periodic surfaces did not need to be discriminated in such scenarios. Conversely, 46 

a difference of 0.022 m3/m3 was observed for L-band with bare soil. A reduced vegetation 47 

impact was also demonstrated at P-band, with an RMSE of 0.029 m3/m3 achieved when 48 

completely ignoring the wheat existence with under 4-kg/m2 vegetation water content, whereas 49 

at L-band the RMSE increased to 0.063 m3/m3. This study therefore paves the way for a 50 
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successful P-band radiometer mission for obtaining more accurate global soil moisture 51 

information. 52 

Keywords: P-band, passive microwave, soil moisture retrieval, roughness, vegetation  53 
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1 Introduction 54 

The amount of water in the Earth’s soil is around just 17,000 km3 (Oki and Kanae, 2006), 55 

merely accounting for 0.05% of the total freshwater and 0.001% of the total water on/in the 56 

Earth (Shiklomanov, 1993). However, this small amount of water plays a crucial role in the 57 

Earth system because it nourishes vegetation, animals, and billions of humans. Moreover, soil 58 

moisture (SM) is a key parameter in the hydrological cycle that influences infiltration, runoff, 59 

and evapotranspiration (Seneviratne et al., 2010). Furthermore, it controls the division of the 60 

available energy at the land surface into sensible and latent heat fluxes (Koster et al., 2004). 61 

To meet the growing need for global soil moisture data in hydrology, precision agriculture, 62 

drought, and flood forecasting, weather prediction, climate change, etc., the Soil Moisture and 63 

Ocean Salinity (SMOS) satellite (Kerr et al., 2010) and the Soil Moisture Active Passive 64 

(SMAP) satellite (Entekhabi et al., 2010) were launched in 2009 and 2015, respectively. Both 65 

use L-band (1.4 GHz/21-cm wavelength) radiometers to measure the microwave emission from 66 

the Earth in the form of brightness temperature (TB), which is a function of the emissivity and 67 

physical temperature of the target. The emissivity of bare soil varies from approximately 0.5 68 

for smooth and very wet soil to close to 1 for rough and very dry soil (Ulaby et al., 1982), being 69 

the primary link between soil moisture and TB. 70 

Soil roughness is well known to complicate the interpretation of microwave radiometer 71 

data and reduce the sensitivity of TB to soil moisture (Choudhury et al., 1979; Newton and 72 

Rouse, 1980). As a result, Wang and Choudhury (1981) developed a tractable semi-empirical 73 

model (referred to as the HQN model) to simulate the random roughness impact, which is 74 
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currently being used in the SMOS (Kerr et al., 2019) and SMAP (O'Neill et al., 2021a) 75 

algorithms. Compared to flat soil, periodic (e.g., sinusoidal) row structures, a common type of 76 

soil tillage used for cultivation purposes, are less likely to be correctly modeled as a quasi-77 

specular surface with random roughness (Ulaby et al., 1986). 78 

Apart from roughness, the vegetation canopy attenuates (absorbs and scatters) the soil 79 

emission and adds its own contribution to the overall emission, resulting in a noticeable 80 

reduction in the sensitivity of TB to soil moisture (Jackson et al., 1982). The tau-omega (𝜏𝜏-𝜔𝜔) 81 

model proposed by Mo et al. (1982) models the TB response of vegetation-covered soil. Optical 82 

depth 𝜏𝜏 and single scattering albedo 𝜔𝜔 characterize the vegetation extinction and scattering, 83 

defined as 𝜏𝜏 = ∫ 𝜅𝜅𝑒𝑒𝑑𝑑𝑑𝑑
ℎ
0  and 𝜔𝜔 = 𝜅𝜅𝑠𝑠/𝜅𝜅𝑒𝑒 , respectively, where extinction coefficient 𝜅𝜅𝑒𝑒  is the 84 

sum of absorption coefficient 𝜅𝜅𝑎𝑎 and scattering coefficient 𝜅𝜅𝑠𝑠, and ℎ is the canopy height. The 85 

𝜏𝜏 is directly proportional to the vegetation water content (VWC, in kg/m2) of the canopy, while 86 

the 𝜔𝜔 primarily depends on the type of vegetation (Mo et al., 1982). 87 

The tau-omega model is essentially a zero-order solution of the radiative transfer 88 

equations where multiple scattering is neglected, with applicability and accuracy being widely 89 

evaluated (Gao et al., 2018; Li et al., 2020). Many retrieval algorithms have been developed 90 

based upon this practical model, e.g., the single channel algorithm (SCA, Jackson, 1993) and 91 

the dual channel algorithm (DCA, Njoku and Li, 1999; Njoku et al., 2003) for SMAP, the L-92 

band microwave emission of the biosphere (L-MEB) model (Wigneron et al., 2007) for SMOS, 93 

the land parameter retrieval model (LPRM, Owe et al., 2001), and the multi-temporal dual 94 

channel algorithm (MT-DCA, Konings et al., 2016; Konings et al., 2017).  95 
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The advancement of satellite observations and retrieval algorithms has made global soil 96 

moisture maps available every three days or less with satisfactory accuracy. For example, 97 

according to an evaluation of the SMAP Level 2 Soil Moisture Passive (L2SMP) Version 8 98 

using in-situ validation sites (O'Neill et al., 2021b), the SCA V-polarization (SCA-V) and the 99 

DCA had the same best overall performance of ~0.036 m3/m3 in unbiased root-mean-square 100 

error (ubRMSE), fulfilling the 0.04-m3/m3 target accuracy of SMAP. However, the DCA 101 

showed better ubRMSE than the SCA at two agricultural sites. Consequently, the DCA has 102 

been adopted as the SMAP baseline algorithm since October 2021 (O'Neill et al., 2021a), with 103 

the SCA-V having been the baseline algorithm from the launch of SMAP (Chan et al., 2016). 104 

Despite the above-mentioned achievements, global soil moisture sensing is still facing a 105 

few challenges. First, the moisture retrieval depth of the current L-band missions is believed to 106 

be 5 cm or even shallower (Escorihuela et al., 2010; Liu et al., 2012; Zheng et al., 2019), which 107 

limits direct application of the data in disciplines that require deeper soil moisture information, 108 

e.g., weather prediction and climate research. Second, the accuracy of these satellite products 109 

varies for different land surfaces. As an example, although the SMAP radiometer-based soil 110 

moisture data meets its overall target accuracy, errors for croplands are considerably larger 111 

(Chan et al., 2016; Colliander et al., 2017; Walker et al., 2019). Third, current SMAP and 112 

SMOS algorithms do not specifically consider any correction of the periodic row structure 113 

because of the lack of global information on temporally varying row shape, height, and 114 

orientation. In addition, there is currently no basis for how to upscale such field information to 115 

satellite footprint scales. 116 
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P-band (0.3-1 GHz/100-30-cm wavelength) is a promising candidate for conquering some 117 

of the difficulties faced at L-band due to its longer wavelength. It is a widely held understanding 118 

that a longer waveband should have a deeper moisture retrieval depth and reduced impact from 119 

surface roughness and vegetation (Ulaby et al., 1986), resulting in a more useful contributing 120 

depth and an overall higher soil moisture retrieval accuracy over vegetated rough/periodic soil 121 

surfaces. Accordingly, a recent P-band radar study known as the Airborne Microwave 122 

Observatory of Subcanopy and Subsurface (AirMOSS), has been conducted for retrieving root-123 

zone soil moisture and moisture profiles (Tabatabaeenejad et al., 2014; Crow et al., 2018; 124 

Tabatabaeenejad et al., 2020). Alemohammad et al. (2019) concurrently collected P- and L-125 

band backscatter observations using AirMOSS and the NASA/JPL’s Uninhabited Aerial 126 

Vehicle SAR (UAVSAR), respectively, and demonstrated reduced vegetation scattering at P-127 

band. In addition, P-band satellite signals of opportunity has been proven to have a potential 128 

for sensing subsurface soil moisture (Yueh et al., 2020). These findings have motivated a 129 

spaceborne P-band-radar mission for mapping global forest biomass, i.e., Biomass (Le Toan et 130 

al., 2011) scheduled for launch in 2023, and the SigNals of Opportunity: P-band Investigation 131 

