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Abstract—For the Urban Air Mobility (UAM) industry, 
NASA has defined a series of UAM Maturity Levels (UML) 
corresponding to increasingly more complex and operationally 
dense UAM operations. In support of the gradual progression 
towards higher UML levels, NASA is currently conducting a set 
of UAM air traffic simulations—collectively referred to as X4. 
This paper describes a set of system effectiveness measures, and 
their associated metrics, for data analysis of X4 simulations. The 
descriptions, rationales, and calculation procedures for two 
metrics to be used in data analysis of simulation results, the 
number of predicted demand-capacity imbalances and the pre-
departure delays, are described. Results from data analysis of 
one set of simulation runs are presented to demonstrate how 
these metrics support the assessment of performance of the 
system architecture for X4 simulations and the verification of 
experiment requirements. 

Keywords—Urban Air Mobility (UAM), simulations, data 
analysis, metrics 

I. INTRODUCTION 
Urban Air Mobility (UAM) refers to an emerging aviation 

market that provides air transportation services in and around 
urban areas with the support of highly automated air traffic 
management services. For the UAM industry, NASA has 
defined a series of UAM Maturity Levels (UML) 
corresponding to increasingly more complex and operationally 
dense UAM operations [1]. NASA’s overarching goal is to 
“evolve the airspace towards UML-4”, and the objective is to 
“evolve and develop the notional UAM architecture for early 
airspace UML traffic management and ensure it is extensible to 
higher UMLs.” At higher levels of maturity, FAA’s Concept of 
Operations (ConOps) for UAM [2] envisions dense flight 
operations within designated metropolitan and surrounding 
airspaces supported by selected Community Based Rules 
(CBRs) and high levels of automation both in airspace services 
and aircraft capabilities.  

In the air traffic management research, various simulations, 
including fast-time and real-time simulations, have been 
performed to evaluate the new concept of operation or the 
changes of existing operational procedures, systems, and 
infrastructure before conducting field tests and demonstrations 
[3], [4]. These simulations can also provide standards bodies 

with some guidance on decision-making for the development 
of future system architecture of new types of air transportation 
services such as UAM and Advanced Air Mobility (AAM). To 
assess the benefits and costs of the new ConOps and Use Cases 
like FAA’s ConOps for UAM from the simulation activities, 
we need to have a systematic approach to managing and 
analyzing the simulation output data. This data analysis 
approach includes the collection, mediation, storage, and 
analysis of the data obtained during the simulation. Further, 
detailed data analysis requires that all selected metrics are 
evaluated in parallel to avoid biases in derived insights. In this 
paper, we will discuss how the simulation data for UAM 
related research and development are collected and stored and 
describe how those data can be analyzed systematically. Before 
describing the data analysis approach, we present some 
background on the set of simulation activities being conducted 
by NASA in support of UAM industry maturation. 

A. Background on X-Series Simulatios for UAM Operations 
To support the gradual progression of UAM market 

towards higher UML levels, NASA has organized a series of 
test activities under the “Advanced Air Mobility (AAM) 
National Campaign (NC)” banner, involving collaboration 
between government and industry. These test activities are 
intended to provide insights into the evolving regulatory, 
operational, and safety environment of new aviation markets, 
including UAM. In turn, the insights generated by these tests 
are necessary to enable the envisioned UAM concept of 
operations while promoting public confidence in safety. In 
support of these test activities, NASA has been conducting a 
series of simulation events to help integrate the software 
components developed by airspace service provider partners 
and establish a framework for the necessary foundational 
research into airspace structure design and air traffic 
management.  

The simulation events being conducted by NASA, 
collectively called the X-series simulations, started with “X1” 
simulations during 2017-18, where the goal was to explore and 
evaluate the roles and responsibilities and information 
exchange requirements of UAM stakeholders during both 
nominal and off-nominal conditions [5]. These were followed 
by “X2”, during 2018-19, which investigated whether the 
information exchange architecture developed for Unmanned 



Aircraft System (UAS) Traffic Management (UTM) could 
support UAM operations in shared airspace [6]. The next such 
activity, completed in December 2020 and referred to as “X3”, 
provided the initial opportunity to assess the NC airspace 
system developed by the UAM Sub-Project under NASA’s Air 
Traffic Management – eXploration (ATM-X) project and the 
capabilities provided by airspace partners [7], [8]. 

