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Abstract

Groundwater is an important source of water for people, livestock, and agriculture
during drought in the Horn of Africa. In this work, areas of high groundwater use
and demand in drought-prone Kenya were identified and forecasted prior to the dry
season. Estimates of groundwater use were extended from a sentinel network of 69
in-situ sensored mechanical boreholes to the region with satellite data and a machine
learning model. The sensors contributed 756 site-month observations from June 2017
to September 2021 for model building and validation at a density of approximately
one sensor per 3,700 km2. An ensemble of 19 parameterized algorithms was informed
by features including satellite-derived precipitation, surface water availability, vegeta-
tion indices, hydrologic land surface modeling, and site characteristics to dichotomize
high groundwater pump utilization. Three operational definitions of high demand on
groundwater infrastructure were considered: 1) mechanical runtime of pumps greater
than a quarter of a day (6+ hrs) and daily per capita volume extractions indicative
of 2) domestic water needs (35+ L), and 3) intermediate needs including livestock
(75+ L). Gridded interpolation of localized groundwater use and demand was pro-
vided from 2017 to 2020 and forecasted for the 2021 dry season, June - September
2021. Cross-validated skill for contemporary estimates of daily pump runtime and
daily volume extraction to meet domestic and intermediate water needs was 68%,
69%, and 75%, respectively. Forecasts were externally validated with an accuracy of
at least 56%, 70%, 72% for each groundwater use definition. The groundwater maps
are accessible to stakeholders including the Kenya National Drought Management
Authority (NDMA) and the Famine Early Warning Systems Network (FEWS NET).
These maps represent the first operational spatially-explicit sub-seasonal to seasonal
(S2S) estimates of groundwater use and demand in the literature. Knowledge of
historical and forecasted groundwater use is anticipated to improve decision-making
and resource allocation for a range of early warning early action applications.

Keywords: drought, groundwater, early warning, early action, machine learning,
remote sensing, Kenya

1. Introduction1

Drought is one of the most persistent, expansive, and damaging of natural dis-2

asters. Coupled with weak institutional and civil systems, experience of drought3

leads to regional food insecurity, water insecurity, disease, and violent conflict for4
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billions of people globally (Wilhite and Glantz, 1985). The Horn of Africa is sus-5

ceptible to natural exposure and societal vulnerability to drought (Liebmann et al.,6

2017; NDMA, 2015). As a slow onset disaster, public and private organizations may7

not effectively mobilize resources in response (Cabot Venton, 2018). An advantage,8

however, is that the risk of drought can be monitored and forecasted in advance,9

allowing for the implementation of early warning early action systems (Funk and10

Shukla, 2020).11

Drought early warning is an established field with existing indices that rely12

on climatological and land surface modeling or observing causal factors. For ex-13

ample, the United States National Integrated Drought Information System (NI-14

DIS) [drought.gov] produces current condition and 3-month drought outlooks from15

weather and climate, soil moisture, streamflow, and rainfall and snowpack data in-16

formed by qualitative expert opinion. In lower resource settings, such as Sub-Saharan17

Africa, observational data is sparse and satellite-derived and land surface modeled18

estimates of climate and the hydrologic cycle become the main inputs in drought19

monitoring. The Famine Early Warning Systems Network (FEWS NET) [fews.net]20

makes the link between drought and food insecurity in low- and middle-income coun-21

tries explicit.22

Drought develops from a deficit of precipitation and water storage inadequate23

to support livelihoods. The four domains of drought – meteorological, hydrological,24

agricultural, and socioeconomic – compound from an initial lack of rainfall and low-25

ered water availability to adverse impacts on land productivity and livestock and,26

ultimately, to water and food insecurity from diminished household returns (Wilhite27

and Glantz, 1985). The primary rainfall and agricultural season in East Africa has28

seen a marked decrease in precipitation in recent decades (Nicholson et al., 2018),29

leading to slower and lower recharge of surface water and diminished flow rates in30

large rivers. Moreover, the increase in surface temperatures from climate change,31

generates higher evapotranspiration, aggravating the decline in precipitation and32

intensifying aridification.33

The arid and semi-arid lands (ASALs) of Kenya have faced regular drought since34

at least 2016 with below average rainfall placing 18 million people at risk (UNICEF,35

2017; KNBS, 2019). During times of low precipitation and decreased surface water36

capacity, groundwater becomes a critical source of water for domestic, livestock, and37

agricultural needs (Thomas et al., 2019). Pastoralist communities, in particular, are38

dependent on predictable access to water, without which they are likely to continue to39

experience inequitable rates of poverty and poor health (NDMA, 2015). Functional40

and strategic groundwater distribution, then, may lower exposure and vulnerability41

to drought for affected populations.42
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For the region, a number of databases are available that address water supply43

(Hofste et al., 2019; Senay et al., 2013) and demand (Hofste et al., 2019; McNally44

et al., 2019; Senay et al., 2015). Although these data products often incorporate45

some information about groundwater, they rely on Gravity Recovery and Climate46

Experiment (GRACE) satellite data at low resolution (10000 km2 - 150000 km2)47

(Landerer and Swenson, 2012) or mechanistic hydrological modeling without other48

primary data. AQUASTAT (FAO, 2021) is a rich resource of water data, but it49

is only aggregated from annual questionnaires in tabulated form by country every 550

years, limiting its usability at finer spatial scales and its relevance to real- or near-time51

response. Therefore, a geospatially explicit dataset that gives estimates of local (<5052

square kilometers) and acute (sub-seasonal) realized groundwater demand represents53

an important missing indicator of water resource availability and withdrawal that54

would improve interpretation of other water and drought indices in the region.55

The Drought Resilience Impact Platform (DRIP) combines early detection with56

proactive groundwater management to ensure water availability with various stake-57

holders and decision support tools (Thomas et al., 2021). A principal feature of58

the platform is remote monitoring of a sentinel network of mechanical groundwa-59

ter boreholes in drought-prone regions of East Africa. The sensors have been used60

to identify non-functionality (Thomas et al., 2021), improve water service delivery61

and increase water infrastructure uptime (Nagel et al., 2015; Wilson et al., 2017),62

demonstrate an inverse relationship between rainfall and borehole use (Thomas et al.,63

2019), and examine a framework of groundwater management for drought resilience64

(Turman-Bryant et al., 2019). The current study explicitly addresses how monitoring65

data from the sensors can be used to quantify groundwater and improve delivery of66

drought early warning services and actions for the entire region.67

Although groundwater is an essential water source, especially during the dry sea-68

son, during the 2016-2017 drought, 55% of the pumps needed to access groundwater69

were non-functional in Kenya (UNICEF, 2017). The ability to direct limited re-70

sources to repair, maintain, or site the most critically needed boreholes based on pro-71

jected use prior to drought would enable responsible stewardship of water resources72

and community resilience to drought. Interpreting use within known limitations of73

existing infrastructure may also help direct water resources other than groundwater,74

such as emergency water trucking. Furthermore, observing and predicting trends in75

groundwater use could be an important indicator of developing drought itself.76

By leveraging additional remote sensing and in-situ data sources, we developed77

gridded estimates for historical and forecasted groundwater use in five prominent78

ASAL counties in Kenya. A statistical machine learning model extrapolates recorded79

borehole operation to locations that are not instrumented. The final product catego-80
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rizes areas into high vs. low groundwater use based on definitions of pump runtime81

and per capita volume extraction. This paper describes development of the DRIP82

groundwater service and presents the first gridded maps of acute groundwater use83

and demand in this context. It is expected to inform ongoing local management and84

planning for water and food insecurity during drought in Kenya and demonstrate85

this for East Africa.86

2. Methods87

2.1. Context88

This work builds upon efforts of the Kenya Resilient Arid Lands Partnership89

for Integrated Development (Kenya RAPID) program. In-situ data was collected at90

all mechanized groundwater pumps identified as critical drought infrastructure and91

localized groundwater estimates were developed for five ASAL counties: Garissa,92