(SNoOPI) for soil moisture mapping scheduled for launch in early 2022 (Garrison et al., 2021). 132 

In terms of microwave radiometry, no observational evidence has been reported to 133 

demonstrate the postulated benefits of using P-band TB observations until the P-band 134 

Radiometer Inferred Soil Moisture (PRISM, see https://www.prism.monash.edu) project of 135 

Monash University. This project comprises a long-term tower experiment (2017-2021) and 136 

four airborne campaigns (2017, 2018, 2019, and 2021) to concurrently collect P- and L-band 137 
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TB measurements over a range of roughness and vegetation conditions for investigating the 138 

potentially superior capability of a P-band radiometer over an L-band radiometer for soil 139 

moisture sensing. Taking advantage of the PRISM tower-based dataset, Shen et al. (2021) and 140 

Shen et al. (2022) have demonstrated a larger moisture retrieval depth and a reduced roughness 141 

impact at P-band compared to L-band over bare soil. 142 

Following Shen et al. (2021) and Shen et al. (2022), this paper extends the investigation 143 

to wheat-covered soil with flat and periodic surfaces. For the first time, the tau-omega model 144 

was implemented at P-band to evaluate the vegetation effects at P- and L-band by comparing 145 

the retrieval errors before and after accounting for the wheat canopy in the forward model. 146 

Furthermore, the possibility of retrieving soil moisture over bare and wheat-covered soil 147 

without discriminating periodic and flat surfaces was investigated, by applying the roughness 148 

and vegetation parameters calibrated in flat soil to retrieve the soil moisture of periodic soil 149 

with the SMAP SCA and DCA. This demonstration suggests that an improved global soil 150 

moisture dataset may be possible using the longer wavelength P-band observations, even if the 151 

same algorithms as those of SMAP are used. 152 
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2 Experimental data 153 

A tower-based site was established at Cora Lynn, Victoria, Australia (Fig. 1a) from 154 

October 2017 to May 2021, to investigate the potential of P-band radiometry in soil moisture 155 

remote sensing. The field was 160 m by 160 m in size and divided into four quadrants (Q1-Q4 156 

from the northwest clockwise). A ten-meter-high tower was located at the center of the paddock 157 

(Fig. 1b), on which the two radiometers were installed, namely the Polarimetric P-band Multi-158 

beam Radiometer (PPMR, Fig 1d) and the Polarimetric L-band Multi-beam Radiometer 159 

(PLMR, Fig. 1e). The PPMR and PLMR on the tower were rotated and tilted on a schedule so 160 

that they alternately observed the four quadrants at a variety of incidence angles (Fig. 1c). 161 

 

Fig. 1 Illustrations of the tower-based experiment at Cora Lynn, Victoria, Australia, including 

a) location map of the site; b) the tower carrying PPMR and PLMR; c) the four-step tower 

rotation cycle; d) PPMR operating at 0.742-0.752 GHz; and e) PLMR operating at 1.401-1.425 

GHz. 
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PPMR and PLMR operate at dual linear (horizontal (H) and vertical (V)) polarizations 162 

(H- and V-pol), with 30° and 15° beamwidth, respectively. For a 40° incidence angle, the 163 

spatial resolution of the 3-dB footprints of PPMR and PLMR were approximately 8.2 × 7.0 m 164 

and 4.0 × 4.0 m, respectively. Both PPMR and PLMR have a calibration accuracy of better 165 

than 1.5 K; please refer to Shen et al. (2021) for more details about PPMR and PLMR. Unless 166 

otherwise noted, the terms "P-band" and "L-band" hereafter refer to the frequencies at which 167 

PPMR and PLMR operate. 168 

Stations 126 and 127 (Figs. 1a and 2a) continuously recorded soil moisture and 169 

temperature at 5-cm intervals down to 60 cm, as shown in Fig. 2b. The top probe was installed 170 

 

Fig. 2 Illustrations of the ground measurements, including a) station 126 monitoring soil 

moisture, temperature, and rainfall evolution; b) a diagram showing the station installation; c) 

soil surface roughness measurement with the pin-profiler; d) surface soil moisture 

measurement using HDAS; and e) an example of vegetation destructive sampling. 
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vertically from the surface, while the others were installed horizontally (Fig. 2b). Fig. 2d shows 171 

how the spatial surface soil moisture (top ~5 cm) was measured at the locations shown in Fig. 172 

1a using a system developed in-house, known as the Hydra-probe Data Acquisition System 173 

(HDAS, Merlin et al., 2007). These HDAS measurements were not used in the formal analysis 174 

but were used for checking the homogeneity of the soil moisture across the field and the 175 

representativeness of the stations. The hydra-probes used in this study were calibrated 176 

according to Merlin et al. (2007) and checked on-site using gravimetric samples. Soil texture 177 

samples obtained across the field were found to be a silt loam with 18.0% clay, 10.9% sand, 178 

and 71.1% silt. The soil bulk density of the surface soil layer in this site was 0.87 kg/m3. 179 
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Quadrants 1-4 were plowed with varied roughness structures for the wheat-growing cycle 180 

from July to December 2019 to compare the random roughness of flat soil and the periodic 181 

roughness of furrowed soil (Fig. 3). Table 1 shows the roughness measurements taken during 182 

the whole wheat-growing period. On each sampling day, a pin-profiler with an ~0.5-cm pin 183 

interval was used to take three consecutive 1-m measurements (totaling 3-m) in two 184 

perpendicular directions in each quadrant (Fig. 2c). These roughness measurements were not 185 

used in the formal analysis but to support that the roughness parameters can be assumed 186 

constant over the entire study period. 187 

 

Fig. 3 Photos before the germination (top row) and at the maturity (middle row) of wheat, and 

diagrams of soil surface profiles (bottom row) of the four quadrants for the data used in this 

paper. Quadrants 3 and 4 were plowed in one pass and had the same roughness structures but 

with different orientations (perpendicular and parallel, respectively) relative to the tower look 

direction. 
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In this study, two periods in the entire wheat-growing cycle were used: 1) the bare soil 188 

period from July 17 to 31, 2019, before wheat germination (Fig. 3; top row) - details of this 189 

were presented by Shen et al. (2022); and 2) the wheat-covered soil period (Fig. 3; middle row) 190 

from November 13 to December 21, 2019, when matured wheat was senescing (a data example 191 

is plotted in Fig. 4). The current study used the daily TB observations at 40° incidence angle 192 

for P-band and at 38° incidence angle for L-band (Fig. 4a), in order to approximate the fixed 193 

40° incidence angle of SMAP (Entekhabi et al., 2014). Moreover, Zhao et al. (2020) provide 194 

support by showing that 40° to 45° provided the best retrieval accuracy. Each of the TB 195 

observations in Fig. 4a was averaged from approximately 300 readings collected over a five-196 

minute interval at around 6 am, because the soil temperature and dielectric profiles are likely 197 

to be more uniform at 6 am than other times of the day (Basharinov and Shutko, 1975). In 198 

Table 1 Characterization of the roughness in the four quadrants. 