The latest in the X-series of simulation activities, referred 
to as “X4” simulations, are currently ongoing and focus on the 
strategic conflict management service for UAM operations [9], 
including an initial implementation and testing of Demand 
Capacity Balancing (DCB) of UAM operations. In this 
implementation, all operators have to develop (or procure from 
an external source) a service that strategically schedules 
operations to ensure that the total demand at each of the 
constrained resources remains at or below its capacity. The 
providers of this service are responsible for ensuring submitted 
operational plans meet all applicable capacity constraints. 

In this paper, we focus on one run of the X4 simulation and 
describe the results obtained from NASA’s implementation of 
a DCB algorithm; the experiment setup and testing are 
described in detail in Sec. III.  We describe the selection of a 
set of system effectiveness measures that evaluate the success 
of the system architecture utilized for X4 simulations. We also 
discuss the selection and calculation of a set of selected metrics 
that characterize the system effectiveness measures. Finally, 
we discuss the importance of selecting an appropriate set of 
metrics to the derivation of insights on system architecture. 

II. EVALUATING THE RESULTS OF SIMULATIONS 
To measure outcomes and performance as the UAM 

airspace research and development progresses and the airspace 
structure is defined, we need to select a set of system 
effectiveness measures for the UAM system architecture. 
These system effectiveness measures, in turn, are characterized 
by one or more metrics which quantify the associated 
measures. In the following subsections, we discuss the 
selection of system effectiveness measures and associated 
metrics that help assess the performance of the X4 system 
developed with initial strategic conflict management 
capabilities.  

A. Selection of System Effectiveness Measures for System 
Performance Evaluation 
The X4 simulation architecture aligns with the 

aforementioned FAA ConOps [2]. As part of development of 
this system architecture, a set of system requirements is 
defined pertaining to the capabilities of a simulation platform 
along with the services necessary to execute and collect data 
during simulations. The system-level requirements are further 
decomposed and allocated to each of the subsystems, i.e., the 
software components of the simulation architecture. To 
measure the effectiveness of the proposed X4 system 
architecture, we need a set of system effectiveness measures. 
These effectiveness measures should measure system attributes 
such that they help verify that the system meets the stated 
requirements. In other words, these effectiveness measures 
should evaluate how well the proposed architecture performs 

against system-level requirements. These effectiveness 
measures must be stated quantitatively and may be correlated 
so that they provide insights on specific system characteristics 
[10]. 

For example, we want to ensure that the proposed system 
architecture supports safe operations. System safety can be 
characterized with multiple system effectiveness measures, for 
instance, “Maintain resource demand below capacity” and 
“Maintain safe separation between airborne flights.” The 
former can be quantitatively stated that the provided airspace 
services should be able to plan flight operations such that the 
number of aircraft occupying or using any given resource in a 
specified time frame should be at or below a threshold value; in 
Sec. IV we will demonstrate how a demand-capacity 
imbalance management service can maintain demand at 
vertiports at or below a specified rate. 

B. Selection of Metrics 
At an even lower level, a set of metrics measures attributes 

of system elements to assess the satisfaction of system 
requirements [10]. Metrics are quantitative in nature, generally 
derived from the system effectiveness measures, and may be 
expressed as maximum, minimum, or even threshold targets 
[11]. They help compare differences between actual and 
planned performance, identify and reduce risks, and compare 
effects of design decisions on solution outcomes, among other 
things [10], [11]. In the context of X4 simulation experiments, 
metrics are used to assess the success of a given run of a 
simulation experiment by identifying if the events expected in 
the experiment occurred, if the received data was as expected, 
and whether the airspace partners were able to perform the 
capabilities needed by the scenarios. The updates to lower-
level metrics and targeted thresholds also allow for the tracking 
and management of technical progress by monitoring technical 
capability advancement within the UML framework to better 
meet stakeholder expectations. An example of a lower-level 
metric measured during X4 simulations is a count of predicted 
demand-capacity imbalances, including a breakdown into the 
number of predicted imbalances that were either resolved or 
left unresolved by the demand-capacity imbalance 
management services; as mentioned before, we will further 
discuss this metric in Sec. IV. 

