(') INTELLIGENT
-l=l- SYSTEMS

FRET Tutorial

Formal Requirements Elicitation Tool

Presented by
Tom Pressburger
May 02, 2022

Lockheed Martin Cyber-Physical System
Challenge, component FSM

The 10 Cyber-Physical V&V Challenges were created by
Lockheed Martin Aeronautics to evaluate and improve the
state-of-the-art in formal method toolsets. Each challenge

problem includes:

a high-level description

a set of requirements written in plain English;
a Simulink model;

a set of parameters (in .mat format) for simulating the
model.

FSM: represents an abstraction of an advanced autopilot
system responsible for commanding a safety maneuver in
the event of a hazard.

0%

80%
60%
40%
20%

100%

sjuapuodsal Jo %

UOIINIBX3 PUB UOIYUIRP 1S3
aIN1RUYUY

sdnq uolnjeigaju| pue aoepIU|

uoleawnoop Fuoim/3ulpes|siw
:Bunapopy/uoneuawajdwy
S10113
xejuAs :Juijapoy /uonejuawa|duwy|

T
—
©
(]

s8nq uonezijeiyul :|ein3aNIS
sgnq Buissasold :jeinyoniis

sgnq 2130] :|einionJis

Type of bugs

9ouanbas pue |oiu0d :jeININIIS
paiejas udisaq
1981e3 Suinow :syusawaanbay

A10121pe1u0d ;suawalinbay

poojsiapunsiw/snongique
:'sjuawaanbay

919|dwodul :syuawainbay

B in auto-generated code

® in models

Johann Schumann, Matt Knudsen, Teme Kahsai, Noble Nkwocha, Katerina

Goseva-Popstojanova, Thomas Kyanko, "Report: Survey on Model-Based Software
Engineering and Auto-Generated Code”, NASA/TM-2016-219443, 2016.

UOIINIBX3 PUB UOIYUIRP 1S3
aIN1RNYIY

sdnq uolnjeigaju| pue aoepIU|

uoleawnoop Fuoim/3ulpes|siw
‘Buijapoy/uonejuawaduwy|
S10113
xejuAs :Juijapoy /uonejuawa|duwy|

5
Goseva-Popstojanova, Thomas Kyanko, "Report: Survey on Model-Based Software

s8nq uonezijeiyul :|ein3aNIS
sgnq Buissasold :jeinyoniis

sgnq 2130] :|einionJis

Type of bugs

aouanbas pue |013u00 :|eIN3INIS
paiejas udisaq

1981e1 Suinow :sjuawalinbay

A10121pe1u0d ;suawalinbay

poojsiapunsiw/snongique
:'sjuawaanbay

B 515/ dwooul :suawainbay

sjuapuodsal Jo %

©
c
‘o
Q
o
©
A4
©
S
O
=
<
2
9
o
O
v
d -
O =
o'®
(V)]
Mh
N
=)
+
(@]
ER
=
(V)]
"3
c
vz
(]
So =]
ma
£
[

Johann Schumann

-2016-219443, 2016.

NASA/TM

n”
)

-Generated Code

Engineering and Auto

language of developers forced to write reqgs

* Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in
control (not standby) and the system is supported without failures (not apfail).

* The autopilot shall change states from TRANSITION to STANDBY when the pilot is
in control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

* The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

* The autopilot shall change states from NOMINAL to STANDBY when the pilotis in
control (standby).

* The autoFiIot shall change states from MANEUVER to STANDBY when the pilot is
in control (standby) and sensor data is good.

language of developers forced to write regs

Lockheed Martin Cyber-Physical System Challenge,
component FSM:

* Exceeding sensor limits shall latch an autopilot pullupwhen the pilot is not in
control (not standby) and the system is support/edov(tﬁ)ut failures (not apfail).

At every timepoint where these conditions hold or only when they become true?

* The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

* The autopilot shall change states from NOMINAL to MANEUVER when the
sensor data is not good.

* The autopilot shall change states from NOMINAL to STANDBY when the pilot is
in control (standby).