Quadrant Row 
structure 

Periodic roughness Random roughness 

No. of 
profiles 

Azimuth 
(°) 

Period 
(cm) 

Amplitude 
(cm) 

No. of 
profiles 

RMS 
height 
(cm) 

Correlation 
length (cm) 

1 Sinusoidal 
bench 6 90 165 10.5 ± 1.3 6 1.1 ± 0.5 9.2 ± 4.3 

2 Flat – – – – 16 0.9 ± 0.2 9.5 ± 2.7 
3 Sinusoidal 7 90 

80 9.8 ± 1.2 
7 

0.8 ± 0.3 9.0 ± 4.2 
4 Sinusoidal 7 0 7 

Azimuth is the angle between the radiometer look direction and the row direction; period is the row 
spacing; and amplitude is half of the vertical distance between the bottom and the top of the row. For the 
periodic soil in Q1, Q3, and Q4, the roughness measurements across the rows were used to calculate the 
“periodic roughness” in the table, while those along the rows were used to calculate the “random 
roughness” in the table. For Q2, the measurements in two perpendicular directions were averaged to 
calculate the roughness statistics. Q3 and Q4 were plowed in one pass and had the same roughness structure 
(just different orientations relative to the tower look direction), and therefore the measurements in these two 
quadrants were averaged. 
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addition, the difference between soil and canopy temperature is also minimized (Entekhabi et 199 

al., 2014). 200 

 

Fig. 4 Collected data including a) TB observations at 6 am in Q1 as an example, with the 

data gaps resulting from the tower being lowered due to high wind on those days; b) station 

time-series soil moisture with HDAS measurements (boxplots); c) station time-series soil 

temperature; and d) observed (boxplots) with fitted (black line) vegetation water content in 

Q1 as an example. For clarity only the data collected from the top 3 sensors are plotted in b) 

and c). Corresponding to the soil moisture evolutions of station 126 (in blue) in Q2 and 

station 127 (in red) in Q1, 3 and 4, the blue and red boxplots in b) show the maximum, 75% 

percentile, median, 25% percentile, and minimum of the spatial HDAS measurements in Q2 

as well as Q1, 3 and 4, respectively. 
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Figs. 4b and c show the time series of soil moisture and temperature, respectively, 201 

collected from stations 126 and 127. This investigation follows the precedent of Shen et al. 202 

(2022) by using station 126 as the reference in Q2 and station 127 as the reference for Q1, Q3, 203 

and Q4 based on the agreement between HDAS measurements and the station soil moisture in 204 

flat and periodic quadrants respectively (Fig. 4b). The station observations were considered 205 

representative of the radiometer footprints because the HDAS measurements were relatively 206 

uniform across each quadrant and agreed with the corresponding station measurements (Fig. 207 

4b). The destructive vegetation samples were taken weekly (Fig. 2e) at the locations shown in 208 

Fig. 1a. Accordingly, Fig. 4d presents the VWC measurements as boxplots and a fitted 209 

quadratic polynomial function to represent the VWC evolution. 210 

While P-band was found to have a greater moisture retrieval depth (~7 cm) than L-band 211 

(~5 cm) over bare soil (Shen et al., 2021), given the difficulty in continuously measuring soil 212 

moisture at 5-7-cm depths, and the highly correlated soil moisture between neighboring layers, 213 

the daily mean soil moisture at around 6 am in the 0-5-cm layer from the station (Fig. 4b) was 214 

used for both P- and L-band evaluation in this paper. 215 

3 Forward model 216 

The well-known tau-omega model (Mo et al., 1982) characterizes the brightness 217 

temperature of the thermal emission (TB𝑃𝑃, where subscript P denotes either H- or V-pol) from 218 

a vegetated soil surface with four terms, i.e., 1) the direct upward emission from vegetation 219 

(TB𝑃𝑃
v_up); 2) the downward vegetation emission reflected by the soil and attenuated by the 220 
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canopy layer (TB𝑃𝑃
v_down); 3) the upward soil emission attenuated by the canopy layer (TB𝑃𝑃

s ), 221 

and 4) the downwelling sky emission (TBsky_down) reflected by the soil and attenuated twice 222 

by the canopy layer (TB𝑃𝑃
sky), formulated as (Ulaby et al., 2014) 223 

 TB𝑃𝑃 = TB𝑃𝑃
v_up + TB𝑃𝑃

v_down + TB𝑃𝑃
s + TB𝑃𝑃

sky = (1 − 𝜔𝜔)(1 − 𝛾𝛾𝑃𝑃)𝑇𝑇effv + (1 − 𝜔𝜔)(1 −224 

          𝛾𝛾𝑃𝑃)𝛾𝛾𝑃𝑃Γ𝑃𝑃𝑇𝑇effv + (1 − Γ𝑃𝑃)𝛾𝛾𝑃𝑃𝑇𝑇effs + TBsky_downΓ𝑃𝑃𝛾𝛾𝑃𝑃2, (1) 225 

where 𝛾𝛾𝑃𝑃 and 𝑇𝑇effv  are the transmissivity and effective temperature of the vegetation canopy, 226 

and Γ𝑃𝑃 and 𝑇𝑇effs  are the reflectivity and effective temperature of the soil. The 𝑇𝑇effv  was assumed 227 

to be equal to the physical soil temperature in the 0-5-cm layer because the difference between 228 

canopy and soil temperature is minimal at 6 am (Fagerlund et al., 1970). Moreover, TBsky_down 229 

was assumed to be constant and calculated to be 13.9 K at P-band and 5.3 K at L-band (ITU, 230 

2015). The 𝛾𝛾𝑃𝑃 was computed from the optical depth 𝜏𝜏𝑃𝑃 using Beer’s law such that 231 

 𝛾𝛾𝑃𝑃 = exp �− 𝜏𝜏𝑃𝑃
cos (𝜃𝜃)

�. (2) 232 

For bare soil, Eq. 1 can be simplified to 233 

 TB𝑃𝑃 = TB𝑃𝑃
s + TB𝑃𝑃

sky = (1 − Γ𝑃𝑃)𝑇𝑇effs + TBsky_downΓ𝑃𝑃, (3) 234 

where Γ𝑃𝑃 can be computed using the HQN model (Choudhury et al., 1979; Wang and 235 

Choudhury, 1981; Prigent et al., 2000) 236 

 Γ𝑃𝑃 = �(1 − 𝑄𝑄𝑅𝑅)Γ𝑃𝑃∗ + 𝑄𝑄𝑅𝑅Γ𝑄𝑄∗� exp[−𝐻𝐻𝑅𝑅𝑃𝑃cos𝑁𝑁𝑅𝑅𝑃𝑃(𝜃𝜃)], (4) 237 

where Γ𝑃𝑃∗ is the specular reflectivity calculated from the Fresnel equations as a function of the 238 

relative soil dielectric constant 𝜀𝜀𝑟𝑟 (𝜀𝜀𝑟𝑟 = 𝜀𝜀𝑟𝑟′ − 𝑗𝑗𝜀𝜀𝑟𝑟′′), including real (′) and imaginary (′′) parts, 239 

such that 240 
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 Γ𝐻𝐻∗ = �cos(𝜃𝜃)−�𝜀𝜀𝑟𝑟−sin2(𝜃𝜃)
cos(𝜃𝜃)+�𝜀𝜀𝑟𝑟−sin2(𝜃𝜃)

�
2
 (5) 241 

 Γ𝑉𝑉∗ = �𝜀𝜀𝑟𝑟cos(𝜃𝜃)−�𝜀𝜀𝑟𝑟−sin2(𝜃𝜃)
𝜀𝜀𝑟𝑟cos(𝜃𝜃)+�𝜀𝜀𝑟𝑟−sin2(𝜃𝜃)

�
2
. (6) 242 

The dielectric constant was related to soil moisture in this paper by the model of Mironov et al. 243 

(2013b), given that it accounts for the interfacial (Maxwell-Wagner) relaxation of soil water at 244 

P-band. This model neglects temperature dependence on the dielectric constant by assuming a 245 

constant temperature of 20 ℃. Since the soil temperature was close to 20 °C at 6 am for most 246 

days of the study period (Fig. 4c), and that the dielectric constant of moist soil does not change 247 

substantially from 10 to 30 °C (Wagner et al., 2011), it is believed that using this model was 248 

reasonable for this research rather than the one developed specifically for SMOS at L-band 249 

(Mironov et al., 2013a). In this current investigation, the daily mean soil moisture at around 6 250 

am in the 0-5-cm layer from the station (Fig. 4b) was used to simulate TB and evaluate the 251 

retrieved soil moisture at both P- and L-band. 252 

According to radiative transfer theory, 𝑇𝑇effs  can be computed as (Choudhury et al., 1982)  253 