Fig. 1 represents how we assess the safety of the X4 system 
with a set of effectiveness measures and associated metrics. 
Safety of the UAM operations can be ensured if the system 
architecture can support conflict management functions in 
ensuring the separation between flights. Maintaining demand at 
or below resource capacity is one way that the separation 
between operations can be maintained, which means that the 
conflict management functions should be able to resolve all 
predicted instances of excess demand over capacity at a 
resource. This effectiveness measure can be further 
characterized by the metric which measures the number of 
predicted demand-capacity imbalances along with the number 
of such imbalances that were resolved. 

Table I lists a subset of system effectiveness measures and 
some examples of metrics that are of relevance to X4. Among 
  



 

 

 

Fig. 1. Flow down from “Safety” MOE to a selected set of TPMs. 

 

the effectiveness measures identified in this table, we will 
discuss those that characterize system safety, especially a count 
of total demand-capacity imbalances identified and resolved 
since these are the primary criteria for the fulfillment of X4 
requirements. Alongside, the metric calculating assigned 
delays to aircraft will give more context for operations under 
specified scenarios. 

III. SIMULATING UAM OPERATIONS AND ANALYZING DATA 

A. Airspace Services and Experiment Setup 
In ICAO’s air traffic management concept, conflict 
management is one of seven concept components, and it is 
further divided into three layers: strategic conflict management, 
separation provision, and collision avoidance. The Strategic 
Conflict Management (SCM) layer, in turn, includes airspace 
organization and management, demand-capacity balancing, 
and traffic synchronization [12]. SCM’s role is to “reduce the 
need for separation provision to a designation level” [12]. The 
focus of X4 simulations is on the development and integration 
of a strategic conflict management layer for UAM operations; 
the X4 architecture does not include the other two layers of 
conflict management. In the following discussion, Demand 
Capacity Balancing (DCB) is a sub-service of SCM. We 
developed, implemented, and tested a DCB algorithm; [13] 
gives the full details of NASA’s DCB algorithm including a 
pseudo-code of its implementation in X4 simulations. 

In X4, participating operators have their own Provider of 
Services for UAM (PSU), and they go through a series of 
“sprints” in order of increasing complexity. In this paper, we 
describe the simulation where the PSUs have demonstrated 
basic data exchange and conformance monitoring capabilities, 
and the objective is to demonstrate demand-capacity balancing 
capabilities. A requirement for all operators is that they modify 
an operation plan, if necessary, to resolve any predicted 
demand-capacity imbalances associated with the use of 
planned resources at the proposed times. This requirement 
exercises the set of defined Community Based Rules (CBRs) 

on resource capacity and usage and is in addition to the 
requirement to ensure that the flights remain in conformance 
with the operational intent. It is assumed that all operators use 
the same vehicle model and cruise speeds. 

We define a traffic scenario as an input that includes a total 
of 40 flights shared between two operators; in the results 
presented in Sec. IV, NASA plays the role of both operators. 
The traffic scenario specifies the origin and destination 
vertiports, a recommended route for each flight, and an original 
desired departure time for each operation specified as a delta 
(in seconds) from the simulation start time. Together, the 
routes form a network with five vertiports and ten routes in the 
Dallas/Fort Worth metropolitan area; Fig. 2 shows this route 
network, with the vertiports shown as black circles.  

The operators propose flights in accordance with the given 
scenario, six minutes prior to the desired departure time so that 
the scheduling happens in the order of the desired departure 
time. Briefly, for each operation, the PSU submits an operation
  

 

Fig. 2. Route network in Dallas/Fort Worth urban area. 
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TABLE I.  SELECTED SYSTEM EFFECTIVENESS MEASURES AND METRICS FOR X4 

System Effectiveness Measure Description Selected Metrics 

Scalability. Measure the ability of the UAM system architecture to accommodate increasing levels of traffic as operations mature over time. 

Operation Density Counts the total number of operations within a given 
airspace over a given interval of time 

Total number of airborne operations per route; 
Running count of simultaneous airborne operations 

Services’ Messages Throughput Measures the number of requests that pass through 
UAM services Services’ messages processing rate 

Efficiency. Measure the efficiency of UAM operations that maximizes the use of the airspace. In X4, we measure resource utilization for all 
operational scenarios. 

Utilization 
Evaluates the difference between capacity and 
demand and measures how effectively the capacity of 
the airspace is utilized 

Throughput of UAM routes; actual arrival and 
departure rates at vertiports 

Predictability. Measure the ability of UAM operators and service providers to deliver consistent and dependable levels of performance. 