Isiolo, Marsabit, Turkana, and Wajir (Figure 1). Collectively the five counties cover93

approximately 260,000 square kilometers - or nearly half of the total surface area of94

Kenya - and suffer from water and food insecurity, high poverty rates, and limited95

access to basic services (NDMA, 2015). Despite several moderate to high produc-96

tivity sedimentary aquifers underlying the area, only 17% of renewable groundwater97

resources are being utilized (Mumma et al., 2011). The ASALs are expected to ex-98

perience more frequent and greater duration dry periods, likely exacerbating existing99

disadvantage in the absence of sustainable development and dedicated drought risk100

reduction.101

The Government of Kenya has committed to ending drought emergencies (EDE)102

by 2022. The National Drought Management Authority (NDMA), established in103

2011, was directed to address drought proactively by confronting vulnerability and104

structural causes (NDMA, 2015). Cooperation between local county water officials105

and NDMA officials led to the selection of strategic boreholes for drought response106

that obtain financial and operational support. These boreholes in the five program-107

matic counties received sensor installation and monitoring. Previously, we observed108

that the strategic boreholes were more likely to be non-functional and susceptible to109

demand elasticity (Turman-Bryant et al., 2019). Drought triggers the mobilization110

of financial and material resources for maintenance of NDMA priority boreholes and111

the execution of contingency plans. In years where precipitation is higher, national112

and local resources for assessing drought risk and repair are withheld or reallocated,113

leading to an increase in the number and duration of malfunctions. The capacity114

to use strategic boreholes to mitigate future droughts is diminished by a smaller115

inventory of operating sites and increasing strain on remaining infrastructure. This116
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suggests that resources should consistently be directed to critical boreholes and to117

areas with restricted surface water availability or where demonstrable demand is118

already high.119

Figure 1: Average annual precipitation, 1981 - 2019. The locations of sensor-monitored NDMA
(National Drought Management Authority) strategic drought emergency boreholes are shown in
the five programmatic arid and semi-arid counties of Kenya. Data source: Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) v2.0

2.2. Data120

2.2.1. In-situ data121

From 2016 to present, 238 mechanized groundwater pumps in Kenya have been122

monitored by satellite- and cellular-connected sensors provided by SweetSense Inc.123
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(sweetsense.space). Pressac brand wireless current transformers measure the fre-124

quency and duration of borehole use by logging the electrical current (amperage)125

delivered to the mechanical pump over time. Data is transmitted daily to a central126

database and web application (Thomas et al., 2021). Sub-hourly sensor data was127

aggregated to mean daily pump runtime and volume by month.128

NDMA selected the EDE strategic boreholes to prioritize for operations during129

drought. Further, data was subset to months during Kenya’s main dry season each130

year – June through September – as the annual period when drought is of biggest con-131

cern and deliberately surveilled. In-situ measurements from representative NDMA132

EDE boreholes were included in the sample when the mechanical borehole and sensor133

were reasonably known to be operational. Borehole and sensor status were assessed134

from maintenance surveys and the availability of daily data.135

The final sample included 69 unique mechanical borehole sites (Figure 1) and 565136

site-month observations from June 2017 to September 2020. The four months of the137

2021 dry season (June - September 2021) contributed 191 site-month observations138

from 51 unique sites for external validation.139

In order to provide comprehensive mapping of groundwater resources for differ-140

ent stakeholders and applications, three separate, but complementary, binary high141

groundwater use classifications were made from the sensor data. Each specification142

informs an aspect of groundwater accessibility, including physical infrastructure and143

population-based need. They are applied to the project region to be considered144

singularly or in comparison.145

The three definitions of categorical high groundwater use by month translated146

from the sensor data are: 1) mean daily pump runtime over six hours per day (a147

quarter day) and mean daily per capita volume extracted 2) over 35 liters per person148

per day (L/pc/d) and 3) over 75 liters per person per day (L/pc/d). From the149

electrical current delivered to the pump, the number of hours a pump was switched on150

per day was measured and taken as pump runtime (Thomas et al., 2021). Estimated151

flow rate at the pump in cubic meters per hour was collected during site visits,152

and taking the product of runtime and yield provided estimates of volume of water153

extracted per day.154

The high use threshold for pump runtime was set at approximately the observed155

mean while high per capita volume of over 35 L/pc/d was meant to capture basic156

needs on the multiple-use water services (MUS) ladder. Between 20 and 50 L/pc/d,157

users are expected to be able to meet most domestic and some livestock and per-158

sonal agricultural needs (MUS Group, 2013). Additionally, a threshold of over 75159

L/pc/d was considered to capture the higher water demands of pastoralists with160

livestock and represent an intermediate service level on the MUS ladder. Thus, lo-161
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cations of groundwater use at or above the high runtime or high volume thresholds162

indicate, respectively, areas where boreholes are expected to run longer than average163

or the population is relying on groundwater to meet domestic and livestock needs,164

presumably because other water resources are unavailable.165

2.2.2. Remote sensing data166

The variables taken or derived from satellite data were elevation (RCMRD Geo-167

portal, 2015); precipitation (Funk et al., 2015); surface water availability (Senay168

et al., 2013); baseflow, runoff, soil moisture, and actual evapotranspiration (Case169

et al., 2014); Normalized Difference Vegetation Index [NDVI] (USGS FEWS NET170

Data Portal, 2017); greenness vegetation fraction [GVF] (Vargas et al., 2015); and171

population density (Stevens et al., 2015). More detail about the actual nature of the172

features is given below in section 2.4.173

Data was retrieved from January 2016 to May 2021 to cover the period of sensor-174

recorded observations of borehole use and accommodate lagging of time-varying co-175

variates for forecasting. Different temporal resolutions were ultimately averaged or176

summed by month. Native spatial resolution of the satellite data products ranged177

from 250 m to 50 km, and values were extracted at point coordinates of the sensors or178

centroids of a 0.05◦ x 0.05◦ (∼30 km2) grid over the five counties. Higher resolution179

data were resampled using bilinear interpolation to agree with the reference grid.180

Gridded population data at 1 km resolution was retrieved from WorldPop [worldpop.181

org] (Stevens et al., 2015; Lloyd et al., 2019) to scale sensor-derived groundwater vol-182

ume extraction by local population numbers. Volume per capita has been accepted183

as a proxy for water demand in previous studies (McNally et al., 2019).184

2.3. Supervised machine learning185

Supervised machine learning (ML) models are empirical. They optimize model186

fit to achieve the most similar outcomes to input training data without regard to187

deterministic or mechanistic explanations. Predictions are derived from the fit ap-188

plied to new observations. Ensemble ML (also known as Super Learning or model189

stacking) executes multiple models (”learners”) on the same data and selects the190

optimal combination of them through cross-validation (van der Laan et al., 2007).191

Our library consisted of 19 candidate learners: nine XGBoost algorithms with dif-192

ferent hyperparameter selections (Chen and Guestrin, 2016); logistic regression; a193

Bayesian generalized linear model (Gelman et al., 2008); Ridge regression, LASSO194

regression, and another elastic net regularization with an alpha parameter equal to195