* The autopilot shall change states from MANEUVER to STANDBY when the pilot
is in control (standby) and sensor data is good.

language of developers forced to write regs

Lockheed Martin Cyber-Physical System Challenge,
component FSM:

* Exceeding sensor limits shall latch an autopilot pullup.when the pilot is not in
control (not standby) and the system is suppor ithout failures (not apfail).

At every timepoint these conditions hold or only when they become true?

* The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

* The autopilot shall change states from NOMINAL R when the

sensor data is not good. > Are the requirements consistent?
* The autopilot shall change states from NOMINAL 0 When the pilot 1S

in control (standby).

* The autopilot shall change states from MANEUVER to STANDBY when the pilot
is in control (standby) and sensor data is good.

Does my model/code satisfy the requirements?

language formal analysis tools understand

var autopilot: bool = (not standby) and supported and (not
apfail);

var pre_autopilot: bool = false -> pre autopilot;

var pre_limits: bool = = false -> pre 1limits;

guarantee "FSM-001v2" S((((((autopilot and pre_autopilot and
pre_limits) and (pre (not (autopilot and pre_autopilot and
pre_limits)))) or ((autopilot and pre_autopilot and
pre_limits) and FTP)) => (pullup)) and FTP), ((((autopilot
and pre_autopilot and pre_limits) and (pre (not (autopilot
and pre_autopilot and pre_limits)))) or ((autopilot and
pre_autopilot and pre_limits) and FTP)) => (pullup)));

= RET Projects

FRET’s mission is to provide an intuitive

o Total Projects platformi@&&mm ring pre&i&ﬁziﬁg&f‘lx\gmentswstem Components Requirement Size
- 19 to serveddsfa portal to a vafiety 6f.analysis 52 29378 bytes
<> tools, and to support requirements repair

based on analysis feedback.

Recent Activi

Hierarchical Cluster

A0S when occurred(7 persisteq(2,fault)) the sw shall
sig8EN b e anastasia.mavridou@nasa.gov
® andreaskatis@nasa.gov
. . .] 1l) A) & Ayall always satisfy r
o tom.pressburger@nasasgoy:’ <= =<

LM_requirements TEST
LM_AUTOPILOT AP-003b

Andreas Katis, Anastasia Mavridou, Tom Pressburger, Johann Schumann, Khanh
Trinh
David Bushnell, Tanja Delong, Dimitra Giannakopoulou, George Karamanolis,

David Kooi, Julian Rhein, Nija Shi
Swee Balanchandran, Esther Conrad, Aaron Dutle, Alwyn Goodloe, lvan
Perez, Laura Titolo

mailto:anastasia.mavridou@nasa.gov
mailto:andreas.katis@nasa.gov
mailto:tom.pressburger@nasa.gov

FRET bridges the gap

e Captures requirements in a restricted natural language with
unambiguous semantics

e Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

e Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner

* Checks consistency of requirements and provides feedback
* Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v’ for efficient runtime monitoring with Copilot

FRET bridges the

Captures requirements in a restricted natural language with
unambiguous semantics: FRETish

e Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

Assists in writing requirements through requirement templates

Formalizes requirements in a compositional (hence maintainable
and extensible) manner

Checks consistency of requirements and provides feedback

Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v’ for efficient runtime monitoring with Copilot

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude _hold autopilot shall always satisfy maintain_altitude

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude _hold autopilot shall always satisfy maintain_altitude

|

Q: Upon which part of the system is the requirement being levied?
A: The altitude_hold_autopilot.

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude _hold autopilot shall always satisfy maintain_altitude

|

|

Q: What do we want the system to achieve?
A: maintain_altitude

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude _hold autopilot shall always satisfy maintain_altitude

Q: During what portion of the execution is the requirement enforced?
A: It has been omitted, meaning globally, always
Note: the portion can be expressed relative to a system mode.