Delay Calculates the gap between the scheduled times and 
actual times of arrival 

Total ground delay assigned; number of aircraft 
delayed 

Trajectory Conformance Evaluates how well the actual flown trajectory meets 
the specified trajectory conformance requirements 

Trajectory conformance to defined procedures; 
percentage of operations conforming to operational 
intent 

Safety. Measure whether the system architecture effectively supports UAM operations staying safely separated through multiple layers of conflict 
management. In X4, we especially evaluate the effectiveness of strategic conflict management in mitigating potential conflicts. 

Rate of Safe Operations 
Calculates the percentage of operations that did not 
have any conflicts (i.e., those that meet all applicable 
separation minima) 

Separation at specified waypoints 

Count of Demand-Capacity 
Imbalances 

Counts the number of operations that had a demand 
capacity imbalance, including those that were 
resolved versus those that remained unresolved  

Number of predicted demand capacity imbalances 
resolved / unresolved 

Reliability. Measure the ability of the UAM services to function without failure under nominal conditions. 

UAM Services Latency Calculates the total time it takes from when a service 
makes a request until they receive a response PSU-PSU Communication Latency 

Uam Services Response Time Calculates the time difference between when a 
service receives a request and sends a response PSU-PSU response time 

Responsiveness. Measure whether the UAM architecture provides the infrastructure for operators to react to unplanned events quickly. 

Dynamic Replan Rate 
Evaluates the operations that successfully re-plan in 
response to dynamic airspace changes (e.g., airspace 
constraints)  

Number of operations re-planned in response to 
airspace constraint; time between constraint 
announcement and re-plan 

 

 

plan to a Discovery and Synchronization Service (DSS) and 
receives a list of PSUs to notify, i.e., the list of other PSUs that 
will be sharing its airspace and resources during an operation. 
The DSS is a service that enables a PSU to discover other 
PSUs operating in the shared airspace and facilitates automated 
data exchanges in the PSU network. Then, the PSU notifies the 
other PSUs identified by the DSS about its new operation plan 
and obtains authorization to “activate” an operation. Once 
activated, the operator flies the aircraft as per the operational 
intent and finally “closes” the operation upon landing. Note 
that, even though the X4 simulations do not include a tactical 
conflict management service, it is required that all flights 
remain in conformance with their operational intents 
throughout the mission.  

B. Data Collection and Storage 
Both during the simulation and after an operation is closed, 

vehicle telemetry and related data pertaining to flight 
operations are collected and stored for post-simulation analysis 
by a data collection service. Fig. 3 shows the interface between 
software components of the simulation system and elements of 

the data storage system. On the left are the UAM subsystems 
including the PSUs, an Airspace Structure Definition Service 
(ASDS), which provides the adaptation data such as airspace 
structure and performance requirements, a DSS, which allows 
PSUs to discover other PSUs operating in the shared airspace, 
and a Flight Information Management System Authorization 
(FIMS-AZ) service, which provides authentication and 
authorization services to the PSUs. These subsystems provide 
the software components developed to demonstrate the 
capabilities defined in the X4 simulation scenarios. 

 

Fig. 3. Interface between UAM simulation components and data storage 
subsystems. 
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On the right are the components of the data collection 
environment, including components for collecting PSU 
exchange data during simulation and storing these data for 
post-sim data analysis. All simulation data are collected by a 
Universal Data Collector (UDC) via the endpoints defined in 
the PSU Application Programming Interfaces (API). These 
data are forwarded to the Data Pipeline, which validates all 
messages received for conformance to the baselined X4 APIs 
and further forwards them to data storage, which are secure 
repositories-of-record utilized to store and recall both real-time 
and post-operations data. 

The data stored in the database is accessed with 
PostgreSQL queries, which apply the requisite filters and 
perform the necessary associations / transformations to obtain 
the metric results. In the next section, we describe some of the 
metrics along with their calculation approaches. Because 
successful demand-capacity balancing was the primary 
requirement, we focus on those metrics. 

IV. DATA ANALYSIS AND RESULTS 
We will now discuss two metrics that characterize the 

safety of X4 system: the number of predicted demand-capacity 
imbalances that were resolved and the amount of delay 
assigned to operations for resolving those demand-capacity 
imbalances. The latter metric is useful because, while there are 
a variety of ways demand-capacity imbalances can be resolved 
including assignment of departure delay, re-routing airborne 
aircraft, path stretching, speed changes, etc., we restrict our 
DCB algorithm to only perform departure delay to resolve 
DCB imbalances at both the departure and arrival vertiports. 
Along with the results presented, we will discuss how 
calculation of these metrics can inform future decision-making 
on the design and integration of airspace services. 