0.5 (Friedman et al., 2010); three k-Nearest Neighbors learners (Mouselimis, 2021)196

considering varying numbers of neighbors; Random Forests (Breiman, 2001); and a197

null model.198
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Covariates, or features, are the independent variables that have an assumed im-199

pact on the outcome (see section 2.4). Given the inclusion of algorithms in the200

ensemble that perform feature selection in addition to a pre-screening procedure,201

a large number of features, including those that are correlated, can be considered202

without overfitting the model. Overfitting occurs when a model describes training203

data well, but cannot generalize to new data. Feature selection and pre-screening204

reduce the number of features to improve parsimony and cross-validation retains in-205

dependence between training and testing datasets so that the model can predict new206

observations of groundwater use with accuracy. Furthermore, ensemble models are207

proven to perform as well as or better than any one candidate learner in the ensemble208

and minimizing cross-validated risk controls for overfitting even when a large number209

of learners are considered (van der Laan et al., 2007; Polley and Laan, 2010).210

The purpose of modeling in this study was twofold: to extend runtime and volume211

predictions spatially and forward in time. To provide predictions across the region at212

a resolution of approximately 30 km2, a model trained and validated at instrumented213

boreholes was fit on independent explanatory features observed at centroid point214

coordinates of a 0.05◦ x 0.05◦ grid over the five programmatic counties. To extend215

the predictions forward in time, forecasting up to four months was achieved by216

lagging the features by the same number of months and individual model runs.217

Since the effect of climatological phenomenon on groundwater supply and demand218

may be delayed itself, we provided the model with all lagged features available at219

the respective forecast period and allowed the machine learner to screen and select220

the best performing lag for each time varying feature separately. For each outcome,221

the corresponding final model yielded a predicted probability that a certain centroid222

during a particular month was in a high use category as defined above. To establish223

binary high vs. low use, a threshold probability was selected based on a trade-off224

between true positive (high use borehole confirmed by the sensor record) and true225

negative (low use borehole confirmed by the sensor record) rates (see section 2.5).226

To replicate operational conditions for the groundwater use forecasts and evaluate227

performance, we constrained model building between 2017 and 2020 and projected228

groundwater use forward for the 2021 dry season, June through September. Re-229

viewing anticipated groundwater use alongside current infrastructure functionality230

prior to the dry season should inform investments and actions taken by local water231

officers and national decision-makers to reduce drought risk. Moreover, we evaluated232

the skill of our forecasts, which serve as a source of external validation for future233

estimates.234

Modeling and feature design of contemporary groundwater estimates respected an235

internal five-fold stratified cross-validation structure. In cross-validation the observed236
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data is sequentially partitioned into independent training and testing subsets. Five237

equally sized subsamples were generated randomly with all time series observations238

from one sensor being grouped in the same partition. The model was trained with239

four of the subsets and tested on the remaining, held-out subsample. This was240

repeated a total of five times (“folds”) with each of the subsamples being used once241

as the testing dataset. Cross-validation allows for the calculation of performance242

statistics and the ability to generalize the model to new data.243

All data management and analysis was conducted in R statistical computing244

software (R Core Team, 2020).245

2.4. Features246

The following variables are conventionally expected to influence drought and wa-247

ter insecurity and were included in our study: precipitation, land surface tempera-248

ture, vegetation indices, soil moisture profile, evapotranspiration, other hydrologic249

system dynamics such as baseflow and runoff, population density, geographic location250

(longitude, latitude, and elevation), and seasonality (Funk and Shukla, 2020).251

The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) v2.0252

(Funk et al., 2015) is a 30+ year quasi-global rainfall dataset that incorporates satel-253

lite imagery with available in-situ station data to create 0.05◦ x 0.05◦ gridded rainfall254

time series. However, station data is inconsistent and inadequate over Africa. The255

Trans-African Hydro-Meteorological Observatory [TAHMO] (tahmo.org) is gradually256

enhancing weather data collection with the installation of low-cost stations across257

the continent (Giesen et al., 2014). Currently, they operate over 500 stations in 25258

countries, including 130 stations in Kenya. To leverage the advantages of both pre-259

cipitation datasets — the coverage and legacy of CHIRPS with the fine resolution260

in-situ data of TAHMO — we used inverse distance weighting (IDW) to interpo-261

late station data and combined the output with the satellite estimates at monthly262

time-scale through a Simple Bias Adjustment (SBA) merging method. The inter-263

polation was done using a maximum correlation distance of 250 km, achieving a264

minimum and maximum number of stations within this distance of two and ten,265

respectively. If there were no stations in the vicinity to correct the satellite estimate,266

the underlying CHIRPS grid value was retained, resulting in a spatially consistent267

bias-corrected gridded product. We adopted this method from the ENACTS merging268

process (Dinku et al., 2014).269

Gridded maximum daily temperature from the Global Telecommunication System270

(GTS) of the World Meteorological Organization (WMO) was retrieved and averaged271

by month (Physical Sciences Laboratory). NDVI from the Collection 6 Moderate272

Resolution Imaging Spectroradiometer (MODIS) instrument on the Aqua satellite273
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was taken from processed data distributed by the United States Geological Survey274

(USGS) Earth Resources Observation and Science (EROS) Center (USGS FEWS275

NET Data Portal, 2017). GVF from the Visible Infrared Imaging Radiometer Suite276

(VIIRS) instrument aboard the Suomi National Polar-orbiting Partnership (NPP)277

and National Oceanic and Atmospheric Administration (NOAA)-20 satellites (Vargas278

et al., 2015) was based on the differences between the enhanced vegetation index279

(EVI) for bare soils and dense vegetation.280

Land surface modeling (LSM) is a method to extend the coverage of hydrologic281

observations in data sparse contexts, such as remote and developing locations. The282

Noah-Multiparameterization (Noah-MP) LSM relies on water and energy balances283

to physically describe land-atmosphere interaction processes under multiple specifi-284

cations (Niu et al., 2011). Mean daily soil moisture (m3/m3) at depths of 0 - 10 cm,285

10 - 40 cm, 40 - 100 cm, and 100 - 200 cm and total monthly actual evapotranspi-286

ration (mm), baseflow (mm), and runoff (mm) were derived from local instances of287

the Noah-MP LSM run per month (Case et al., 2014).288

Population density was downloaded from WorldPop (worldpop.org) gridded pop-289

ulation data from combined geospatial and census data (Stevens et al., 2015; Lloyd290

et al., 2019). Data is provided only through 2020; for 2021, we applied a population291

growth rate of 2.3% to the 2020 data (The World Bank, 2021). Population den-292

sity was used as an independent variable when modeling pump runtime, but for per293

capita volume predictions, it was only used to scale the outcome and not as a model294

feature.295

Other variables were included based on a demonstrable or logical relationship to296

groundwater use and demand. Public water management in Kenya is deregulated to297

the county level, leading to substantial differences in institutional and operational298

practices; thus, a county variable was added to describe unmeasured variability in299

groundwater supply and use due to administrative differences. Generally, deter-300

minants of the magnitude of groundwater use will be supply, demand, and access.301

Regionally interpolated relative surface water availability (Senay et al., 2013) was302

included to express the inverse correlation between rainfall, and by extension surface303

water supply, and borehole use (Thomas et al., 2019; Thomson et al., 2019). From304

a data inventory collated by Acacia Water as part of the Kenya RAPID program305

(kenyarapid.acaciadata.com/map/13) we also considered the presence within 10 km306

of floodplains, lakes, springs, or river basins. Proximity to installed water infrastruc-307

ture, such as dams, sand pans, and other boreholes, may limit the use at any one308

groundwater source, and, therefore, counts of operational infrastructure within 10309

km were created. Calculated domestic water demand in 2015 provides an estimate310

of volume per square kilometer per day (m3/km2/d) by sub-county required for ade-311
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quate human consumption (Tolk et al., 2016). Social and economic networks can be312

demonstrated by access to main roads, markets, or towns, or, in this case, a count313

of the number of these amenities within 10 km.314

Livestock are one of the largest consumers of water in the ASALs. Pastoralists315

commonly direct their herds to boreholes along migration routes so the presence of316

a major livestock migration route within 10 km was added as a feature. Estimated317

water demand for livestock (m3/km2/d) at the sub-county level was also included318

