

# Development of a Coherent Doppler Lidar for Precision Landing on Planetary Bodies

Farzin Amzajerdian, Glenn D. Hines, Aram Gragossian, Bruce W. Barnes, Nathan A. Dostart

**NASA Langley Research Center** 

**21st Coherent Laser Radar Conference** 







- > NDL is a laser sensor capable of providing precision vector velocity and altitude data
- Viable replacement for radars with an order of magnitude higher precision and much better data quality
  - Enables "precision navigation" to the designated landing location
  - Enables "well-controlled" descent, landing, and ascent maneuvers to within a few







- > NDL utilizes Frequency Modulated, Continuous Wave (FMCW) Technique
  - 3 segmented frequency waveform
- Line-of-sight velocity and range are extracted from signal frequencies associated with each segment of the waveform
- 3 laser beams are transmitted simultaneously to estimate vector velocity and altitude





# Spaceflight Engineering Test Unit (ETU)



- Built and tested 4 ETUs
  - Most parts are Space-Qualified Engineering Models
  - Remaining parts are COTS modified to comply with space environments
  - Chassis and Optical Head designed for operation on landing vehicles
    - Operate in radiation and vacuum environments
    - Efficient heat conduction to host vehicle
    - EMI resistance
    - Robust structure
  - Applied appropriate Quality, Reliability and S&MA processes/standards
  - Software is classified as class B with fault tolerance provisions
  - Key components were subjected to radiation, vibration and TVAC tests as necessary
  - Conducted full system-level environment tests





# NDL Lunar Landing Missions

#### <u>ETUs</u>

- # 1 Aircraft flight tests with other avionics
- # 2 Suborbital flight test on Blue Origin New Shepard vehicle (2021)
- # 3 Lunar Landing Demonstration onboard Intuitive Machines lander (2022)
- # 4 Lunar Landing Demonstration onboard Astrobotic lander (2022)

ETU missions will pave the path for future human and robotic landing missions to the Moon, Mars, other destinations. Intuitive Machines Nova-C Vehicle





# NDL ETU Specifications



| Parameter                  | Static Platform | Landing Vehicle |
|----------------------------|-----------------|-----------------|
| Maximum LOS Range on Moon  | > 10 km         | 6.5 km          |
| Maximum LOS Velocity       | +/- 218 m/sec   | +/- 218 m/sec   |
| Maximum LOS Velocity Error | 0.85 cm/sec     | 20.0 cm/sec     |
| Maximum LOS Range Error    | 0.98 m          | 16.1 m          |
| Data Rate                  | 20 Hz           |                 |



**Optical Head** 

NDL ETU Performance is dominated by the vehicle dynamics





# NDL Measurements Error Tree



- Dominant noise source is vibration
- Dominant bias error source is beam pointing knowledge



# **NDL Functional Tests**











#### **Chassis EMI Test**



Long Range Functional Test



**Chassis and Optical Head** 







- Vibration broadens laser linewidth which in turn broadens the signal frequency spectra and lowers its peak intensity
  - Reduces maximum operational range
  - Increases measurement noise
- Signal frequency broadening is proportional to vibration load and increases with range



#### Signal spectra broadening with vibration



Target Truck

# **Comprehensive Functional Test**

Langley AFB



NDL Optical

Head

Vibration Test

- Signal strength and spectral broadening measurements versus range
  - Chassis at different vibration loads
  - **Telescopes in air and vacuum**

Joint Base Langley-Eustis Runway

**Telescope in Vacuum Chamber** 







# Maximum Operational Range





- Maximum operational range in Moon environment is extrapolated from measured data
  - Remove atmospheric effects
  - Correct for lunar surface albedo







#### Estimated ETU range and velocity precision in 2.6 grms vibration environment:

 $\partial R = 1.59 + 2.21 \times 10^{-3} \times R \text{ m}$ 

$$\partial v_r = 1.62 \times 10^{-2} + 2.24 \times 10^{-5} \times R \text{ m/s}$$

| LOS Range | Velocity<br>Noise | Range<br>Noise |
|-----------|-------------------|----------------|
| 1000 m    | 3.86 cm/s         | 3.80 m         |
| 6500 m    | 16.2 cm/s         | 15.96 m        |







