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Abstract:  
Bulk chemical and isotopic compositions, and mineralogy in the asteroid (162173) Ryugu 
samples show that Ryugu is mainly composed of materials related to the CI (Ivuna-like) 
carbonaceous chondrite group. The samples consist predominantly of minerals produced by 
aqueous alteration in a parent planetesimal from which Ryugu was derived. The 53Mn-53Cr 
systematics of dolomite suggest that this alteration occurred 5.2 (+0.7/–0.8) million years after 
formation of Ca-Al-rich inclusions, the first solids formed in the Solar System. The aqueous 
alteration temperature at the time dolomite and magnetite coprecipitated was 37±10°C. Unlike in 
CI chondrites, phyllosilicates in Ryugu have lost most of their interlayer water, but retained 
structural water. This indicates that following aqueous alteration the Ryugu samples avoided 
heating above ~90°C. 
(120 words; 100-125 words) 
 
One-Sentence Summary:  
Returned samples from C-type asteroid Ryugu show strong similarities to CI (Ivuna-like) 
carbonaceous chondrites. 
(112 characters; <125 characters and spaces) 
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Main Text:  
Although it is generally accepted that meteorites are fragments of asteroids, specific meteorite-
asteroid connections are poorly understood. Samples of asteroid (25143) Itokawa returned by the 
JAXA Hayabusa mission revealed that S-type asteroids are composed of materials consistent 
with the ordinary chondrite class (1, 2). The JAXA Hayabusa2 (3) spacecraft was launched on 
December 3rd, 2014 to rendezvous with and sample the near-Earth Cb-type asteroid (162173) 
Ryugu with the aim of clarifying the relationship between C-type asteroids and the carbonaceous 
chondrite class. Remote sensing observations of Ryugu from Hayabusa2 revealed that: (i) 
Ryugu’s albedo is darker than that of every known meteorite group (4, 5); (ii) Ryugu contains 
ubiquitous phyllosilicates, as shown by an absorption band at 2.72 µm (4, 6); (iii) the strength 
and shape of this absorption band as compared to those from laboratory heating experiments of 
carbonaceous chondrites suggests that Ryugu’s surface experienced heating above 300 °C (6); 
and (iv) Ryugu materials are probably more porous than any known carbonaceous chondrite, as 
shown by measurements of the thermal inertia (7, 8). These results indicated that carbonaceous-
chondrite-class materials are plausible constituents of Ryugu, but no known carbonaceous 
chondrite completely matches the Ryugu remote-sensing observations. Laboratory examination 
of the fragments returned by Hayabusa2 paints a much sharper picture of the constituents and 
history of Ryugu.  
 The Hayabusa2 spacecraft made two successful landings onto Ryugu to collect 
asteroidal materials in 2019 (9) and delivered the collected samples to Earth on December 6th, 
2020. The returned samples are detritus ranging in size from <10 µm to ~10 mm, with a total 
mass exceeding 5 grams. Their colors, shapes, and macro-structures are consistent with those 
acquired by remote sensing observations, indicating that the returned samples are representative 
of the asteroid Ryugu (10, 11). The returned samples were recovered in a non-destructive manner 
and the initial description was performed under strict contamination-controlled conditions at the 
JAXA Extraterrestrial Sample Curation Center prior to delivery to the Initial Analysis teams 
(10). The initial analysis of the Ryugu samples began in June 2021. At that time, ~125 mg of 
samples, containing both powder and particles from the first and the second touchdown sites, 
were allocated to the Initial Analysis Chemistry Team.  
 The goals of the Initial Analysis Chemistry Team investigations are to provide 
fundamental answers to questions related to the provenance of Ryugu samples. It is also to 
provide the framework for future in-depth research by the international scientific community. In 
particular, the team aimed to address the following questions: (i) what are the bulk elemental 
abundances of Ryugu; (ii) what are the bulk isotopic compositions of Ryugu; (iii) does Ryugu 
consist of primary materials formed in the protosolar disk or of secondary materials formed in 
Ryugu or a precursor asteroid; (iv) when were Ryugu’s constituent materials formed; and (v) 
what, if any, relationship does Ryugu have with known meteoritic samples?  
  In this paper, we report the chemical and isotopic characteristics of the Ryugu samples 
and outline the general history of Ryugu from accretion to present. We also discuss the 
implications of our results have for the origin of the CI chondrite group and, more generally, for 
cosmochemistry.  
Petrology and mineralogy 
 The Ryugu samples are mixtures of brecciated fine-grained matrix materials composed 
of phyllosilicates, predominantly serpentine and saponite, and coarser grains dominated by 
carbonates, magnetite, and sulfides (Fig. 1) (12). Neither Ca-Al-rich inclusions (CAIs) nor 
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chondrules, which are characteristic of most chondrites, nor their relicts, were evident in the 
allocated samples. The serpentine/saponite molar ratio is approximately 6/4, based on the bulk 
chemical composition of the matrix. The coarser-grained minerals in the Ryugu polished section 
studied here are dolomite (CaMg(CO3)2), breunnerite ((Mg, Fe, Mn)CO3), pyrrhotite (Fe1-xS), 
and magnetite (Fe3O4); they are distributed throughout the matrix, as well as in the veinlets. 
Calcite (CaCO3), pentlandite ((Fe,Ni)9S8), cubanite (CuFe2S3), ilmenite (FeTiO3), apatite 
((Ca5(PO4)3(OH,F,Cl)), and Mg-Na-phosphate are accessory minerals. Anhydrous silicates such 
as olivine and pyroxene, which are common in chondrites, are very rare and occur as discrete 
grains smaller than ~10 µm across. Overall, the petrology and mineralogy of the Ryugu samples 
resemble the extensively aqueously altered CI chondrites (13). However, sulfates and 
ferrihydrite, which are commonly observed in CI chondrites, were not identified in the samples 
studied. The mineral assemblages of the Ryugu samples observed here are generally consistent 
with the results of (14); it is noted that small altered chondrules and CAIs were identified in the 
samples in that study.  
Bulk chemical and isotopic compositions 
 No systematic differences in chemical composition are observed between samples from 
the first and the second touchdown sites (Fig. 2) (12). The observed variations in bulk 
composition are most likely due to heterogeneity at the small scales sampled and analyzed, as the 
masses of the samples analyzed were less than 30 mg and coarser-grained water-precipitated 
minerals may not be uniformly distributed at that scale (Fig. 1). Clear spatial heterogeneity in the 
mineral distributions is observed for carbonates (dolomite) and sulfides (pyrrhotite), both of 
which precipitated from aqueous solution during alteration of the protolith (Fig. 1). There is, for 
example, a difference in the concentrations of the rare earth elements (REEs) between the 
fragments A0106-A0107 from the first touchdown site and C0108 from the second touchdown 
site (12), which are both elevated relative to CI chondrites (Fig. 2). These variable enrichments 
could be explained by depletion of H2O, relative to CI chondrites (see next paragraph), and the 
heterogeneous distribution of REE-rich Ca-phosphate grains (15, 16). Such heterogeneity at 
similar scales has been observed in CI chondrites (17, 18) and in the ungrouped carbonaceous 
chondrite Tagish Lake (19).  