 𝑇𝑇effs = ∫ 𝑇𝑇(𝑧𝑧)𝛼𝛼(𝑧𝑧) exp�−∫ 𝛼𝛼(𝑧𝑧′)𝑑𝑑𝑧𝑧′𝑧𝑧
0 � 𝑑𝑑𝑧𝑧∞

0 , (7) 254 

where 𝑇𝑇(𝑧𝑧) is the soil temperature at depth z, and 𝛼𝛼(𝑧𝑧) is the power absorption coefficient 255 

depending on the soil dielectric constant 𝜀𝜀𝑟𝑟 and the observation wavelength 𝜆𝜆 written as (Ulaby 256 

et al., 1986) 257 

 𝛼𝛼(𝑧𝑧) = 2 ∙ (2𝜋𝜋/𝜆𝜆) ∙ �Im��𝜀𝜀𝑟𝑟(𝑧𝑧)��, (8) 258 

where Im[ ] represents the imaginary part. In this paper, the effective soil temperature was 259 

calculated using Eqs. 7 and 8, as well as the soil moisture and temperature measurements. The 260 
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soil was modeled as a semi-infinite medium, with the soil moisture and temperature below 60 261 

cm assumed to be the same as those observed in the 55-60-cm layer. 262 

4 Methodology 263 

Given that the same mono-angular configuration as SMAP (~40°) was adopted in this 264 

research, the SMAP SCA and DCA approaches were implemented to evaluate the tau-omega 265 

model over bare and wheat-covered flat and periodic soil surfaces at P- and L-band. Additional 266 

to applying the default SMAP parameters to the soil moisture retrieval, roughness and 267 

vegetation parameters were locally calibrated in Q1-Q4 by feeding the forward model with 268 

coincident TB and soil moisture measurements. Subsequently, the calibrated parameters over 269 

the flat soil (Q2) were applied to the soil moisture retrieval over the periodic soil surfaces (Q1, 270 

Q3 and Q4), taking Q2 as calibration data and Q1, Q3 and Q4 as validation data. Finally, the 271 

retrieval performance for Q1, Q3 and Q4 was compared to Q2 as a benchmark. 272 

Roughness and vegetation parameters can compensate for each other and thus cannot be 273 

calibrated together to achieve a robust result (Njoku and Chan, 2006; Patton and Hornbuckle, 274 

2012; Martens et al., 2015). To disentangle roughness and vegetation effects, Wigneron et al. 275 

(1995) separately calibrated roughness and vegetation parameters by using the data before and 276 

after the vegetation canopy development, respectively. A similar methodology was also 277 

employed in this research. The roughness parameters calibrated over the bare soil period were 278 

therefore applied to the wheat-covered soil period because the surface roughness was found to 279 
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have little change throughout the entire period, as indicated by the small standard deviation in 280 

Table 1. 281 

4.1 SCA 282 

The SCA (Jackson, 1993) retrieves soil moisture using the TB observation at either H- or 283 

V-pol with all roughness and vegetation parameters known (Table 2). The 𝑏𝑏 in Table 2 is an 284 

empirical parameter that builds a linear relationship between 𝜏𝜏  and VWC (Jackson and 285 

Schmugge, 1991), and thus 𝜏𝜏 can be estimated from 286 

 𝜏𝜏 = 𝑏𝑏 · VWC. (9) 287 

As in the SMAP SCA (O'Neill et al., 2021a), this research assumed the parameters in Table 2 288 

were invariant throughout the study period. 289 

Inversion of the forward model used the SLSQP (Sequential Least SQuares Programming, 290 

Kraft, 1988) algorithm to iteratively minimize a cost function (CF) computed from the 291 

differences between the observed TB (TB𝑃𝑃
obs) and the simulated TB (TB𝑃𝑃) at either H- or V-292 

pol, expressed as 293 

 CF = �TB𝑃𝑃
obs − TB𝑃𝑃�

2
. (10) 294 

Table 2 The default SMAP SCA parameters for croplands (O'Neill et al., 2021a). 
Parameter Value 

𝐻𝐻𝑅𝑅 0.108 
𝑄𝑄𝑅𝑅 0 
𝑁𝑁𝑅𝑅𝑃𝑃 2 
𝑏𝑏 0.11 
𝜔𝜔 0.05 
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The initial value of soil moisture was set to zero to avoid any potentially misleading prior 295 

knowledge in the retrieval. A bound of 0-1 m3/m3 was imposed on the retrieved soil moisture 296 

to ensure reasonable values were obtained. 297 

4.2 DCA 298 

The DCA (Njoku and Li, 1999; Njoku et al., 2003) uses dual-pol TB observations to 299 

retrieve two parameters. Unlike the SCA, the SMAP DCA uses a global map of 𝐻𝐻𝑅𝑅  to 300 

concurrently retrieve soil moisture and 𝜏𝜏. The 𝐻𝐻𝑅𝑅 values vary from pixel to pixel, so no specific 301 

𝐻𝐻𝑅𝑅 value can be referred to in this paper. In addition, while 𝑁𝑁𝑅𝑅𝑃𝑃 is assumed to be 2 as in the 302 

SCA, 𝑄𝑄𝑅𝑅 is no longer assumed to be a constant value. Accordingly, 𝐻𝐻𝑅𝑅 and 𝑄𝑄𝑅𝑅 were calibrated 303 

locally in Q1-Q4 using the bare soil data prior to undertaking retrieval. Afterward, soil moisture 304 

and 𝜏𝜏  were concurrently retrieved using the dataset for the wheat-covered period and the 305 

calibrated 𝐻𝐻𝑅𝑅 and 𝑄𝑄𝑅𝑅 in Q2. The 𝜔𝜔 was assumed to be the same as in the SMAP DCA for both 306 

P- and L-band, being 0.6. 307 

The CF minimized by the SLSQP algorithm using dual-pol TB at ~40° incidence angle 308 

during the retrieval period was  309 

 CF = �TB𝐻𝐻
obs − TB𝐻𝐻�

2 + �TB𝑉𝑉
obs − TB𝑉𝑉�

2 + �𝜏𝜏ini−𝜏𝜏�
2

𝜎𝜎(𝜏𝜏)2 , (11) 310 

where 𝜏𝜏ini  and 𝜏𝜏  are the initial and retrieved values of the optical depth, and 𝜎𝜎(𝜏𝜏)  is the 311 

parameter to balance the weight of the retrieved parameters for the optimization process to 312 

converge. The initial values of soil moisture and 𝜏𝜏 were set to zero. The same 𝜎𝜎(𝜏𝜏) value as in 313 

the SMAP DCA was adopted, i.e., 0.05 (O'Neill et al., 2021a). 314 
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5 Results 315 

5.1 SCA – the HQN model for bare soil 316 

Since Shen et al. (2022) found that the default SMAP parameters cannot fully account for 317 

the periodic roughness impact, especially at L-band, the 𝐻𝐻𝑅𝑅 values were calibrated using the 318 

bare soil data (Fig. 5). A range of 𝐻𝐻𝑅𝑅 values were used to simulate the TB for P- and L-band 319 

and H- and V-pol respectively using the bare soil model (Eq. 3). The 𝐻𝐻𝑅𝑅 values that produced 320 

 

Fig. 5 RMSE (K) between the observed and simulated TB using a range of 𝐻𝐻𝑅𝑅 values at H-

pol (top row) and V-pol (bottom row) over the bare soil in each quadrant. The model for bare 

soil (Eq. 3) was adopted as the forward model. The dots with values indicate the minimum 

RMSE and the corresponding 𝐻𝐻𝑅𝑅 values for P-band (in blue) and L-band (in orange). The 

parameters 𝑄𝑄𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑃𝑃 were assumed to be the same as in the SMAP SCA at both P- and L-

band, being 0 and 2, respectively. 
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the minimum RMSE between the simulated and observed TB were considered the optimum, 321 

marked as the dots with annotated values in Fig. 5. 322 

Compared to L-band, the HQN model performed better at P-band based on its lower 323 

RMSE. For example, the minimum RMSE in Q1 and Q3 was no higher than 6 K at P-band, 324 

while that at L-band was higher than 10 K. Moreover, at L-band V-pol, the RMSE in Q3 and 325 

Q4 was a minimum at 𝐻𝐻𝑅𝑅 = 0 and will further decrease if negative 𝐻𝐻𝑅𝑅  is allowed. These 326 

phenomena can be attributed to the substantial impact of periodic row structures and the 327 

 

Fig. 6 Retrieved versus observed soil moisture for H-pol (top row) and V-pol (bottom row) over the 

bare soil in each quadrant, using the SCA (Eq. 10) with the bare soil forward model (Eq. 3). Calibrated 

𝐻𝐻𝑅𝑅 values from the period of bare flat soil in Q2 were used for all quadrants here, i.e., 0.125 and 0.171 

for P-band H- and V-pol, respectively, and 0.327 and 0.081 for L-band H- and V-pol, respectively. 