A. Predicted demand-capacity imbalances resolved 
The first metric we will discuss counts the number of flight 

operations at each vertiport in a given unit of time and 
compares this number with the pre-specified capacity of the 
vertiports. The unit of time we use, a “time bin”, is an interval 
of duration 12 minutes starting from the “top of the hour” of 
simulation start time. For example, if a simulation starts 
between 0900 and 1000 hours, the time bins for that run are 
[9:00, 9:12), [9:12, 9:24), …, [9:48, 10:00). Notice that the 
time bin intervals are closed at the start time and open at the 
end. 

In the simulations described in this paper, we assume that 
each vertiport can safely accommodate only two operations in 
each time bin. It is the responsibility of the DCB algorithm to 
ensure that the addition of a new operation does not cause a 
demand-capacity imbalance at the origin or destination 
vertiports during the time bins associated with its planned 
departure and arrival, respectively. Thus, this metric is used to 
evaluate the efficacy of the DCB algorithm in performing pre-
departure strategic conflict management. However, as defined 
in ICAO’s air traffic management concept [12], neither DCB 
nor SCM is designed to eliminate the need for separation 
provision, but instead to reduce the need for it and create 
manageable problems for separation provision to resolve. The 

DCB algorithm used in these simulations will always resolve 
predicted DCB imbalances, even if it needs to assign large 
delays to do so. Since large delays are undesirable, we 
calculate this metric in the next subsection.  

The data collection API specifies that each operator must 
submit a “log set”, from which we get the “initial operational 
intent” that contains the details of the originally proposed flight 
trajectory. Thus, from the initial operational intent, we get the 
originally planned times of operation at both the origin and 
destination vertiports for each flight in the scenario. We then 
assign these flights to the appropriate time bins and increment 
the demand count at all vertiports in each time bin to calculate 
predicted demand-capacity imbalances prior to DCB.  

During a simulation, two tables called “Operations” and 
“Trajectory” record the actual operation times for each 
operation. This includes the timestamps indicating when a 
flight was at a given position. From these two tables, we can 
identify the actual time bins of operation at all vertiports for all 
operations. Fig. 4 shows the flowchart of the above process. 
This figure shows the calculation of the number of predicted 
demand-capacity imbalances and the number of resolved / 
unresolved imbalances, as described in this section. 

Fig. 5 shows the comparison of data obtained from one 
such simulation run. On the left is the heatmap showing the 
original demand profile in each time bin at all vertiports. This 
demand is specified as an input in the scenario and includes 
excess demand in some time bins to test the DCB algorithm. 
On the right of this figure is the heatmap showing the modified 
demand profile after the DCB algorithm re-plans operations by 
delaying some departures. In the next subsection, we will 
further discuss the distribution of assigned ground delays. 

B. Ground Delays 
NASA’s DCB algorithm resolves predicted demand-capacity 
imbalances by delaying aircraft prior to departure. Ground 
delays improve safety by reducing traffic density, but they can 
also reduce efficiency. Hence, for a given traffic demand 
scenario, calculating the delays assigned to aircraft is useful in 
  

 

Fig. 4. Flowchart for calculating demand-capacity imbalances. 
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Fig. 5. Heatmap for original and modified demand at vertiports. 

 

comparing the trade-off between safety and efficiency of 
operations. Furthermore, measuring how many aircraft are 
delayed, in addition to how much each aircraft is delayed, is 
also a measure of system capacity – a high number of delayed 
aircraft indicates that there are more operations than the system 
can safely accommodate. 

To calculate assigned ground delay, we use the same set of 
tables as those used to count demand-capacity imbalances and 
resolutions. From the log set tables, we use the initial 
operational intent to get the original departure times for all 
flights. Likewise, from the operations table, we get the actual 
departure times post re-planning by the DCB algorithm. The 
difference between the original and actual operation times is 
the amount of ground delay assigned. Additionally, we can also 
count the number of aircraft that were delayed in a given 
scenario. Fig. 6 shows the process for calculating assigned 
ground delays. 

