
FRET Tutorial
Formal Requirements Elicitation Tool

Presented by
Tom Pressburger

May 02, 2022

Lockheed Martin Cyber-Physical System
Challenge, component FSM
The 10 Cyber-Physical V&V Challenges were created by
Lockheed Martin Aeronautics to evaluate and improve the
state-of-the-art in formal method toolsets. Each challenge
problem includes:
a high-level description
a set of requirements written in plain English;
a Simulink model;
a set of parameters (in .mat format) for simulating the
model.

FSM: represents an abstraction of an advanced autopilot
system responsible for commanding a safety maneuver in
the event of a hazard.

What types of bugs are found in models and
code?

in models in auto-generated code
Johann Schumann, Matt Knudsen, Teme Kahsai, Noble Nkwocha, Katerina
Goseva-Popstojanova, Thomas Kyanko, "Report: Survey on Model-Based Software
Engineering and Auto-Generated Code”, NASA/TM-2016-219443, 2016.

What types of bugs are found in models and
code?

in models in auto-generated code
Johann Schumann, Matt Knudsen, Teme Kahsai, Noble Nkwocha, Katerina
Goseva-Popstojanova, Thomas Kyanko, "Report: Survey on Model-Based Software
Engineering and Auto-Generated Code”, NASA/TM-2016-219443, 2016.

language of developers forced to write reqs

• Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in
control (not standby) and the system is supported without failures (not apfail).
• The autopilot shall change states from TRANSITION to STANDBY when the pilot is

in control (standby).
• The autopilot shall change states from TRANSITION to NOMINAL when the

system is supported and sensor data is good.
• The autopilot shall change states from NOMINAL to MANEUVER when the sensor

data is not good.
• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in

control (standby).
• The autopilot shall change states from MANEUVER to STANDBY when the pilot is

in control (standby) and sensor data is good.
• …

language of developers forced to write reqs
Lockheed Martin Cyber-Physical System Challenge,
component FSM:

• Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in
control (not standby) and the system is supported without failures (not apfail).

• The autopilot shall change states from TRANSITION to STANDBY when the pilot
is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the
sensor data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is
in control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot
is in control (standby) and sensor data is good.

• …

At every timepoint where these conditions hold or only when they become true?

language of developers forced to write reqs
Lockheed Martin Cyber-Physical System Challenge,
component FSM:

• Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in
control (not standby) and the system is supported without failures (not apfail).

• The autopilot shall change states from TRANSITION to STANDBY when the pilot
is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the
sensor data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is
in control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot
is in control (standby) and sensor data is good.

• …

At every timepoint these conditions hold or only when they become true?

Does my model/code satisfy the requirements?

Are the requirements consistent?

language formal analysis tools understand

Welcome to FRET
https://github.com/NASA-SW-VnV/fret

Team (ARC): Andreas Katis, Anastasia Mavridou, Tom Pressburger, Johann Schumann, Khanh
Trinh

Alumni: David Bushnell, Tanja DeJong, Dimitra Giannakopoulou, George Karamanolis,
David Kooi, Julian Rhein, Nija Shi

Collaborators (LaRC): Swee Balanchandran, Esther Conrad, Aaron Dutle, Alwyn Goodloe, Ivan
Perez, Laura Titolo

anastasia.mavridou@nasa.gov
andreas.katis@nasa.gov
tom.pressburger@nasa.gov

FRET’s mission is to provide an intuitive
platform for capturing precise requirements,
to serve as a portal to a variety of analysis
tools, and to support requirements repair
based on analysis feedback.

mailto:anastasia.mavridou@nasa.gov
mailto:andreas.katis@nasa.gov
mailto:tom.pressburger@nasa.gov

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for efficient runtime monitoring with Copilot

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics: FRETish

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for efficient runtime monitoring with Copilot

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude
condition component timing responsescope

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude
condition component timing responsescope

Q: Upon which part of the system is the requirement being levied?
A: The altitude_hold_autopilot.

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude
condition component timing responsescope

Q: What do we want the system to achieve?
A: maintain_altitude

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude
condition component timing responsescope

Q: During what portion of the execution is the requirement enforced?
A: It has been omitted, meaning globally, always
Note: the portion can be expressed relative to a system mode.