(Tolk et al., 2016).319

We generated several variables from the sensor data to describe typical use behav-320

ior of boreholes in the region. One, we linearly regressed mean daily pump runtime or321

volume on static site characteristics, including longitude, latitude, elevation, county,322

water demand, proximity to natural water sources, other water infrastructure, and323

amenities, and livestock movement. Two, to leverage the sensor network and char-324

acterize the behavior of neighboring boreholes, we computed mean use at the five325

closest, by Euclidean distance, sensored sites as well as an interpolated layer of mean326

use at the maximally correlated site despite geographic location.327

An advantage of using an ensemble learner and cross-validation is the ability to328

consider many features, models, and settings at once with less constraint on assuring329

a parsimonious model arising from a priori selection of the best set of variables and330

estimator (Polley and Laan, 2010). Thus, many social, environmental, and economic331

dimensions of drought risk and vulnerability were included. Ultimately, the ML332

was provided approximately 30 features from which each algorithm was built after333

screening.334

See Appendix A for a detailed summary of all model features.335

2.5. Statistical Evaluation336

Model performance is evaluated by Receiver Operating Characteristic (ROC)337

curves and area under the curve (AUC), cross- and externally validated accuracy338

and rates of misclassification, and reliability diagrams. ROC curves are a perfor-339

mance measurement for classification problems. The ROC curve is a plot of sensi-340

tivity (y-axis) – the proportion of correctly identified instances of high use – against341

one minus specificity (x-axis) – the proportion of wrongly identified cases of high342

groundwater use among observed low use. The AUC demonstrates how good the343

model is at discriminating between high and low use. Determining which threshold344

to set when translating predicted probabilities to categories is always a trade-off be-345

tween sensitivity and specificity. Youden’s J statistic identifies the closest point on346

the ROC curve to the uppermost left corner of the plot and assumes both are equally347

important.348
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Accuracy is the percent number of sites where predicted high use correctly corre-349

sponds to observed high use after assigning predicted probabilities to above or below350

a set threshold. The null or no information rate (NIR) is the expected accuracy351

given random assignment based on the prevalence of the outcome in the data alone.352

Instances of incorrectly identified high use are evaluated with the false positive rate353

(FPR) and false negative rate (FNR) rate. The FPR is the proportion of wrongly354

identified cases of high groundwater use among observed low use. The FNR is relative355

to the number of misidentified low use among actual instances of high use.356

Reliability is assessed from a linear relationship between predicted probability357

and observed frequency of high use relative to the magnitude of the probability. A358

perfectly reliable model exhibits a 1:1 relationship between the two.359

3. Results360

3.1. High resolution maps of groundwater use and demand361

The ensemble machine learning models allowed for the creation of high spatial362

and temporal resolution maps of groundwater use and demand. For each dry month363

June 2017 - September 2020 contemporary estimates of pump runtime and volume364

extracted at existing or hypothetical groundwater infrastructure are available at365

approximately 30 km2 resolution. The most recent dry season, June - September366

2021, was forecasted and validated with ensuing observed data.367

Figure 2 demonstrates how predicted probability output from the model was368

translated to high use for domestic needs (> 35 L/pc/d). Red intensity indicates369

a higher probability of high use and ultimate high use class assignment is outlined.370

These maps may also suggest the certainty of high use classification. At a probability371

between 80-100%, we are relatively more confident groundwater use will surpass the372

high use threshold; if it is closer to 40-60%, we recognize that the model has identified373

one use category, but it may disagree with observed values on occasion.374

Site-level accuracy for each 2021 month (72%, 74%, 77%, and 70%) showed that375

performance was relatively stable over different forecast periods, although it was376

lowest in September 2021 when the model had a lead of four months. High use377

was overestimated (i.e., FPR > FNR) in June and September and underestimated in378

July and August (i.e., FNR > FPR). When considering all years, specificity was high379

relative to sensitivity (Figure 4), indicating that generally the rate of false positives380

was lower than the rate of false negatives despite forecast lead time.381
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Figure 2: Predicted probability of groundwater demand for daily domestic water needs (>35 L per
person per day) forecasted for the 2021 dry season. Categorization of high demand is outlined and
accuracy is given for each dry season month. Rates of false positives (FPR) and false negatives
(FNR) are based on site-level observations.

A similar demonstration was made for intermediate groundwater volume (> 75382

L/pc/d) (Figure 3). Areas of northern Turkana County and southwestern Garissa383

County showed diminished need for higher volumes indicative of livestock watering.384

This was somewhat unexpected as these areas do support livestock. However, these385

areas are also places of violent conflict. So while there may be a high need for water,386

we anticipate some groundwater points in these region are demonstrating lower user387
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due to insecurity limiting access. There is unmet demand for water and rehabilitating388

water points or providing alternative water sources could serve to improve resource-389

based conflict in the area. Site accuracy was high (73-80%) and mis-identification of390

false negatives was more likely than false positives across the season.391

Groundwater demand increased as the dry season progressed and was consistently392

highest in Marsabit and Isiolo counties for both domestic and livestock needs. Here393

only per capita volume was shown, but categories of pump runtime displayed similar394

patterns.395

All maps are accessible via a web-based platform at drip.shinyapps.io/groundwater.396

We presented only the pre-drought season 2021 volume per capita forecasts, but397

through the application, users can view historical and projected groundwater use.398

Other utilities include comparison of trends by month or year, viewing the two-class399

categorization of high groundwater use informed by the predicted probability, dis-400

playing the predictions as absolute magnitude or difference from averages, filtering401

by county, and seeing the status of the sensored boreholes.402

For the purposes of this paper, we constrained model building prior to 2021 in403

order to externally validate the forecasts. In practice, the model and application will404

be updated per month during the dry season with an approximate one-week delay,405

at which time the concurrent groundwater estimates and forecasts roll forward one406

month. The model building procedure is repeated with the additional time series407

so the size and variability of the data will increase and we expect performance to408

improve over time with a longer data record.409

3.2. Performance of gridded contemporary and forecasted estimates410

The models achieved high statistical performance (Table 1, Figure 4). Estimation411

of volume per capita for domestic and intermediate needs proceeded the best.412

The AUC for determining and forecasting high groundwater use ranged from413

0.703 to 0.714, from 0.746 to 0.756, and from 0.778 to 0.787 for daily pump runtime,414

domestic volume per capita, and intermediate volume per capita, respectively (Table415

1). Regardless if groundwater use is defined by mechanical requirements of the416

borehole or by water volume, our models contain a 70% or greater probability of417

accurately discriminating between low and high use. Ultimately, after classifying418

high use from predicted probabilities, the sensitivity for contemporary estimates, by419

use definition, was 58%, 57%, and 55% with corresponding specificity of 75%, 82%,420

and 88%. The rates for the one- to four-month forecasts were similar and can be421

read from Figure 4A. Since specificity is greater than sensitivity, it is less likely that422

a site predicted to exhibit high groundwater use would be incorrectly identified and423

there are less false positives than false negatives in the predictions. Thus, our models424
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Figure 3: Predicted probability of groundwater demand for daily intermediate water needs (>75 L
per person per day) forecasted for the 2021 dry season. Categorization of high demand is outlined
and accuracy is given for each dry season month. Rates of false positives (FPR) and false negatives
(FNR) are based on site-level observations.
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are optimized to conserve material resources used to respond to high groundwater425

need, such as deploying pump repair teams, at the occasional expense of failing to426

capture some regions of high use.427

Overall model accuracy (Table 1) of the contemporary categorical high runtime428

and basic and intermediate volume per capita was 67.6%, 69.4%, and 74.5%, respec-429

tively. A similar level of accuracy was observed for the one- to four-month forecasts.430