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude _hold autopilot shall always satisfy maintain_altitude

N\

Q: What condition triggers the response?
A: altitude_hold_selected becoming true, within the scope

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude _hold autopilot shall always satisfy maintain_altitude

Q: Where does the response happen, relative
to the scope and trigger?
A: always, meaning thenceforth

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude _hold autopilot shall always satisfy maintain_altitude

SCOPE in, before, after, notin, onlyln, onlyBefore, onlyAfter; when omitted, global

null, regular
TIMING immediately, next, always, never, eventually, until, before, for, within, after

RESPONSE satisfaction

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude _hold autopilot shall always satisfy maintain_altitude

SCOPE in, before, after, notin, onlyln, onlyBefore, onlyAfter; when omitted, global

null, regular
TIMING immediately, next, always, never, eventually, until, before, for, within, after

RESPONSE satisfaction

8 * 2 ¥ 10 = 160 semantic templates /
template keys!

Expressions

* Boolean
e 1L&, |,=>,if _then , <=>, p(x,y,z)
e preBool(init,p),
 persisted(n,p), occurred(n,p)
 persists(n,p), occurs(n,p)

* Arithmetic
* = !=; < > <= >=
° +, - *r // A/ f(X/y)

e preint(init,n), preReal(init,x)

’

Scope condition component timing response

* (global) The system shall always satisfy count >= 0
* In landing mode the system shall eventually satisfy decrease speed
* Before energized mode the system shall always satisfy energized indicator_off

After boot mode the system shall immediately satisfy prompt_for_password

When not in initialization mode the system shall always satisfy
commands_accepted

Only in landing mode shall the system eventually satisfy landing_gear _down

Only before energized mode shall the system eventually satisfy
manually_touchable

Only after arming mode shall the system eventually satisfy fired

Scope Intervals
GLOBAL

ONLYAFTER

ONLYBEFORE

ONLYIN ONLYIN ONLYIN

NOTIN | NOTIN NOTIN

AFTER

BEFORE

IN L E IN

' — — >
FTP t-l1 t t, ty+l t1 t3 ty tytl LAST

Scope (contd)

 While mode = 4 the watch shall always satisfy alarm_icon_on

* While persisted(4,high_temperature) the monitor shall until shutoff
satisfy alarm_on

* Before taxiing & receivedClearance the plane shall never satisfy
takeoff

Scope grammar

H—

ONLY DURING | scope_| mode | I

‘. ()

’wnn.z)—| scope_ condition | I

\ AFTER scope_mode l
BEFORE scope_condition |—f

EXCEPT DURING I scope_mode

‘. ()

(WHILE)—I scope_condition |

WHEN ‘ NOT ‘ IN scope_mode:

IN scope_mode :

{ unLEss }—(1N)}~ scope_mode |

(WHILE)—I scope_condition |

AFTER scope_mode |
BEFORE scope_condition l—f

scope component timing response

L if , BOOL_EXP
BOOL EXP (equivalent to “upon ! BOOL EXP”)

* Trigger: upon the Boolean expression becoming true from being false
in the scope, or being true at the beginning of the scope.

Condition grammar

regular_condition

H—l qualified_conditionl : f (/ 75" qualified_condition2 :)11

qualifier_word

H— —H

il

qualified_condition1

H—I qualifier_ word H pre_condition @ TRUE \
(FALSE)

qualified_condition2

‘m* qualifier_word I—I pre_condition @ '@'
(or) (FALSE)

scope condition component Timing response

In roll_hold mode RollAutopilot shall immediately satisfy if (roll_angle< 6.0 & roll_angle
> -6.0) then roll_hold_reference =0.0

 When currentOverload the circuitBreaker shall, at the next timepoint, satisfy shutoff
* InlandingMode the system shall eventually satisfy LandingGearLowered

* The autopilot shall always satisfy if allGood then state = nominal

* In drivingMode the system shall never satisfy cellPhoneOn & !cellPhoneHandsFree
 When errorCondition, the system shall, for 4 ticks, satisfy alarmOn

* Inlanding mode, the the system shall within 2 ticks satisfy is_stable

* When input = 1, the integrator shall, after 10 ticks, satisfy output = 10

* In CountdownMode the system shall, until Count = 0, satisfy Count >0

The system shall, before TakeOff, satisfy CheckListTasksCompleted

FRET is rigorous and extensible

* Semantic templates have RTGIL semantics. RTGIL = Real-Time Graphical Interval Logic

* FRET generates formulas in future- (finite and infinite-trace) and past-time linear-time
metric temporal logics, and CoCoSpec/Lustre. Discrete time.