The parameters 𝑄𝑄𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑃𝑃 were assumed to be the same as those from the SMAP SCA at both P- and 

L-band, being 0 and 2, respectively. 
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inapplicability of the SMAP SCA configuration (i.e., 𝑄𝑄𝑅𝑅 = 0 and 𝑁𝑁𝑅𝑅𝑉𝑉  = 2) for periodic 328 

roughness at L-band. For both P- and L-band and both H- and V-pol, Q2 had the lowest 329 

calibration residual across the four quadrants with only one exception (L-band H-pol in Q4), 330 

indicating the more considerable roughness impact of periodic surfaces than from the flat 331 

surface in Q2. Importantly, the 𝐻𝐻𝑅𝑅 in the four quadrants was more comparable at P- than L-332 

band at V-pol, with the standard deviation being 0.046 and 0.068, respectively. 333 

To evaluate the induced retrieval error from applying the calibrated 𝐻𝐻𝑅𝑅  in flat soil to 334 

periodic soil, the optimal parameters calibrated in Q2 (Fig. 5) were used to retrieve the soil 335 

moisture in all four quadrants for both bands and both polarizations, with the comparison of 336 

the retrieved and observed soil moisture plotted in Fig. 6. As expected, Q2 was seen to have 337 

the best retrieval performance across all four quadrants because 𝐻𝐻𝑅𝑅 was calibrated in Q2, which 338 

was done intentionally to get a benchmark accuracy that can be compared to for the other three 339 

quadrants with periodic soil surfaces. P-band was found to perform better than L-band in 340 

RMSE in all quadrants except Q4 for H-pol. In Fig. 6, V-pol had better retrieval accuracy than 341 

H-pol at both P- and L-band. Focusing on V-pol (Fig. 6 bottom row), P-band had similar 342 

RMSEs across all four quadrants, whereas L-band showed higher RMSE over periodic soil 343 

(0.031-0.040 m3/m3) than that over flat soil (0.018 m3/m3), indicating the reduced roughness 344 

impact at P-band. 345 
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5.2 SCA – the tau-omega model for wheat-covered soil 346 

The default SMAP SCA parameters for croplands (Table 2) were evaluated at P- and L-347 

band and H- and V-pol over the wheat-covered soil with different roughness structures using 348 

the tau-omega model (Eq. 1), with the simulated and observed TB compared in Fig. 7. L-band 349 

was found to substantially outperform P-band in all cases, indicating the inapplicability of the 350 

default SMAP SCA parameters (Table 2) at P-band. Similar to Figs. 5 and 6, Fig. 7 also shows 351 

a superior performance at V- over H-pol. More specifically, the RMSE at L-band was no higher 352 

than 3 K at V-pol, demonstrating that the default SMAP SCA parameters were applicable to a 353 

wide range of roughness and vegetation conditions with satisfactory accuracy. In the following, 354 

only V-pol was analyzed due to its superiority over H-pol according to Figs. 6 and 7. 355 
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The SMAP SCA parameters were demonstrated to work very well at L-band with low 356 

RMSE shown in Fig. 7, and therefore only the vegetation parameters (𝑏𝑏 and 𝜔𝜔) at P-band were 357 

calibrated in Fig. 8. The soil moisture measurements collected over the wheat-covered soil 358 

were adopted to simulate TB, using the tau-omega model with calibrated 𝐻𝐻𝑅𝑅  (Fig. 5) and 359 

varying 𝑏𝑏 and 𝜔𝜔. Overall, the 𝑏𝑏 and 𝜔𝜔 values differed slightly across quadrants, ranging from 360 

0.099 to 0.150 and from 0.119 to 0.137, respectively (Fig. 8). The varied 𝑏𝑏 and 𝜔𝜔 can be 361 

partially attributed to the different residuals of the roughness calibration (Fig. 5) that were left 362 

to be compensated by 𝑏𝑏 and 𝜔𝜔. Comparing the default and calibrated parameters, 𝜔𝜔 differed 363 

more considerably than other parameters, being 0.05 in the default configuration (Table 2) and 364 

~0.12-0.13 after calibration (Fig. 8). 365 

 

Fig. 7 Comparison of TB simulations against observations for H-pol (top row) and V-pol (bottom row) 

over the wheat-covered soil in each quadrant, using the SCA (Eq. 10) with the tau-omega model (Eq. 

1). The default SMAP SCA parameters in Table 2 were used for all quadrants, both bands, and both 

polarizations. 
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The minimum RMSE was no higher than 2 K, indicating a good performance of the tau-366 

omega model over the wheat-covered random and periodic soil. Additionally, even though the 367 

𝑏𝑏 and 𝜔𝜔 values denoted by the yellow circles in Fig. 8 are technically the calibrated parameters, 368 

a range of adjacent values can still be used if a certain calibration residual (e.g., 2 K) is tolerated. 369 

 

Fig. 8 RMSE (K) between the observed and simulated TB using a range of 𝑏𝑏 and 𝜔𝜔 values for 

P-band V-pol over the wheat-covered soil in each quadrant. The tau-omega model (Eq. 1) was 

adopted as the forward model. The yellow circles indicate where the minimum RMSE was 

reached, with the three values showing 𝑏𝑏, 𝜔𝜔, and the minimum RMSE, respectively. The 

calibrated 𝐻𝐻𝑅𝑅 values at P-band V-pol from the period of bare soil, i.e., 0.174, 0.171, 0.070, 

and 0.092, were used for Q1-Q4, respectively. The parameters 𝑄𝑄𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑃𝑃 were assumed to 

be the same as in the SMAP SCA, being 0 and 2, respectively. 
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Soil moisture was subsequently retrieved at P- and L-band V-pol using the tau-omega 370 

model (Fig. 9). While the roughness (Fig. 5) and vegetation (Fig. 8) parameters were calibrated 371 

at P-band in all four quadrants, only the parameters calibrated in Q2 (𝐻𝐻𝑅𝑅 = 0.171, 𝑏𝑏 = 0.099, 372 

and 𝜔𝜔 = 0.134) were used for the soil moisture retrieval at P-band (Fig. 9). At L-band, the 373 

SMAP SCA parameters (Table 2) were applied to the soil moisture retrieval (Fig. 9). It can be 374 

seen from Fig. 9 that the RMSEs/ubRMSEs were similar across all four quadrants either at P- 375 

or L-band (variations no more than 0.016 m3/m3), suggesting the possibility to ignore the 376 

different roughness structures underneath vegetation when retrieving soil moisture. 377 

5.3 DCA 378 

Before applying the DCA soil moisture retrieval to the vegetated period, the full-time-379 

series TB and soil moisture during the bare soil period were used to calibrate the roughness 380 

 

Fig. 9 Observed versus retrieved soil moisture over the wheat-covered soil in each quadrant, using the 

SCA-V (Eq. 10) with the tau-omega model (Eq. 1). The default SMAP SCA 𝑄𝑄𝑅𝑅  and 𝑁𝑁𝑅𝑅𝑃𝑃  and the 

calibrated 𝐻𝐻𝑅𝑅, 𝑏𝑏, and 𝜔𝜔 parameters in Q2 (flat soil) were used for P-band in all quadrants here, i.e., 

𝑄𝑄𝑅𝑅 = 0, 𝑁𝑁𝑅𝑅𝑃𝑃  = 2, 𝐻𝐻𝑅𝑅 = 0.171, 𝑏𝑏 = 0.099, and 𝜔𝜔 = 0.134. The default SMAP SCA parameters in Table 

2 were used for L-band in all quadrants. 
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parameters, i.e., 𝐻𝐻𝑅𝑅 and 𝑄𝑄𝑅𝑅 at P- and L-band in each quadrant, shown in Fig. 10. The 𝐻𝐻𝑅𝑅 and 381 

𝑄𝑄𝑅𝑅 values that produced the minimum RMSE were considered as the calibrated values, marked 382 

as the yellow circles with annotated values in Fig. 10. 383 

Similar to Fig. 5, Fig. 10 also shows a lower RMSE at P- than L-band in the four quadrants, 384 

being 2.6-4.8 K and 5.4-10.8 K, respectively. This indicates that the HQN model performs 385 

better at P-band due to the reduced roughness impact. Q2 had the lowest calibration residual 386 

 

Fig. 10 RMSE (K) between the observed and simulated dual-pol TB using a range of 𝐻𝐻𝑅𝑅 and 

𝑄𝑄𝑅𝑅 values for P-band (top row) and L-band (bottom row) over the bare soil in each quadrant. 