### Major sources of beam pointing knowledge error:

- Beam pointing registration error
- Thermal expansion of Optical Head
- Telescope displacement due to launch loads
- Vehicle flexing and thermal effects
- Performed full Structural, Thermal, Optical, Performance (STOP) analysis









- Develop a full STOP model of the telescopes and validated it by tests
- Investigated the effect of the thermal gradients on optical performance and beam pointing knowledge
- Analyzed the effects of vehicle structural and thermal environments on beam pointing knowledge







# Beam Pointing Knowledge Error



| Error Source                                   | Knowledge error<br>actual (mrad, 1-<br>s) | Note                        | Optical Head<br>Metrology<br>Measurement |
|------------------------------------------------|-------------------------------------------|-----------------------------|------------------------------------------|
| Beam pointing registration error               | 0.023                                     | Analysis and<br>Measurement |                                          |
| Temperature gradient across telescope          | 0.022                                     | Analysis and<br>Measurement |                                          |
| Thermal expansion of the optical head          | 0.093                                     | Analysis                    |                                          |
| Deflections due to operational vibration loads | 0.067                                     | Analysis                    |                                          |
| Telescope displacement due to launch loads     | 0.29                                      | CBE based on<br>Measurement |                                          |
| Total RSS mounting error                       | 0.31 mrad                                 |                             |                                          |

Vehicle structural changes, such as flexing in space and thermally-induced deflections, are not included



# Measurement Errors Due to Beam Pointing Knowledge Error



- $\partial v_r = |v_r| \tan \theta \, \partial \theta$ 
  - where  $\boldsymbol{\theta}$  is angle between beam vector and velocity vector
- $\partial R_r = |R_r| \tan \beta \, \partial \beta$ 
  - where  $\beta$  is the angle between the beam vector and normal to the ground

 $\partial v_r = |218| \tan(60^o) 0.31 \times 10^{-3}$  $\partial v_r = 11.8 \text{ cm/s}$ 

 $\partial R_r = |6500| tan(45^o) 0.31 \times 10^{-3}$  $\partial R_r = 2.03 \text{ m}$ 

**Velocity Vector** B Laser Beam **Pointing Vector** 





- Difference in index of refraction between air (n=1.0003) and vacuum (n=1.0000) is sufficient to change the telescope focusing
- Felescopes are aligned for operation in vacuum
- Performance in air is significantly degraded
- Felescopes are placed in vacuum chamber for long range tests











- Work on next generation NDL leverages the lessons learned for build and test of ETUS is focused on size and mass reduction, reduced vehicle vibration effects, and expanded capabilities
  - Reduce size and mass by > 2X: utilize advanced photonic technologies
  - Minimize effects of vehicle vibration: upgrade chassis design to minimize the vibration forces applied to the seed laser
  - Expand operational capabilities:
    - Extend operational range to 10 km on the Moon and Mars
    - Increase the number of beams to 4
    - Incorporate wind velocity vector (air data) measurement for atmospheric landing





- NDL provides critical vehicle velocity and altitude data for precision soft landing on the Moon, Mars, and other destinations
- > Completed 4 ETUs of NDL for lunar landing demonstration and other tests
- Conducted a series of tests and analyses to estimate the NDL performance for Moon and Mars landing
- Performance of NDL ETU is dominated by the vehicle vibration
  - Vehicle vibration impacts maximum operational range and measurements precision
  - Velocity and range errors may increase from 1 mm/sec and 10 cm by more than an order of magnitude
- Work on next generation NDL has already begun





## Backup





- > Utilizes FMCW technique to measure velocity and range along three laser beams
- Simultaneous line-of-sight measurements are used to estimate:
  - Velocity Vector (V)
  - Altitude relative to local ground (No external data required)





# NDL Processor & System Controller