* A verification framework within FRET ensures correctness of formalization algorithms.

* All aspects of our approach are compositional — based on requirement fields.

] .)
[) - RIES immediately
COND => L — .
[)] [-)
— -
[=) : = :
T GOMD. . veureennes > L)
COND i 55 always
=> AN 3y
[A [~)
RES eventually

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann:
“Automated Formalization of Structured Natural Language”, Information and Software Technology, 2021

Captures requirements in a restricted natural language with
unambiguous semantics

Explains formal semantics in various forms: natural language
diagrams, interactive simulation

e Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner: past, future linear temporal logic, Lustre

* Checks consistency of requirements and provides feedback
e Connects with analysis tools and exports verification code

v for model checking Simulink models with CoCoSim

v for model checking Lustre code with Kind2

v’ for runtime analysis of C programs with Copilot

Capturing, explaining and formalizing requirements

Create Requirement ASSISTANT TEMPLATES GLOSSARY

Ready to speak FRETish?
Project
Demo-FSM Please use the editor on your left to write your requirement
or pick a predefined template from the TEMPLATES tab.

Requirement ID Parent Requirement ID

Rationale and Comments

Requirement Description

A requirement follows the t structure displayed below, where fields are optional unless indicated

with "*". For information on a field format, click on its corresponding bubble.

CSCOPE) GONDITIONS) (COMPONENT’) SHALL* TIMING

SEMANTICS

Update Requirement Semantics

ENFORCED: in the interval defined by the entire execution. TRIGGER:
first point in the interval if (altitude_hold_selected) is true and any poir
Test-ALTHOLD Parent Requirement ID LM_requirements v in the interval where (altitude_hold_selected) becomes true (from
false). REQUIRES: for every trigger, RES must hold at all time points
between (and including) the trigger and the end of the interval.

Requirement ID Project

Rationale and Comments A beginning of time TC
Rationale)
Comments TC = (altitude_hold_selected), Response = (maintain_altitude).
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected
Diagram Semantics v
Requirement Description Formalizations
A requirement follows the sentence structure displayed below, where fields are optional unless indicated with "*". For information
on a field format, click on its corresponding bubble.
Future Time LTL A
(scopz) (I::]r. DIT ::n;z.) (COMPONENT') SHALL* (TIMING) (RESPONSES‘) ({LAST vV (((! (altitude hold selected)) & ((! LAST)
@ & (X (altitude hold selected)))) -> (X (LAST V
(maintain altitude))))) & ((altitude hold selected)
~> (LAST V (maintain altitude))))
f altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude Target: altitude_hold_autopilot component.
Past Time LTL A
SEMANTICS (H ((2 (! (altitude hold selected))) |

(maintain altitude)))

Target: altitude_hold_autopilot component.

Update Requirement Semantics

ENFORCED: in the interval defined by the entire execution. TRIGGER:
first point in the interval if (altitude_hold_selected) is true and any poir
Test-ALTHOLD Parent Requirement ID LM_requirements v in the interval where (altitude_hold_selected) becomes true (from
false). REQUIRES: for every trigger, RES must hold at all time points
between (and including) the trigger and the end of the interval.

Requirement ID Project

Rationale and Comments ~ beginning of time TC

Rationale

Comments TC = (altitude_hold
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

lected), Response = (maintain_altitude).