The model for bare soil (Eq. 3) was adopted as the forward model. The yellow circles indicate 

where the minimum RMSE was reached, with the three values showing 𝐻𝐻𝑅𝑅 , 𝑄𝑄𝑅𝑅 , and the 

minimum RMSE, respectively. The 𝑁𝑁𝑅𝑅𝑃𝑃 was assumed to be 2, the same as in the SMAP DCA, 

at both P- and L-band. 
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across the four quadrants for both P- and L-band because of its relatively smooth surface 387 

compared to the periodic soil surfaces in Q1, Q3 and Q4. While 𝑄𝑄𝑅𝑅 is usually assumed to be 388 

zero (e.g., Wigneron et al., 2001; Martens et al., 2015), this assumption was only found to be 389 

valid at P-band but not at L-band in Q2 when using dual-pol TB, confirming the studies with 390 

non-zero 𝑄𝑄𝑅𝑅 values at L-band (e.g., Lawrence et al., 2013). Moreover, Fig. 10 supports that 391 

non-zero 𝑄𝑄𝑅𝑅 should apply for periodic surfaces when performing a DCA retrieval. It is also 392 

worth noting that 𝐻𝐻𝑅𝑅 and 𝑄𝑄𝑅𝑅 were larger in Q4 than Q3, particularly at L-band, indicating that 393 

the periodic surface with parallel structures might have a larger impact than that with 394 

perpendicular structures at ~40° incidence angle, in spite of the same row spacing and height. 395 

Fig. 11 presents the comparison of the observed and retrieved soil moisture when applying 396 

the 𝐻𝐻𝑅𝑅 and 𝑄𝑄𝑅𝑅 calibrated in Q2 (Fig. 10) to all four quadrants. P-band was found to perform 397 

better than L-band in all metrics. Similar to the SCA result in Fig. 9, the RMSEs and ubRMSEs 398 

shown in Fig. 11 at either P- or L-band were comparable across the four quadrants, with 399 

variations of no more than 0.011 m3/m3. 400 

While the SMAP baseline algorithm has recently changed to the DCA from the SCA-V 401 

due to the improved performance in some agricultural areas (O'Neill et al., 2021b), based on 402 

Figs. 9 and 11 in this research, the DCA showed higher RMSE (e.g., 0.028 m3/m3 at P-band 403 

and 0.062 m3/m3 at L-band in Q2) than the SCA-V (e.g., 0.009 m3/m3 at P-band and 0.018 404 

m3/m3 at L-band in Q2). These results are consistent with the earlier validation results of SMAP 405 

(Chan et al., 2016). 406 
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5.4 Estimation of vegetation impact 407 

To investigate whether P-band had a reduced vegetation impact at P-band, the soil 408 

moisture was retrieved over the wheat-covered soil in Q2 without considering the vegetation 409 

impact in the model (Fig. 12), i.e., using the bare soil model (Eq. 3) with the calibrated 𝐻𝐻𝑅𝑅 410 

parameters in Fig. 5, being 0.171 for P-band and 0.081 for L-band. P-band was found to 411 

outperform L-band substantially in RMSE, being 0.029 and 0.063 m3/m3 for P- and L-band, 412 

respectively. The default SMAP 𝐻𝐻𝑅𝑅  values for the SCA (0.15 for bare soil and 0.108 for 413 

croplands) were also investigated for both P- and L-band (not shown), and no discernable 414 

difference in RMSE was found compared to that in Fig. 12. 415 

 

Fig. 11 Observed versus retrieved soil moisture over the wheat-covered soil in each quadrant, using the 

DCA (Eq. 11) with the tau-omega model (Eq. 1). The default SMAP DCA 𝑁𝑁𝑅𝑅𝑃𝑃 and 𝜔𝜔 were used for 

both P- and L-band, i.e., 𝑁𝑁𝑅𝑅𝑃𝑃 = 2 and 𝜔𝜔 = 0.06. The calibrated 𝐻𝐻𝑅𝑅 and 𝑄𝑄𝑅𝑅 from the period of bare flat 

soil in Q2 were used for all quadrants, i.e., 𝐻𝐻𝑅𝑅 = 0.136 and 𝑄𝑄𝑅𝑅 = 0 for P-band and 𝐻𝐻𝑅𝑅 = 0.231 and 𝑄𝑄𝑅𝑅 = 

0.144 for L-band. 
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6 Discussion 416 

6.1 Do periodic surfaces need to be discriminated in soil moisture retrieval at P- and L-417 

band? 418 

For the bare flat and periodic soil, the HQN model worked better at P- than L-band, 419 

supported by the lower RMSE at P-band in the simulation results of Figs. 5 and 9. In terms of 420 

soil moisture retrieval, P-band was also shown to have lower RMSE than L-band in Fig. 6. 421 

Shen et al. (2022) pointed out that the default SMAP and SMOS parameters induced larger 422 

errors over periodic surfaces than flat surfaces. In the current investigation, the 𝐻𝐻𝑅𝑅  was 423 

calibrated in Q2 and then applied to retrieve the soil moisture in all four quadrants, with the 424 

result showing that P-band had a reduced error compared to L-band (Fig. 6). This evidence 425 

 

Fig. 12 Observed versus retrieved soil moisture over the wheat-covered soil in Q2, using 

the SCA-V (Eq. 10) with the bare soil forward model (Eq. 3). Calibrated 𝐻𝐻𝑅𝑅 values from 

the period of bare flat soil in Q2 were used here, i.e., 0.171 for P-band and 0.081 for L-

band, while 𝑄𝑄𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑉𝑉 were assumed to be the same as those from the SMAP SCA at 

both P- and L-band, being 0 and 2, respectively. 
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collectively confirms the conclusion by Shen et al. (2022) that P-band was less impacted by 426 

random and periodic roughness than L-band. 427 

For the wheat-covered soil with different roughness structures, the default SMAP SCA 428 

parameters were found to work very well at L-band but not at P-band (Fig. 7). Moreover, the 429 

calibrated parameters at P-band led to an RMSE similar to that obtained at L-band using the 430 

default SMAP SCA parameters, being no higher than 3 K (Figs. 7 and 8). From the aspect of 431 

soil moisture retrieval, no substantial variation across different quadrants was observed at both 432 

P- and L-band whether using the SCA (Fig. 9) or the DCA (Fig. 11), indicating that the same 433 

parameters can be used for wheat-covered soil with different roughness structures. 434 

In summary, P-band did not need to have the periodic surfaces discriminated for either 435 

bare or wheat-covered soil, while L-band needed differently calibrated parameters for bare 436 

periodic surfaces compared to bare flat surfaces due to the more considerable roughness impact. 437 

However, when the wheat canopy covered the soil, the periodicity of the surfaces no longer 438 

needed to be considered at L-band. A possible explanation is that the mature wheat canopy 439 

“masked” the roughness structures below. 440 

6.2 Can low-to-intermediate vegetation be omitted in soil moisture retrieval at P- and L-441 

band? 442 

When using one TB observation to retrieve one soil moisture using the tau-omega model 443 

(i.e., the SCA), prior vegetation information (e.g., VWC, NDVI (Normalized Difference 444 