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude
condition component timing responsescope

Q: What condition triggers the response?
A: altitude_hold_selected becoming true, within the scope

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude
condition component timing responsescope

Q: Where does the response happen, relative
to the scope and trigger?
A: always, meaning thenceforth

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

in, before, after, notin, onlyIn, onlyBefore, onlyAfter; when omitted, global

immediately, next, always, never, eventually, until, before, for, within, after

null, regular

satisfaction

SCOPE

CONDITION

TIMING

RESPONSE

condition component timing responsescope

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude

in, before, after, notin, onlyIn, onlyBefore, onlyAfter; when omitted, global

immediately, next, always, never, eventually, until, before, for, within, after

null, regular

satisfaction

SCOPE

CONDITION

TIMING

RESPONSE

8 * 2 * 10 = 160 semantic templates /
template keys!

condition component timing responsescope

Expressions

• Boolean
• !, &, |, =>, if _then _, <=>, p(x,y,z)
• preBool(init,p),
• persisted(n,p), occurred(n,p)
• persists(n,p), occurs(n,p)

• Arithmetic
• =, !=, <, >, <=, >=
• +, -, *, /, ^, f(x,y)
• preInt(init,n), preReal(init,x)

Scope condition component timing response

• (global) The system shall always satisfy count >= 0
• In landing mode the system shall eventually satisfy decrease_speed
• Before energized mode the system shall always satisfy energized_indicator_off
• After boot mode the system shall immediately satisfy prompt_for_password
• When not in initialization mode the system shall always satisfy

commands_accepted
• Only in landing mode shall the system eventually satisfy landing_gear_down
• Only before energized mode shall the system eventually satisfy

manually_touchable
• Only after arming mode shall the system eventually satisfy fired

Scope Intervals
GLOBAL

Scope (contd)

• While mode = 4 the watch shall always satisfy alarm_icon_on
• While persisted(4,high_temperature) the monitor shall until shutoff

satisfy alarm_on
• Before taxiing & receivedClearance the plane shall never satisfy

takeoff

Scope grammar

scope Condition component timing response

• upon, if, when, where BOOL_EXP
• unless BOOL_EXP (equivalent to “upon ! BOOL_EXP”)
• Trigger: upon the Boolean expression becoming true from being false

in the scope, or being true at the beginning of the scope.

Condition grammar

scope condition component Timing response

• In roll_hold mode RollAutopilot shall immediately satisfy if (roll_angle< 6.0 & roll_angle
> -6.0) then roll_hold_reference = 0.0

• When currentOverload the circuitBreaker shall, at the next timepoint, satisfy shutoff
• In landingMode the system shall eventually satisfy LandingGearLowered
• The autopilot shall always satisfy if allGood then state = nominal
• In drivingMode the system shall never satisfy cellPhoneOn & !cellPhoneHandsFree
• When errorCondition, the system shall, for 4 ticks, satisfy alarmOn
• In landing mode, the the system shall within 2 ticks satisfy is_stable
• When input = 1, the integrator shall, after 10 ticks, satisfy output = 10
• In CountdownMode the system shall, until Count = 0, satisfy Count > 0
• The system shall, before TakeOff, satisfy CheckListTasksCompleted

FRET is rigorous and extensible
• Semantic templates have RTGIL semantics. RTGIL = Real-Time Graphical Interval Logic
• FRET generates formulas in future- (finite and infinite-trace) and past-time linear-time

metric temporal logics, and CoCoSpec/Lustre. Discrete time.
• A verification framework within FRET ensures correctness of formalization algorithms.

• All aspects of our approach are compositional – based on requirement fields.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann:
“Automated Formalization of Structured Natural Language”, Information and Software Technology, 2021

[)
⌝ COND

COND

[) =>

COND =>
[)

[)

RES immediately
[)

never
[) ⌝ RES

always
[)

RES

eventually
[)

RES

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner: past, future linear temporal logic, Lustre

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for runtime analysis of C programs with Copilot

Capturing, explaining and formalizing requirements

but this is not what I mean…

getting to the right requirement
TAKE1: if altitude_hold_selected the altitude_hold_autopilot shall always

satisfy maintain_altitude

getting to the right requirement
TAKE1: if altitude_hold_selected the altitude_hold_autopilot shall always

satisfy maintain_altitude

TAKE2: the altitude_hold_autopilot shall always

satisfy if altitude_hold_selected then maintain_altitude

getting to the right requirement
TAKE1: if altitude_hold_selected the altitude_hold_autopilot shall always

satisfy maintain_altitude

TAKE2: the altitude_hold_autopilot shall always

satisfy if altitude_hold_selected then maintain_altitude

TAKE3: when in cruising mode, the altitude_hold_autopilot shall always
satisfy if altitude_hold_selected then maintain_altitude

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for efficient runtime monitoring with Copilot

Assistance: Requirement templates

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Requirement templates
• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in

control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Requirement templates

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for efficient runtime monitoring with Copilot

Checking Consistency

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Definition of a Realizable set of requirements: A system exists
that satisfies the requirements for every valid environment input.