Diagram Semagflics v
Requirement Description
A requirement follows the sentence structure displayed below, where fields are optional unless indicated with "*". For information
on a field format, click on its corresponding bubble.
Future Time LTL A
(scopz) (ONDIT tm) (cor.womsm-) SHALL* (TIMING) GESPONSES') ((LAST V (((! (altitude_hold selected)) & ((! LAST)
@ “ (X (altitude hold selected)))) -> (X (LAST V
(maintain altitude))))) & ((altitude_hold selected)
=> (LAST V (maintain altitude))))
f altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude Target: altitude_hold_autopilot component.
. Past Time LTL A
bUt thIS IS nOt What I mean oo SEMANTICS (H ((2 (! (altitude hold selected))) |
(maintain altitude)))

_Z Target: altitude_hold_autopilot component.

getting to the right requirement

TAKE1: if altitude_hold_selected the altitude hold autopilot shall always
satisfy maintain_altitude

beginning of time TC

- —

TC = (altitude_hold_selected), Response = (maintain_altitude).

getting to the right requirement

TAKE1: if altitude_hold_selected the altitude hold autopilot shall always
satisfy maintain_altitude

TAKEZ2: the altitude hold autopilot shall always

satisfy if altitude hold_selected then maintain_altitude

beginning of time TC beginning of time

| e —

TC = (altitude_hold_selected), Response = (maintain_altitude). Response = (altitude_hold_selected => maintain_altitude).

getting to the right requirement

TAKE1: if altitude_hold_selected the altitude hold autopilot shall always
satisfy maintain_altitude

TAKEZ2: the altitude hold autopilot shall always

satisfy if altitude hold_selected then maintain_altitude

beginning of time beginning of time
| l |
TC = (altitude_hold_selected), Response = (maintain_altitude). Response = (altitude_hold_selected => maintain_altitude).

TAKES3: when in cruising mode, the altitude hold_autopilot shall always
satisfy if altitude hold_selected then maintain_altitude

H_.
M = cruising, Response = (altitude_hold_selected =>
maintain_altitude).

FRET bridges the gap

e Captures requirements in a restricted natural language with
unambiguous semantics

e Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

e Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner

* Checks consistency of requirements and provides feedback
e Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v’ for efficient runtime monitoring with Copilot

Assistance: Requirement templates

Lockheed Martin Cyber-Physical System Challenge, component FSM:

The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

Requirement templates

Lockheed Martin Cyber-Physical System Challenge, component FSM:

The autopilot shall change states from TRANSITION to STANDBY when the pilotis in
control (standby).

The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

The autopilot shall change states from NOMINAL to STANDBY when the pilotis in
control (standby).

The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

Create Requirement

Requirement ID Project

FSM 002 Parent Requirement ID

Rationale and Comments A

Rationale

Comments

The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control
(standby).

Requirement Description

A requirement follows the sentence structure displayed below, where fields are optional unless indicated with "*". For information
on a field format, click on its corresponding bubble.

(SCOPE: ‘ :‘ 1 ,: PHALL

@

LM_requirements v

(component] shall always satisfy if ((input_state] & [condition) then [outfut_state]

ASSISTANT EMF

Template

Change State v

Choose a predefined template

This template describes how the state of a finite-state-machine
component changes. It describes the input state and some
conditions based on which the change must occur. The
corresponding output state must reflect the required change.
The input and output states have a pre - post- relationship

Examples:

|' FSM_AutopiIot' shall always satisfy if (

| state = ap_standby_state | & |I standby & ! apfail D then

|‘ STATE = ap_transition_state |

FRET bridges the gap

e Captures requirements in a restricted natural language with
unambiguous semantics

Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

Assists in writing requirements through requirement templates

Formalizes requirements in a compositional (hence maintainable
and extensible) manner

e Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v’ for efficient runtime monitoring with Copilot

Checking Consistency

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Definition of a Realizable set of requirements: A system exists
that satisfies the requirements for every valid environment input.

* The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Checking Realizability

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state:

Checking Realizability

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot isin
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state: \/

Condition 1: pilot is in control ‘/

Condition 2: system is supported »/
sensor data is good

Checking Realizability

Lockheed Martin Cyber-Physical System Challenge, component FSM:
* The autopilot shall change states from to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state: »/

Condition 1: pilot is in control ‘/
Condition 2: system is supported »/
sensor data is good

Output state 1: STANDBY @
Output state 2: NOMINAL

The system must be consistent for any valid environmental input.