High predictive skill of volume per capita was demonstrated with external validation,431

indicating these models were not overfit. Accuracy was at least 70% and as high as432

80% for forecasting per capita volume and represented significant improvement over433

the NIR. Predictive skill of pump runtime was lower when tested on held-out data.434

Table 1: Accuracy statistics for contemporary and one- to four-month forecasts of categorical high
pump runtime (6+ hr/d), volume per capita for basic needs (35+ L/pc/d), and volume per capita for
intermediate needs (75+ L/pc/d). Sensor data from the 2021 dry season was reserved from model
building to provide evidence of operational accuracy for the forecasts from external validation. AUC
= Area Under the Curve; NIR = No Information Rate; p-value = significance value of difference
between accuracy and NIR

Model AUC (95% CI) Accuracy,
% (p-value)

Validation
Acc, %

Pump Runtime, 6+ hr/d – NIR: 57.7 –
Contemporary 0.705 (0.663 - 0.748) 67.6 (<0.001) –
1 mo forecast - Jun 2021 0.706 (0.663 - 0.748) 66.5 (<0.001) 56.0
2 mo forecast - Jul 2021 0.714 (0.672 - 0.756) 66.9 (<0.001) 58.7
3 mo forecast - Aug 2021 0.703 (0.661 - 0.746) 63.9 (0.002) 56.2
4 mo forecast - Sep 2021 0.708 (0.666 - 0.750) 65.8 (<0.001) 57.4
Volume Per Capita, 35+ L/pc/d – NIR: 51.5 –
Contemporary 0.756 (0.717 - 0.796) 69.4 (<0.001) –
1 mo forecast - Jun 2021 0.756 (0.717 - 0.795) 68.7 (<0.001) 72.0
2 mo forecast - Jul 2021 0.748 (0.708 - 0.787) 66.7 (<0.001) 73.9
3 mo forecast - Aug 2021 0.749 (0.709 - 0.788) 68.3 (<0.001) 77.1
4 mo forecast - Sep 2021 0.746 (0.705 - 0.786) 69.0 (<0.001) 70.2
Volume Per Capita, 75+ L/pc/d – NIR: 58.4 –
Contemporary 0.787 (0.749 - 0.825) 74.5 (<0.001) –
1 mo forecast - Jun 2021 0.785 (0.747 - 0.823) 74.3 (<0.001) 76.0
2 mo forecast - Jul 2021 0.783 (0.745 - 0.821) 74.5 (<0.001) 80.4
3 mo forecast - Aug 2021 0.778 (0.739 - 0.817) 73.8 (<0.001) 72.9
4 mo forecast - Sep 2021 0.781 (0.742 - 0.820) 75.0 (<0.001) 76.6
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Figure 4: A) Receiver Operating Characteristic (ROC) curves and B) Reliability Diagrams. Perfor-
mance given for pump runtime and volume per capita and by models used to estimate contemporary
and forecasted groundwater use predictions.
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Volume per capita predictions had the best reliability, exhibiting a consistent435

linear relationship between predicted probability and observed relative frequency436

(Figure 4B). Modeling of domestic volume per capita groundwater use assigned a437

probability of high use comparable to the occurrence of actual high use at each mag-438

nitude of probability except at the highest frequencies of use, when the probability439

was underestimated. At a lead time of four months, high use was also underestimated440

at the lowest frequencies of use. The model for groundwater use for intermediate441

water needs underestimated use at the highest frequencies and overestimated prob-442

ability at median frequencies. Prediction of pump runtime tended to overestimate443

the probability of high use.444

3.3. Contribution of model features445

Variable importance plots (Figure 5) indicate the relative information gained from446

the independent explanatory features. Variable importance is measured by the ratio447

in error, using negative log likelihood loss, between the full ensemble model and a448

model on modified data where the respective features have been excluded from model449

building. Features are plotted against the risk ratio, where model error without the450

features is divided by the error obtained from the full model. See Appendix A for451

which features are described by each theme. For example, in the one-month lagged452

models aimed at forecasting groundwater use in June 2021, removing administrative453

features (county, longitude, latitude, elevation, and proximity to towns, markets,454

and roads) increased model error by about 8% for pump runtime, between 4% and455

5% for basic per capita volume, and just over 1% for intermediate per capita vol-456

ume, indicating that, collectively, these variables were less informative for forecasting457

groundwater volume per capita needs.458

The plots demonstrate patterns in what forces the groundwater use predictions459

for each use definition and lead time. In general, features related to typical, neigh-460

boring borehole behavior were not instructive of site usage. At a lag of one month,461

features related to or suggestive of water availability at the surface – such as pre-462

cipitation, water bodies, evapotranspiration, hydrology, and vegetation greenness –463

better informed volume per capita than pump runtime. With greater lagged obser-464

vations, i.e. as the hypothetical dry season progressed, the signal between features465

and per capita volume forecasts became less clear; although for pump runtime, many466

of the features shared a similar level of importance throughout. Models with longer467

lead (three and four months) demonstrated, with a risk ratio less than one, some fea-468

ture groups were damaging to model performance. This could be suggestive of some469

overfit or correlated variables within the group; however, since overall performance470

and accuracy of the forecasts were acceptable we did not investigate this further with471
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a systematic sensitivity analysis.472

Figure 5: Variable importance plots for models predicting forecasted pump runtime and volume
per capita. Covariates are grouped by theme; see Appendix A for which covariates are described
by each theme.

4. Discussion473

These maps represent the first operational spatially-explicit sub-seasonal to sea-474

sonal (S2S) estimates of groundwater use and demand in the literature. The inte-475

gration of in-situ remote sensors with satellite data and hydrological land surface476

models through ensemble machine learning directly addresses an identified gap in477

population-based, near-real time, acute water monitoring (McNally et al., 2019) and478

supports other services for multi-dimensional drought early warning early action479

(Funk and Shukla, 2020).480

The maps show areas of persistent high groundwater use, areas that develop a481

reliance on groundwater over the dry season, and locations where volume extraction482

suggests the requirement of groundwater to meet domestic needs for households and483
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watering of livestock for pastoralists. Previous work (Thomas et al., 2019) has iden-484

tified that pastoral and agropastoral households typically use a mix of groundwater485

and surface water to meet their needs, but have increased reliance on groundwater486

during dry seasons or in times of drought. Surface water or rainwater harvesting487

are preferred sources when available, with rural populations in Kenya reporting 34%488

less groundwater use during the wet season. The preference for surface water may489

be even more defined for livestock owners and the most water insecure populations490

(Thomson et al., 2019). Empirically we also observed an increase in borehole runtime491

and volume extraction during drought declared years and as the dry season advanced492

within years (see Section 4.1 below).493

The ability to discriminate between high and low groundwater use did not atten-494

uate over the dry season despite lead time up to four months between predictions and495

predictive features. Groundwater needs become more acute as the dry season pro-496

gresses, resulting in a stronger measurable signal. Increasingly, rains prior to the dry497

season provide temporary relief, but are insufficient to provide adequate soil mois-498

ture for vegetation and recharge of surface water for the duration of the dry season.499

Thus, characterizing the hydrologic productivity of the rainy season, which occurs500

one to four months in advance, can explain patterns in subsequent groundwater use.501