Vegetation Index), LAI (Leaf Area Index, Yadav et al., 2020), etc.) is required to estimate 𝜏𝜏 445 
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using Eq. 9. When such information is not available, the use of P-band observations can still 446 

achieve an acceptable performance (0.029 m3/m3 in RMSE) when completely ignoring the 447 

vegetation impact by using the bare soil model (Fig. 12). In contrast, the corresponding RMSE 448 

at L-band was as high as 0.063 m3/m3, demonstrating that the impact of low-to-intermediate 449 

vegetation (under 4 kg/m2) can be neglected at P-band but not at L-band. 450 

Neglecting the vegetation resulted in underestimating the soil moisture observations (Fig. 451 

12) because the vegetation contribution was mistakenly considered as a soil contribution, 452 

increasing the soil emissivity and thus decreasing the soil moisture. This phenomenon was 453 

particularly prominent for high soil moisture (Fig. 12) when the VWC was also high (Fig. 4). 454 

Consequently, it can be postulated that the advantage of P- over L-band in reducing the 455 

vegetation impact will become more considerable when the VWC achieves a higher range, e.g., 456 

corn (Hornbuckle and England, 2004). 457 

6.3 Are model parameters comparable across different frequencies? 458 

Directly comparing the model parameters (i.e., 𝐻𝐻𝑅𝑅 , 𝑄𝑄𝑅𝑅 , 𝑏𝑏 , and 𝜔𝜔 ) across different 459 

frequencies seems to be a straightforward way to judge the reduced roughness and vegetation 460 

impact at a specific frequency compared to others. However, this might not actually make sense. 461 

Gao et al. (2017) calibrated the 𝐻𝐻𝑅𝑅 and 𝑏𝑏 at L-, C- and X-band by assuming 𝜔𝜔 = 0.05 and found 462 

𝐻𝐻𝑅𝑅 and 𝑏𝑏 increased with increasing frequency. On the contrary, Wang et al. (1983) discovered 463 

that 𝐻𝐻𝑅𝑅 did not have a definitive relation to frequency. While Mo et al. (1982) obtained higher 464 

𝐻𝐻𝑅𝑅 and 𝑏𝑏 values at C-band than those at L-band, consistent with Gao et al. (2017), they found 465 
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𝜔𝜔 was higher at L-band, contradictory to microwave radiometry theory which suggests that a 466 

longer wavelength band should have reduced scattering effects. Additionally, considering the 467 

results in this paper (Figs. 5, 8, and 10) where no explicit frequency-dependence was found for 468 

the parameters 𝐻𝐻𝑅𝑅, 𝑏𝑏, and 𝜔𝜔, it might be concluded that these model parameters should not be 469 

compared across different frequencies. 470 

Two reasons can be attributed to the incomparability of those model parameters. First, the 471 

tau-omega and the HQN models are semi-empirical, approximating the rigorous physical 472 

process by linking the model parameters (i.e., 𝐻𝐻𝑅𝑅, 𝑏𝑏, and 𝜔𝜔) to some measurable variables (e.g., 473 

rms height, correlation length, and VWC). Meanwhile, many assumptions have been made to 474 

develop simplified analytical equations, including the homogeneity of soil moisture in space 475 

and with depth, the scattering isotropy of soil and vegetation, and the negligibility of the high-476 

order scattering. Therefore, these parameters have to be considered as effective rather than 477 

physical (Wigneron et al., 2017). 478 

Second, the mismatch between the sampling depth of the soil moisture measurements and 479 

the theoretical moisture retrieval depth may also lead to an incomparability of model 480 

parameters. The moisture retrieval depth is dependent on frequency and moisture profile and 481 

is thus a time-variant variable (Shen et al., 2021), making it impractical to calibrate the model 482 

parameters using the soil moisture observations exactly within the moisture retrieval depth, let 483 

alone the challenge to measure the continuous soil moisture in a very thin layer, e.g., 1-2 cm. 484 

The 𝑄𝑄𝑅𝑅 was found to be a possible exception from both the literature and current results 485 

when estimated to be non-zero. Fig. 10 presents that the 𝑄𝑄𝑅𝑅 values at P-band were lower than 486 
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those at L-band in all four quadrants. Similarly, Wang et al. (1983) has reported that while 𝐻𝐻𝑅𝑅 487 

is not correlated to frequency, such a relation exists for 𝑄𝑄𝑅𝑅, being 0.01, 0.15, and 0.20 at 1.4, 488 

5, and 10.7 GHz, respectively, for a soil surface with 0.73-cm rms height. However, such a 489 

conclusion is drawn with much caution, given that relevant studies mostly assumed constant 490 

𝑄𝑄𝑅𝑅 (e.g., Wigneron et al., 2001; Martens et al., 2015) and thus more evidence is still required. 491 

6.4 What are the challenges of a successful P-band-radiometer mission? 492 

While it has been demonstrated that P-band is a promising proposition to replace or 493 

enhance the current L-band SMOS and SMAP missions in the forthcoming years, so as to 494 

obtain deeper and more accurate soil moisture information (Shen et al., 2021; Shen et al., 2022), 495 

there remain four challenges: aperture size, radio frequency interference (RFI), receiver design 496 

and calibration, and ionospheric and celestial emission effects (Johnson et al., 2021). 497 

With the spatial resolution of a radiometer determined by the size of the antenna relative 498 

to the observing wavelength for a given orbit altitude, the aperture of a 0.75-GHz radiometer 499 

needs to be enlarged by 1.87 times to retain the same 40-km spatial resolution of the 1.4-GHz 500 

radiometer of SMAP, i.e., increasing from the 6-m-diameter antenna of SMAP to an 11.22-m-501 

diameter antenna. Moreover, unlike L-band (1.400-1.427 GHz) that is exclusively allocated for 502 

radio astronomy use, P-band (0.3-1 GHz) is heavily occupied by television broadcast, 503 

communications, and other applications (National Research Council, 2010), easily causing RFI 504 

and corrupting radiometric measurements from the target. Additionally, at 0.75 GHz, the 505 
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amount of Faraday rotation and ionosphere-specific attenuation is approximately 3.5 times as 506 

large as at 1.4 GHz, which needs to be corrected. 507 

Nowadays, large deployable antennas (e.g., Meguro et al., 2009) and highly developed 508 

downscaling techniques (Peng et al., 2017; Sabaghy et al., 2018; Sharma et al., 2021) make 509 

higher spatial resolution at P-band possible. Moreover, RFI mitigation techniques are 510 

becoming increasingly mature (Skou et al., 2009; Huang et al., 2018; Jin et al., 2019). The 511 

ultra-wideband software defined microwave radiometer (UWBRAD) is a successful example 512 

in this regard for demonstrating how a future P-band-radiometer mission might address the RFI 513 

issue (Johnson et al., 2016; Yardim et al., 2021). The UWBRAD detects and filters RFI by 514 

segmenting the observed bandwidth (from 0.5 to 2 GHz) into 12 channels, each of which is 515 

further resolved into 512 subchannels, so that the RFI-free portions of the spectrum can be 516 

identified and integrated. These advancements in aerospace and remote sensing technologies 517 

pave the way for a successful P-band-radiometer mission in the near future. 518 

7 Conclusion 519 

This paper evaluated the tau-omega model over bare and wheat-covered flat and periodic 520 

surfaces at P- and L-band to demonstrate the potential improvement in soil moisture retrieval 521 

from using the longer wavelength P-band observations. For the bare flat and periodic soil 522 

surfaces, V-pol was less impacted by roughness impact than H-pol at both P- and L-band in 523 

terms of both TB simulation and soil moisture retrieval. Evaluating the SCA-V retrieval results 524 

showed that P-band had a more comparable RMSE than those at L-band across different 525 
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roughness configurations, with variations being up to 0.012 and 0.022 m3/m3 for P- and L-band, 526 

respectively. 527 

For the wheat-covered soil, the default SMAP SCA parameters for croplands were found 528 

to simulate TB satisfactorily at L-band V-pol but not at L-band H-pol or P-band. Therefore, at 529 