Checking Realizability

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Input state: TRANSITION

Checking Realizability

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Input state: TRANSITION
Condition 1: pilot is in control
Condition 2: system is supported

sensor data is good

Checking Realizability

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

Lockheed Martin Cyber-Physical System Challenge, component FSM:

Input state: TRANSITION
Condition 1: pilot is in control
Condition 2: system is supported

sensor data is good
Output state 1: STANDBY
Output state 2: NOMINAL

The system must be consistent for any valid environmental input.

Checking Realizability

• Realizable requirements: A system exists that satisfies the
requirements for every valid environment input
• Unrealizable requirements: Diagnostic analysis
• Identify minimal sets of unrealizable requirements in specification
• Counterexamples
• Simulation of conflicting requirements

• Compositional Realizability Checking
• Connected Components (CC): sets of requirements where the sets can be

analyzed independently

Giannakopoulou, Dimitra, Andreas Katis, Anastasia Mavridou, and Thomas Pressburger. "Compositional realizability checking within FRET." (NASA/TM–
20210013008).

Mavridou, Anastasia, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, and Michael W. Whalen. "From Partial to Global Assume-
Guarantee Contracts: Compositional Realizability Analysis in FRET." FM 2021

Variable declaration

• Variable name in requirement
• Variable Type:
• Input (the system monitors the variable)
• Output (the system controls the variable)
• Internal: just a name for a Lustre expression, like a macro.

• Datatype
• Boolean, integer, double, unsigned integer, single

Variable Declaration/Mapping Dialog

Checking realizability

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen:
From Partial to Global Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET. FM 2021.

Simulation of Counterexample

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

ü for model checking Simulink models with CoCoSim

ü for model checking Lustre code with Kind2

ü for efficient runtime monitoring with Copilot

Variable mapping

• In target model/code: e.g., the corresponding signal in Simulink
model
• Simulink architectural information can be imported into FRET so user can

navigate/choose among possibilities

Connection with analysis tools

Connection with analysis tools

FRETish

captures + assists

stores + displays

explains

formalizes

checks + diagnoses
connects + exports

Ready for FRETish?

https://github.com/NASA-SW-VnV/fret

FRET’s mission is to provide an intuitive
platform for capturing precise requirements,
to serve as a portal to a variety of analysis
tools, and to support requirements repair
based on analysis feedback.

Andreas Katis, Anastasia Mavridou, Dimitra Giannakopoulou, Thomas Pressburger, Johann Schumann, Capture, Analyze, Diagnose: Realizability Checking of
Requirements in FRET, CAV 2022 (conditionally accepted).

Esther Conrad, Laura Titolo, Dimitra Giannakopoulou, Thomas Pressburger, Aaron Dutle. A Compositional Proof Framework for FRETish Requirements. CPP
2022.

Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe and Dimitra Giannakopoulou. Automated Translation of Natural Language Requirements
to Runtime Monitors, TACAS 2022

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen: From Partial to Global Assume-
Guarantee Contracts: Compositional Realizability Analysis in FRET. FM 2021.

Giannakopoulou, Dimitra, Andreas Katis, Anastasia Mavridou, and Thomas Pressburger. "Compositional realizability checking within FRET." (NASA/TM–
20210013008).

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann: Automated Formalization of Structured Natural Language
Requirements. IST Journal, 2021.

Aaron Dutle, César A. Muñoz, Esther Conrad, Alwyn Goodloe, Laura Titolo, Iván Pérez, Swee Balachandran, Dimitra Giannakopoulou, Anastasia Mavridou,
Thomas Pressburger: From Requirements to Autonomous Flight: An Overview of the Monitoring ICAROUS Project. FMAS 2020.

Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou, Thomas Pressburger, Mohammad Hejase, P-Loïc Garoche, Johann Schumann: The Ten
Lockheed Martin Cyber-Physical Challenges: Formalized, Analyzed, and Explained. RE 2020.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann: Generation of Formal Requirements from Structured Natural
Language. REFSQ 2020.

Anastasia Mavridou, Hamza Bourbouh, Pierre-Loïc Garoche, Dimitra Giannakopoulou, Thomas Pressburger, Johann Schumann: Bridging the Gap Between
Requirements and Simulink Model Analysis. REFSQ 2020.

Thank you