With external validation, forecasts of pump runtime proved to be non-informative502

during the 2021 dry season. Thus, there is likely additional unexplained variability503

among sites and activities supported by boreholes. Previous inventories of mechanical504

groundwater infrastructure in this region indicate that there are substantial differ-505

ences in withdrawal efficiencies due to size, manufacturer and operator, age, power506

source, and on-site storage (Thomas et al., 2019). Therefore, despite the introduc-507

tion of an additional source of error when translating mechanical pump runtime to508

volume with a yield coefficient, predictive skill of volume per capita was highest,509

particularly for intermediate (> 75 L/pc/d) use. Instead, we believe that flowrate510

helped control for differences in pump capacity and implementation. Moreover, a511

higher volume threshold likely further differentiated between boreholes used for crit-512

ical drought mitigation during the dry season specifically and other EDE-targeted513

boreholes that might have been used more indiscriminately.514

Predictors related to surface water availability – satellite and gauged precipita-515

tion, relative depth of freshwater water points, and proximity to other natural water516

bodies – were indicative of volume per capita model performance at one and two517

month lead times. Many of the other satellite-derived and modeled hydrological518

features had an inconsistent effect on model error. The change in relative variable519

importance by forecast lead time highlights that characterizing water resources and520

drought dynamically and ’on-the-ground’ with respect to human behavior is complex.521
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The utility of a statistically driven model is the assimilation of satellite data, land522

surface models, and field data into accurate estimates that lead to actionable insights523

in the absence of a clear or complete deterministic understanding. This is especially524

relevant to Sub-Saharan Africa, a context of sparse monitoring data, limited capac-525

ity, and developing scientific consensus of the agro-hydrological mechanisms driving526

drought (Funk and Shukla, 2020).527

4.1. Estimated impact of groundwater demand on drought risk and planning528

The methodology presented here could not have proceeded without in-situ data,529

but we have demonstrated that low density sensors can integrate satellite data and530

mechanistic land surface modeling for local groundwater monitoring. The fine spatial531

and temporal resolution of our gridded groundwater use and demand maps has not532

been achievable before. Approximately 70 sensors were used to inform a total area of533

260,000 km2, or one sensor per 3,700 km2 (1,500 mi2). A small network of sentinel534

sensors provides economical and efficient means to ground-truth and expand the535

utility of earth observation data.536

We made a pixel-to-point comparison between the gridded groundwater estimates537

and observed site data. One-to-one comparisons between gridded satellite data and538

station observations have been practiced in the literature (Dinku et al., 2014) and539

while they have been shown to represent area averages less well than pixel-to-pixel540

comparisons (Dinku et al., 2018), the method is relevant to our context. In the541

ASALs of northern Kenya residents may walk up to 10 km to collect water for542

domestic needs and pastoralists walk even greater distances in search of livestock543

watering. Generating estimates at 0.05◦ x 0.05◦, roughly equal to 5 km x 5 km,544

is appropriate for describing water collection behavior then. Additionally, the use545

of high vs. low categories smooths differences in groundwater use attributable to546

unexplained site variability at this scale. We report high cross-validated accuracy at547

this density and resolution. Thus, the modeled groundwater use/demand pixels did548

characterize site-level observations well.549

The distribution of sensors in the five program counties was not uniform, but550

this was by design with respect to drought emergency. NDMA and county officials551

identified strategic EDE boreholes for monitoring and water resource managers an-552

ticipate areas without sensors to be lower priority during drought response because553

of low population densities, uninterrupted water resources other than groundwater,554

or other mitigating factors. Despite these differences, similar hydrological, climato-555

logical, and socioeconomic conditions are captured at sensored sites since the ASALs556

share many common characteristics (NDMA, 2015). In counties with better distribu-557

tion of sensors, such as Turkana, predictions were accurate across a range of different558
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conditions. Moreover, in areas of predicted high use without existing EDE prior-559

ity, our predictions may prompt re-evaluation of EDE resources and mobilization of560

additional in-situ data collection.561

Gridded groundwater demand contains essential information for decision-makers562

in settings experiencing or expecting drought. The percent area and percent of pop-563

ulation affected by reliance on groundwater each year can be enumerated from our564

maps (Table 2). We delineated trends in groundwater use over time that can be565

related to other meteorological and hydrological phenomenon. The national govern-566

ment of Kenya declared drought in 2017 after several years of low precipitation. An567

above-average long rains season in 2018 helped sustain improvements in water and568

food security, but the next year saw a return to drier conditions and higher tempera-569

tures and, subsequently, 2019 was another year of drought. However, rainfall toward570

the end of the year and during the 2020 long rains promoted recovery. Unfortunately,571

the following two rainy seasons were critically below average, and another national572

drought disaster was declared in 2021 (OCHA, 2021a). The ASALs, where now over573

2.5 million people are facing water and food shortages, have been especially impacted574

(OCHA, 2021b). We see relative changes reflected in high groundwater demand dur-575

ing drought years and accurately forecasted higher demand prior to the 2021 dry576

season (Table 2).577

Table 2: Frequency of predicted high groundwater use over northern Kenya by percent of total area
and population affected each year at any point during the dry season (June - September) of that
year. Population counts were taken from WorldPop unconstrained UN Census adjusted estimates
(Lloyd et al., 2019).

Year
Pump Runtime

6+ hr/d
Volume Per Capita

35+ L/pc/d
Volume Per Capita

75+ L/pc/d
Area (%) Popl (%) Area (%) Popl (%) Area (%) Popl (%)

2017 54.2 50.3 64.3 40.4 33.6 10.1
2018 46.5 40.6 59.8 30.1 40.3 12.9
2019 51.5 49.0 57.9 27.4 37.0 10.0
2020 49.6 43.6 57.6 28.1 40.4 11.7
2021 71.4 68.4 63.1 34.7 45.0 14.7

A review of the 2021 dry season before it begins (Table 3), provided national and578

county officials with the total and percent of their constituents expected to be living579

under circumstances contributing to high groundwater use, such as limited surface580
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water and lowered access to other services. Percent change in groundwater use by the581

end of the dry season demonstrates how and where need changes. All counties were582

expected to experience an increase (positive change) in groundwater reliance as the583

dry season progressed with one exception. In Isiolo, the percent of the population584

expected to undertake high groundwater use to meet basic water needs decreased585

from June to September. Counties that experienced the greatest change, such as586

Wajir and Garissa, may engender more attention and resource allocation for early587

warning early action services.588

Table 3: Impact of 2021 dry season. Total and percent of population predicted to experience high
groundwater use at the start of the 2021 dry season (June) by county and the the percent increase
in population expected to be relying on groundwater by the end of the dry season (September).
Population counts were taken from WorldPop unconstrained UN Census adjusted estimates (Lloyd
et al., 2019).