P-band V-pol, the roughness and vegetation parameters were calibrated in Q2 (flat soil) and 530 

applied to retrieve the soil moisture in all four quadrants, while the default SMAP parameters 531 

were applied to retrieve the soil moisture in all four quadrants at L-band V-pol. The RMSE 532 

between observed and retrieved soil moisture showed that neither P- or L-band had substantial 533 

performance variation across different quadrants for the SCA or DCA. However, the DCA had 534 

a degraded retrieval performance compared to the SCA-V. 535 

In short, P-band had a reduced roughness impact and was thus able to model both the flat 536 

and periodic soil using the calibrated parameters from the flat soil, for both bare and wheat-537 

covered soil. Conversely, L-band could only treat the different periodic surfaces like a flat 538 

surface when covered by a mature wheat canopy. Moreover, a lower RMSE at P-band (0.029 539 

m3/m3) than L-band (0.063 m3/m3) was observed when omitting vegetation effects in the 540 

forward model, confirming that P-band observations were relatively unaffected by the wheat 541 

canopy. 542 
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List of figure captions 786 

Fig. 1 Illustrations of the tower-based experiment at Cora Lynn, Victoria, Australia, including 787 

a) location map of the site; b) the tower carrying PPMR and PLMR; c) the four-step tower 788 

rotation cycle; d) PPMR operating at 0.742-0.752 GHz; and e) PLMR operating at 1.401-1.425 789 

GHz. 790 

Fig. 2 Illustrations of the ground measurements, including a) station 126 monitoring soil 791 

moisture, temperature, and rainfall evolution; b) a diagram showing the station installation; c) 792 

soil surface roughness measurement with the pin-profiler; d) surface soil moisture 793 

measurement using HDAS; and e) an example of vegetation destructive sampling. 794 

Fig. 3 Photos before the germination (top row) and at the maturity (middle row) of wheat, and 795 

diagrams of soil surface profiles (bottom row) of the four quadrants for the data used in this 796 

paper. Quadrants 3 and 4 were plowed in one pass and had the same roughness structures but 797 

with different orientations (perpendicular and parallel, respectively) relative to the tower look 798 

direction. 799 

Fig. 4 Collected data including a) TB observations at 6 am in Q1 as an example, with the data 800 

gaps resulting from the tower being lowered due to high wind on those days; b) station time-801 

series soil moisture with HDAS measurements (boxplots); c) station time-series soil 802 

temperature; and d) observed (boxplots) with fitted (black line) vegetation water content in 803 



46 

Q1 as an example. For clarity only the data collected from the top 3 sensors are plotted in b) 804 

and c). Corresponding to the soil moisture evolutions of station 126 (in blue) in Q2 and station 805 

127 (in red) in Q1, 3 and 4, the blue and red boxplots in b) show the maximum, 75% percentile, 806 

median, 25% percentile, and minimum of the spatial HDAS measurements in Q2 as well as 807 

Q1, 3 and 4, respectively. 808 

Fig. 5 RMSE (K) between the observed and simulated TB using a range of 𝐻𝐻𝑅𝑅 values at H-809 

pol (top row) and V-pol (bottom row) over the bare soil in each quadrant. The model for bare 810 

soil (Eq. 3) was adopted as the forward model. The dots with values indicate the minimum 811 

RMSE and the corresponding 𝐻𝐻𝑅𝑅 values for P-band (in blue) and L-band (in orange). The 812 

parameters 𝑄𝑄𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑃𝑃 were assumed to be the same as in the SMAP SCA at both P- and L-813 

band, being 0 and 2, respectively. 814 

Fig. 6 Retrieved versus observed soil moisture for H-pol (top row) and V-pol (bottom row) 815 

over the bare soil in each quadrant, using the SCA (Eq. 10) with the bare soil forward model 816 

(Eq. 3). Calibrated 𝐻𝐻𝑅𝑅 values from the period of bare flat soil in Q2 were used for all quadrants 817 

here, i.e., 0.125 and 0.171 for P-band H- and V-pol, respectively, and 0.327 and 0.081 for L-818 

band H- and V-pol, respectively. The parameters 𝑄𝑄𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑃𝑃 were assumed to be the same as 819 

those from the SMAP SCA at both P- and L-band, being 0 and 2, respectively. 820 

Fig. 7 Comparison of TB simulations against observations for H-pol (top row) and V-pol 821 

(bottom row) over the wheat-covered soil in each quadrant, using the SCA (Eq. 10) with the 822 

tau-omega model (Eq. 1). The default SMAP SCA parameters in Table 2 were used for all 823 

quadrants, both bands, and both polarizations. 824 
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Fig. 8 RMSE (K) between the observed and simulated TB using a range of 𝑏𝑏 and 𝜔𝜔 values for 825 

P-band V-pol over the wheat-covered soil in each quadrant. The tau-omega model (Eq. 1) was 826 

adopted as the forward model. The yellow circles indicate where the minimum RMSE was 827 

reached, with the three values showing 𝑏𝑏, 𝜔𝜔, and the minimum RMSE, respectively. The 828 

calibrated 𝐻𝐻𝑅𝑅 values at P-band V-pol from the period of bare soil, i.e., 0.174, 0.171, 0.070, 829 

and 0.092, were used for Q1-Q4, respectively. The parameters 𝑄𝑄𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑃𝑃 were assumed to 830 

be the same as in the SMAP SCA, being 0 and 2, respectively. 831 

Fig. 9 Observed versus retrieved soil moisture over the wheat-covered soil in each quadrant, 832 

using the SCA-V (Eq. 10) with the tau-omega model (Eq. 1). The default SMAP SCA 𝑄𝑄𝑅𝑅 and 833 

𝑁𝑁𝑅𝑅𝑃𝑃 and the calibrated 𝐻𝐻𝑅𝑅, 𝑏𝑏, and 𝜔𝜔 parameters in Q2 (flat soil) were used for P-band in all 834 

quadrants here, i.e., 𝑄𝑄𝑅𝑅 = 0, 𝑁𝑁𝑅𝑅𝑃𝑃  = 2, 𝐻𝐻𝑅𝑅  = 0.171, 𝑏𝑏 = 0.099, and 𝜔𝜔 = 0.134. The default 835 

SMAP SCA parameters in Table 2 were used for L-band in all quadrants. 836 

Fig. 10 RMSE (K) between the observed and simulated dual-pol TB using a range of 𝐻𝐻𝑅𝑅 and 837 

𝑄𝑄𝑅𝑅 values for P-band (top row) and L-band (bottom row) over the bare soil in each quadrant. 838 

The model for bare soil (Eq. 3) was adopted as the forward model. The yellow circles indicate 839 

where the minimum RMSE was reached, with the three values showing 𝐻𝐻𝑅𝑅 , 𝑄𝑄𝑅𝑅 , and the 840 

minimum RMSE, respectively. The 𝑁𝑁𝑅𝑅𝑃𝑃 was assumed to be 2, the same as in the SMAP DCA, 841 

at both P- and L-band. 842 

Fig. 11 Observed versus retrieved soil moisture over the wheat-covered soil in each quadrant, 843 

using the DCA (Eq. 11) with the tau-omega model (Eq. 1). The default SMAP DCA 𝑁𝑁𝑅𝑅𝑃𝑃 and 844 

𝜔𝜔 were used for both P- and L-band, i.e., 𝑁𝑁𝑅𝑅𝑃𝑃 = 2 and 𝜔𝜔 = 0.06. The calibrated 𝐻𝐻𝑅𝑅 and 𝑄𝑄𝑅𝑅 845 
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from the period of bare flat soil in Q2 were used for all quadrants, i.e., 𝐻𝐻𝑅𝑅 = 0.136 and 𝑄𝑄𝑅𝑅 = 0 846 

for P-band and 𝐻𝐻𝑅𝑅 = 0.231 and 𝑄𝑄𝑅𝑅 = 0.144 for L-band. 847 

Fig. 12 Observed versus retrieved soil moisture over the wheat-covered soil in Q2, using the 848 

SCA-V (Eq. 10) with the bare soil forward model (Eq. 3). Calibrated 𝐻𝐻𝑅𝑅 values from the period 849 

of bare flat soil in Q2 were used here, i.e., 0.171 for P-band and 0.081 for L-band, while 𝑄𝑄𝑅𝑅 850 

and 𝑁𝑁𝑅𝑅𝑉𝑉 were assumed to be the same as those from the SMAP SCA at both P- and L-band, 851 

being 0 and 2, respectively. 852 
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