Checking Realizability

* Realizable requirements: A system exists that satisfies the
requirements for every valid environment input

* Unrealizable requirements: Diagnostic analysis
* |dentify minimal sets of unrealizable requirements in specification

* Counterexamples
* Simulation of conflicting requirements

* Compositional Realizability Checking

* Connected Components (CC): sets of requirements where the sets can be
analyzed independently

Variable declaration

* Variable name in requirement
 Variable Type:

* Input (the system monitors the variable)
e Output (the system controls the variable)
* Internal: just a name for a Lustre expression, like a macro.

* Datatype
* Boolean, integer, double, unsigned integer, single

Variable Declaration/Mapping Dialog

Update Variable

FRET Project FRET Component
LM_requirements FSM_Autopilot

Model Component

FRET Variable Variable Type*
apfail

Description

File View Help

.-
|]
- VARIABLE MAPPING REALIZABILITY
N
1|
N Timeout (seconds
= FSM v . o
Compositional [] Monolithic 900 HELP
<>
CcCo cc1 cc2
N
) L3
ID ™ Summary
0 FSM001 FSM shall always satisfy (limits & !standby & !apfail & supported) => pullup
F FSM shall alway atisfy (sta)y & state = ap_transit tate) STATE tand tate
F it it r TATE nin t
t te nom ate TAT) ne
F F] at ate=a r i TE andb
t ate maneuver_st a jood TA te
at at I er_st I & TATE = ap_tra €
at ate e = A ate
at te e A er_state
satisfy (senstate = se ominal_state & limits) => SENSTATE = sen_fault_state
Rows per page: 10 ~ 1-10 of 13 >

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen:
From Partial to Global Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET. FM 2021.

Simulation of Counterexample

LTLSIM

Requirements in FRETish A

FSM-002: FSM_Autopilot shall always satisfy (standby & state = ap_transition_state) => STATE = ap_standby_state
FSM-003: FSM_Autopilot shall always satisfy (state = ap_transition_state & good & supported) => STATE = ap_nominal_state

0 1 2 3 4 5 6 7 8
o

TRUE

standby

FALSE 0
10

Stat% 8 Q Q Q Q Q Q Q Q

[eNe)

oo

10
ap_tra3.8 Q Q o Q Q Q Q Q

TRUE o o
state ...
FALSE

oo

oo

10
STATE g 9 Q Q Q Q Q 9 0

35

ap€§§a3. 0 0 0 0 0 Q Q Q
TRUE
STATE ..

FALSE

TRUE

good

FALSE o
TRUE
SUppor...

FALSE o

11
aP_Hyy-- 9 g [g g 9 g 3
TRUE
STATE..
FALSE

TRUE

FSM_002
FALSE o o
TRUE

FSM_003
FALSE o)

oo

FRET bridges the gap

e Captures requirements in a restricted natural language with
unambiguous semantics

e Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

e Assists in writing requirements through requirement templates

* Formalizes requirements in a compositional (hence maintainable
and extensible) manner

Connects with analysis tools and exports verification code

v for model checking Simulink models with CoCoSim

v for model checking Lustre code with Kind2

v’ for efficient runtime monitoring with Copilot

Variable mapping

* In target model/code: e.g., the corresponding signal in Simulink
model

e Simulink architectural information can be imported into FRET so user can
navigate/choose among possibilities