County
Pump Runtime

6+ hr/d
Volume Per Capita

35+ L/pc/d
Volume Per Capita

75+ L/pc/d
# thous. % % chg # thous. % % chg # thous. % % chg

All 1830 35.9 63.4 1050 20.7 61.2 424 8.3 49.5
Garissa 392 24.1 45.5 123 7.6 140.5 34.1 2.1 81.9
Isiolo 72.7 39.5 14.3 105 57.0 -5.2 59.1 32.1 33.1

Marsabit 179 49.2 40.0 202 55.8 10.0 187 51.4 9.1
Turkana 859 72.5 25.8 191 16.1 24.9 65.1 5.5 56.3

Wajir 326 18.8 207.7 432 24.9 94.8 78.5 4.5 138.0

Several actions are anticipated from these maps in advance of drought. When589

mapped together, sensor data indicating pumps needing repair where high usage590

is predicted would be an alert to prioritize maintenance services to these monitored591

sites. Where there are no sensors, this kind of assessment would need to proceed from592

the institutional knowledge of local water officers, field scientists, and other experts.593

Thus, if high usage is predicted in areas without adequate borehole coverage and/or594

functionality — known through prior or external sources — then resources should595

be devoted to new installations, maintenance, and other water infrastructure.596

The models had a higher specificity than sensitivity, meaning there were fewer597

false positive results and the risk of allocating resources to increase water availabil-598

ity unnecessarily is lower. Conversely, this interpretation accepts that that some599

instances of need will be missed. We chose a threshold to balance sensitivity and600
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specificity for the highest overall accuracy, but the two parameters can be changed601

based on programmatic priorities.602

Operational drought monitoring for Sub-Saharan Africa has been relatively nascent603

in the last decade, when satellite data and land surface modeling were leveraged to604

establish historical climatology and forecast parameters related to meteorological,605

agricultural, and hydrological drought, such as precipitation, soil moisture, vege-606

tation, and streamflow. Yet, most monitors do not include a unique groundwater607

component.608

FEWS NET provides several drought indicators (McNally et al., 2019), and ad-609

ditionally the water supply and demand product for crops, the Water Requirement610

Satisfaction Index (WRSI) (Senay et al., 2015), and surface water levels, the Wa-611

terpoint Viewer (Senay et al., 2013). Acute water stress monitoring related these to612

population needs (McNally et al., 2019). Although, given that these analyses are typ-613

ically generated from renewable freshwater resources and that the volume of stored614

groundwater is estimated to be 100 times that of annual renewable sources and 20615

times the volume of freshwater lakes in Africa, groundwater as a resource to meet616

domestic, pastoral, and agricultural needs is missing from water scarcity assessments617

(MacDonald et al., 2012). These datasets in large part form the evidence base of618

food security classifications and risk outlooks.619

Thus, we propose the DRIP groundwater use and demand maps will become620

another reference dataset for drought indices and expand the knowledge base for621

decision making in Kenya and other future operational contexts. A challenge will622

be how to systematically integrate localized groundwater withdrawal estimates as623

a quantitative feature, but we have identified potential to apply them to drought624

monitoring through expert interpretation and guidance with several key stakeholders.625

4.2. Case study applications626

Stakeholder consultations were a critical component of this research. We con-627

ducted regular consultations with scientists at the eastern and southern Africa SERVIR628

hub – the Regional Centre for Mapping of Resources for Mapping (RCMRD) – and629

FEWS NET in order to align the groundwater use and demand products with user630

needs. We also organized two user engagement workshops. The first workshop was631

held in February 2021 and was attended by drought management officers from the632

NDMA. The second meeting was held in June 2021 and focused on the rollout of pro-633

totype products for Marsabit County in Kenya. Participants in the second meeting634

were drawn from NDMA, the Kenya Meteorological Department, drought humani-635

tarian agencies including the Kenya Red Cross Society (KRCS), Mercy Corps, and636

Food for the Hungry, and the county departments of information technology and637
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water services.638

We received three important recommendations from these meetings: (i) the need639

for participatory planning and co-development of community early warning systems640

that leverage groundwater use and demand information from DRIP, (ii) continuous641

improvement of the groundwater use and demand products through expert feedback642

and user-based validations, and (iii) linking the products to existing drought infor-643

mation dissemination mechanisms through the NDMA national and county drought644

bulletins. These recommendations are part of future co-development processes. The645

development of the groundwater products is also synergistic with other rangeland646

vegetation monitoring services by RCMRD and national drought early warning early647

actions program led by the KRCS.648

4.2.1. The Famine Early Warning System Network (FEWS NET)649

FEWS NET scientists and domain experts (co-authors McNally and Slinski),650

reviewed the DRIP groundwater platform for its potential to inform the FEWS651

NET analysis of acute food insecurity risk. The risk of acute food insecurity is a652

function of a particular hazard or shock, the vulnerability of a specific population,653

and that population’s ability to cope, or recover, from the shock. This framework654

informs the FEWS NET scenario development process that allows for the projection655

of food insecurity eight months in advance for humanitarian assistance planning.656

The ASALs of Kenya are subject to shocks that include drought, animal pests657

and diseases, limited access to dry season grazing, and cattle raiding. Some com-658

munities additionally experience inadequate access to water for domestic use and659

watering livestock, especially during the dry season. This results in the occurrence660

of waterborne disease and poor animal health which are additional shocks to the sys-661

tem. Much of the population in northern Kenya relies on livestock for food and cash662

income (FEWS NET, 2011). Thus, given the nature of the hazards and vulnerability663

of the livestock sector, the ability of this region to cope tends to be low. In late 2021,664

this region was experiencing Phase III - Crisis food insecurity which is characterized665

by households that either have above usual acute malnutrition or are marginally able666

to meet minimum food needs by depleting essential assets or engaging in negative667

coping strategies.668

The predictions of groundwater use and demand can be helpful to the FEWS669

NET scenario development process. As previously mentioned, groundwater demand670

is indicative of inadequate access to water from other sources, like surface water and671

shallow water infrastructure due either to non-functionality or drought. In this way,672

groundwater demand forecasts could alert food security analysis of a shift in behavior673

toward using available groundwater. In many locations, however, the groundwater674
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maps and overlaid in-situ sensor data show that households have inadequate access675

to groundwater during crucial periods (e.g., dry season) due to non-functionality of676

infrastructure at nearby boreholes.677

This unmet need, which contributes to the risk of food insecurity, could be high-678

lighted in FEWS NET reporting and in turn addressed by decision-makers (e.g.679

programmers of humanitarian assistance or national water ministries) in a number680

of different ways: 1) encouraging water point rehabilitation, including repair and681

maintenance of pumps, in locations where DRIP indicates that wells are not prop-682

erly functioning; 2) alternative solutions like water trucking could be employed in683

locations where wells do not exist or are unable to be repaired; 3) institutionalization684

of reliable access to groundwater through installation of new boreholes and increased685

support of pump maintenance in longer term planning documents. Preventive action686

to ensure sustainable groundwater access may be particularly useful in locations that687

suffer from unreliable water trucking due to inaccessibility or political factors.688

Prior to the 2021 dry season and before the current drought in Kenya became689

apparent, our forecasts would have indicated an increased demand in groundwater690

relative to 2020 (Table 2). An increased reliance on groundwater in times of drought691

may, in some cases, involve traveling long distances to Kenya’s EDE strategic bore-692

holes. These predictions were consistent with the observed situation in the September693

2021 Key Message Update (FEWS NET, 2021): “an atypically high number of live-694

stock are migrating to dry season grazing areas driven by the decline in rangeland695

and water resources. Between July and August, livestock trekking distances to wa-696

tering points increased by 60-90 percent, likely driving the 13-55 percent decline in697

milk production compared to the three-year average. [...] Overall, the decline in698

livestock productivity and body conditions is constraining household access to food699

and income and maintaining area-level Crisis (IPC Phase 3) outcomes across pastoral700

areas.”701

Taken together, knowledge of groundwater demand and FEWS NET risk profiles702

could have initiated concrete early actions such as borehole rehabilitation and pump703

repair or alternative reliable access to water through, for example, water trucking to704

improve water and food security during this year’s drought.705

4.2.2. The Kenya National Drought Management Authority (NDMA)706

NDMA exercises coordination across drought risk management and establishes707

mechanisms, either on its own or with stakeholders, that will end drought emergencies708

in Kenya (NDMA, 2015). NDMA has headquarter offices in Nairobi, Kenya and has709

established sub-offices in 23 arid and semi-arid counties considered vulnerable to710

drought. County Steering Groups (CSG) manage the coordination of drought and711
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early warning information at the county level in Kenya (USAID, 2018). The CSG712

is co-chaired by the county governor and county commissioner while the NDMA is713

the secretariat. Based on NDMA’s overall mandate and role in guiding the agenda714

and discussion at CSG meetings, they have been targeted as a critical user of data715

on groundwater.716

From predicted groundwater demand, NDMA and other stakeholders can iden-717

tify mitigation activities against the effects of drought, such as identifying areas718

with predicted high water demand whose borehole pumps would require preventive719

maintenance. The Ministry of Water at the county would conduct timely budgeting,720

procurement of spare parts, and plan visits by borehole technicians to specific sites.721