Fig. 7 shows a histogram of delayed operations. Assigned 
delays range from just over two minutes (128 seconds) to over 
29 minutes (1,776 seconds); note that this figure only shows 
  

 

Fig. 6. Flowchart for calculating ground delays assigned by DCB service. 

those aircraft that were assigned delays. Out of the 39 
operations that were activated in this scenario, 23 operations 
were assigned delays. 

C. Insights from Data Analysis 
Since the focus of our data analysis was on assessing the 

performance of a DCB algorithm, we presented two metrics 
that provide the desired insights. From the discussion in Sec. 
IV.A and as shown in Fig. 5, we see that the DCB algorithm 
developed by NASA for this simulation performs as expected. 
The excess demand over capacity, for example in bin 7 at 
vertiport DF101, was scripted in the scenario. During 
simulation, the DCB algorithm reduces the demand in bin 7 at 
vertiport DF101 from 6 operations per time bin to 2 operations 
per time bin in accordance with the capacity constraint, by 
delaying several of their departure times. The resulting ground 
delays are a tradeoff that needs to be considered when 
evaluating the other metrics. The average delay assigned to the 
23 aircraft that were delayed in the given simulation was 
  

 

Fig. 7. Distribution of pre-departure delay assigned to flights. 
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13.35 minutes (800 seconds) and the average flight time for the 
same set of aircraft was 15.13 minutes (908 seconds). In this 
case, ground delays doubled the total travel time, which is 
clearly undesirable. Ground delays reduce traffic density, 
which, if applied too liberally, may unnecessarily throttle 
system throughput. If we allow for greater flexibility to resolve 
demand-capacity imbalances (e.g., by allowing re-routing or 
speed changes), then we may be able to balance demand and 
capacity with less onerous pre-departure delays. This indicates 
a need for a more sophisticated DCB algorithm and SCM 
service, not just to maintain safety but also to improve the 
scalability and efficiency of the system. For example, in its 
current form, the DCB algorithm only handles demand 
management at vertiports; future versions of this algorithm can 
be made to deal with other airspace resources like UAM 
corridor entry and exit points and intersection waypoints for 
crossing and/or merging. 

Another consideration in analysis of the above metrics is 
that the presented simulations were conducted under 
deterministic conditions. If uncertainties had been modeled, 
SCM may not have been sufficient to resolve all instances of 
demand-capacity imbalances. Wind effects, for example, 
would have altered observed flight speeds which, in turn, 
would have resulted in earlier or later arrival times at the 
destination vertiports, leading to different demand from that 
predicted by the SCM service. 

Finally, the X4 simulation architecture is being developed 
to meet the Minimum Viable Product (MVP) development 
requirements. An MVP provides no guarantees on functionality 
of the final system architecture. Ongoing X4 simulations are 
investigating the integration of DCB algorithms from multiple 
operators to ensure that, even in a collaborative environment, 
strategic conflict management can resolve the predicted 
demand-capacity imbalances. More advanced simulation 
experiments can explore additional features of SCM services, 
for example, its ability to handle uncertainties with the 
possibility of using airborne deconfliction maneuvers. 

V. CONCLUSIONS 
We have presented an approach to the selection and 

evaluation of system effectiveness measures and associated 
metrics for the assessment of urban air mobility simulations. 
We described the considerations involved in the selection of 
these effectiveness measures and metrics and demonstrated 
how one aspect of system performance can be decomposed 
into multiple metrics.  The selection of an appropriate set of 
metrics influences design decisions and the solution outcomes. 
Detailed analysis of simulation data requires that all selected 
metrics be evaluated in parallel to avoid biases in derived 
insights.  

We also discussed the setup and execution of X4 
simulation experiments, which are currently ongoing with 
participation between NASA and industry partners. The focus 
of X4 simulations is on the development of a strategic conflict 
management service. To demonstrate how data analysis can 

support the development of this service, we presented results 
from one simulation test. Results from this test included the 
calculation of the number of predicted demand-capacity 
imbalances and the pre-departure delays assigned to aircraft. 
Additional metrics will be calculated at the conclusion of the 
X4 simulations, and the lessons learned from this simulation 
activity will be used to guide future development of the UAM 
system architecture. The same data analysis approach will be 
used for the future series of simulations that NASA is planning 
to conduct for the Advanced Air Mobility research and 
development. 
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