<>

VARIABLE MAPPING REALIZABILITY

Requirement Variables to Model Mapping: Demo-FSM

Export Language * v

FSM

Corresponding Model Component

v m

FRET Variable Name Model Variable Name

ap_maneuver_state

ap_nominal_state

ap_standby_state

ap_transition_state

apfai apfail
good good
limits limits
pullup pullup
request request

sen_fault_state

Variable Type

Internal

Internal

Internal

Internal

Input

Input

Input

Output

Input

Internal

Data Type

double

double

double

double

boolean

boolean

boolean

boolean

boolean

double

Rows per page: 10 «

Description

value 2.0

value 1.0

value 3.0

value 0.0

value 2.0

1-10 of 18

Connection with analysis tools

| @ MATLAB Window Help QP UODO®"™ R T 20%Lr Thubl4PM Q @ =
® 0 fsm_12B
SIMULATION AF
p D= - gu ‘ , = ==l d @ B %
New H BSOS Library Signal ~ ||| Normal a Step Run Step Data bl
v i Print ~ Browser Table @ Fast Restart Back v v Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS S
Tools
® |%&jfsm_12B » v
Q Cyber-Physical V&V Challenge Problems
3 LM Aeronautics Quantum Information Science Research Team 2015
- Copyright © 2015 Lockheed Martin Corporation
&
=
| boolean
- bsindoy)
standby
boolean .
b spta
apfail
putop| (1)
boolean
b supportec i
supported
boolean —
limits
; limits
»' FiniteStateMachine
Automated Analysis Framework 222% FixedStepDiscrete

ENFORCED: in every interval where cruising holds. TRIGGER: first
point in the interval. REQUIRES: for every trigger, RES must hold at all
time points between (and including) the trigger and the end of the

plains =

captures + assists T
r- m (e

ex

4

F R E Ti S h ' m Diagram Semantics N
o L[] e
when in cruising mode, the altitude_hold_ s e e T — L

stores + displays
P j Future Time LTL {Or MQL E"'z'e-s

¢
O
AP-
‘ (+) when in roll_hold mode o X
' 002A (LAST V (cruising -> (altitude hold ->
‘ maintain_altitude)))

‘ A (+) in roll_hold mode Roll

0028 Target: altitude_hold_autopilot component.
AP-003 ° “This requirement is th

Past Time LTL

checks + diaghoses
connecks + ex[z:'or&s) - . :

FRET Variable Name
rue true true true

ABSOF_ALT_MINUS_ALTIC
rue true true true

ALTITUDE_HOLD
rue true true true

FRET’s mission is to provide an intuitive
platform for capturing precise requirements,
to serve as a portal to a variety of analysis
tools, and to support requirements repair
based on analysis feedback.

https://github.com/NASA-SW-VnV/fret

Andreas Katis, Anastasia Mavridou, Dimitra Giannakopoulou, Thomas Pressburger, Johann Schumann, Capture, Analyze, Diagnose: Realizability Checking of
Requirements in FRET, CAV 2022 (conditionally accepted).

Esther Conrad, Laura Titolo, Dimitra Giannakopoulou, Thomas Pressburger, Aaron Dutle. A Compositional Proof Framework for FRETish Requirements. CPP
2022.

Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe and Dimitra Giannakopoulou. Automated Translation of Natural Language Requirements
to Runtime Monitors, TACAS 2022

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen: From Partial to Global Assume-
Guarantee Contracts: Compositional Realizability Analysis in FRET. FM 2021.

Giannakopoulou, Dimitra, Andreas Katis, Anastasia Mavridou, and Thomas Pressburger. "Compositional realizability checking within FRET." (NASA/TM—
20210013008).

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann: Automated Formalization of Structured Natural Language
Requirements. IST Journal, 2021.

Aaron Dutle, César A. Mufioz, Esther Conrad, Alwyn Goodloe, Laura Titolo, Ivan Pérez, Swee Balachandran, Dimitra Giannakopoulou, Anastasia Mavridou,
Thomas Pressburger: From Requirements to Autonomous Flight: An Overview of the Monitoring ICAROUS Project. FMAS 2020.

Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou, Thomas Pressburger, Mohammad Hejase, P-Loic Garoche, Johann Schumann: The Ten
Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed, and Explained. RE 2020.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann: Generation of Formal Requirements from Structured Natural

Language. REFSQ 2020. Thank you

Anastasia Mavridou, Hamza Bourbouh, Pierre-Loic Garoche, Dimitra Giannakopoulou, Thomas Pressburger, Johann Schumann: Bridging the Gap Between
Reauirements and Simulink Model Analvsis REFSO 2020