Further, by analyzing the predicted water demand in relation to production capac-722

ities of boreholes in an area, NDMA and stakeholders could advise communities on723

migration that is usually triggered by the search for water. Such timely advice has724

the potential to avert violence between communities over competition of resources725

that has been common during the drought period. Thus, knowledge of groundwater726

patterns and forecasts helps public agencies address multi-dimensional impacts of727

drought, including health, livelihoods, and conflict.728

4.3. Limitations and Future Work729

In northern Kenya, groundwater supply is not a limiting factor. Recharge and730

fossil quantities in aquifers are higher than abstraction rates and are capable of731

providing groundwater (Mumma et al., 2011). This assumption would need to be732

revisited when applying this framework in new settings. Instead, being able to extract733

groundwater from functional infrastructure is a limitation that may contribute to734

unmet demand for water and under or overestimate use in our maps. We know735

from sensor reports and the motivation behind the DRIP theory of change (Thomas736

et al., 2020) that mechanical boreholes in this region are, in fact, often non-functional.737

In this study, our data filters attempted to remove the most persistent periods of738

non-functionality, and we have begun to identify and correct for functional status739

(Thomas et al., 2021). Our maps represent areas where dependence on groundwater740

at strategically located boreholes is high under the assumption that EDE boreholes741

do exist and are functioning in that area; if neither of these assumptions prove to be742

valid, that in and of itself may be the justification to initiate a response.743

The inclusion of forecasted climatology as model features, to supplement or sup-744

plant the current lagged observations, should be explored. Predicting the dry season745

from conditions at a one to four month lead was demonstrated here because hydro-746

logical and agricultural drought, and subsequent reliance on groundwater, should be747

strongly correlated to conditions during the long rains season, March through May748
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(Shukla et al., 2021). However, incorporation of other forecasted drought indicators,749

which are often built from decades of historical climatology, could improve our pre-750

dictive ability during years outside the range of values observed since in-situ borehole751

monitoring.752

Further development of the gridded groundwater maps and DRIP service will753

focus on application and amplifying the wider context of groundwater health and754

potential for agricultural and rangeland productivity. Installation of groundwater755

level sensors and modeling of trends in groundwater level will address aquifer health,756

local overdraft, and sustainability of groundwater use. As groundwater is promoted757

and leveraged as a drought mitigation strategy, appropriate development and man-758

agement supported by monitoring will be critical.759

5. Conclusion760

Groundwater represents an opportunity to increase reliable water supplies in761

Africa and provide a buffer against drought. Improving accessibility to groundwater762

through better maintenance of water systems and responsible development of new763

water schemes are mitigation strategies that reduce drought risk and improve re-764

silience. Sustainable, effective, and local management of groundwater resources and765

infrastructure is a necessary precondition to achieving water security, as is accurate766

monitoring of changing water needs in a changing climate. The Drought Resilience767

Impact Platform fine resolution gridded dry season groundwater use and demand768

maps are a novel data source that can be used directly to allocate resources as well769

as provide a groundwater component to other water and food insecurity indices as770

part of multi-sectoral, multi-dimensional drought early warning and early action.771

6. Funding772

The work described in this publication was made possible through support pro-773

vided by the National Aeronautics and Space Administration, under the terms of774

Grant No. 80NSSC20K0150; the National Science Foundation under the terms of775

Award No. 1738321; and the U.S. Agency for International Development, under the776

terms Cooperative Agreement No. AID-615-A-15-00008. The opinions expressed777

herein are those of the authors and do not necessarily reflect the views of the U.S.778

Agency for International Development.779

29



Appendix A. Characteristics of Data Features780

Features, or covariates, provided to groundwater prediction models. Theme relates to grouped features held out to test781

variable importance; see Figure 5. Res is the data product’s native resolution. 1Population density was used as an independent782

variable in pump runtime models, but for per capita volume predictions it was only used to scale the outcome and not as a783

model feature.784

Coded Name Theme Description Units Res
amenities admin presence of major or primary roads, markets, or towns within 10

km
numeric (0 - 4) –

county admin county discrete (Turkana,
Marsabit, Isiolo,
Wajir, Garissa)

–

dem admin elevation from Digital Elevation Model m 30 m
x admin longitude, east/west location decimal degrees in

WGS84
–

y admin latitude, north/south location decimal degrees in
WGS85

–

corrneighbor * behavior average daily pump runtime or volume of interpolated 5 most
linearly correlated sensored boreholes

hours or L/per
capita

5 km

geoneighbor * behavior average pump runtime or volume of 5 closest by Euclidean dis-
tance sensored boreholes

hours or L/per
capita

–

geoneighbor dist behavior distance between site or grid centroid and 5 closest sensored
boreholes

km –

proxy * behavior modeled average daily pump runtime or volume based on static
site characteristics

hours or L/per
capita

–

boreholes krapid demandproxy number of boreholes (inventory identified by Kenya RAPID)
within 10 km

numeric –

dams or pans demandproxy number of dams and sand pans (identified by Kenya RAPID)
within 10 km

numeric –

livestock h2o demandproxy estimated amount of water required for livestock in 2015 discrete (>0.26,
>0.50, >1.0, >1.5,
>3.5 m3/km2/day)

subcounty

livestock route demandproxy presence of major livestock migration route within 10 km binary (0, 1) –
month factor demandproxy categorical month discrete (1 - 12) –
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Coded Name Theme Description Units Res
people h2o demandproxy estimated domestic water demand in 2015 discrete (>1030,

>2000, >4000,
>6000, >8000
m3/day)

subcounty

popldens1 demandproxy estimated population density, number of people per square kilo-
meter

numeric 1 km

baseflow landsurface total baseflow, streamflow that is sustained between precipita-
tion events

mm 3 km

et landsurface total actual evapotranspiration mm 3 km
gvf landsurface greenness vegetation fraction proportion (0 - 1) 4 km
maxtemp landsurface average daily maximum temperature degrees Celsius 50 km
ndvi landsurface average 10-day maximum Normalized Difference Vegetation In-

dex value
proportion (0 - 1) 250 m

runoff landsurface total amount of flow of water across the ground surface after it
no longer infiltrates the soil

mm 3 km

soilm1 landsurface average daily soil moisture in top layer at depths of 0 - 10 cm m3/m3 3 km
soilm2 landsurface average daily soil moisture at depths of 10 - 40 cm m3/m3 3 km
soilm3 landsurface average daily soil moisture at depths of 40 - 100 cm m3/m3 3 km
soilm4 landsurface average daily soil moisture at depths of 100 - 200 cm m3/m3 3 km
chirps surfacewater total precipitation from Climate Hazards Group InfraRed Pre-

cipitation with Station (CHIRPS) v2.0
mm 5 km

naturalh2o surfacewater presence of floodplains, lakes, springs, or river basins with 10 km numeric (0 - 4) –
tahmo chirps surfacewater total localized precipitation, CHIRPS v2.0 scaled and bias-

corrected with Trans-African Hydro-Meteorological Observatory
(TAHMO) weather stations

mm 5 km

waterpoint depth surfacewater average daily interpolated relative surface water depth percentage (0 -
100)

5 km
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