We do not observe systematic depletions of elemental abundances, relative to CI 
chondrites, as a function of volatility. In contrast, other groups of carbonaceous chondrites show 
various degrees of depletion in volatile elements (20). The lack of systematic depletion in the 
moderately and highly volatile elements of the Ryugu fragments strongly supports the view that 
Ryugu is composed of materials that are related to the CI chondrite group. However, the 
elemental abundances of hydrogen and oxygen are strikingly depleted in the Ryugu samples 
compared to CI chondrites, suggesting depletion in H2O.  

Previous studies have revealed a dichotomy in the isotopic composition of titanium and 
chromium between non-carbonaceous (NC) and carbonaceous (CC) meteorites (21, 22, 23). The 
bulk titanium and chromium isotopic compositions of the Ryugu samples plot close to the CB 
(Bencubbin-like) and CI chondrite values in the CC meteorite region (Fig. 3). However,the 
metal-rich nature of CB chondrites likely precludes their kinship with the Ryugu samples. 
Oxygen isotopic composition 
 The whole-rock oxygen isotopic compositions of bulk Ryugu samples are distributed 
parallel to the terrestrial fractionation line over a range that overlaps with those of the bulk 
Orgueil CI chondrite samples (Fig. 4) (12). The variation in δ18O is thought to be due to the 
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heterogeneous distributions of the constituent minerals with very different isotopic compositions, 
including phyllosilicates, carbonates, and magnetite. On the other hand, two roughly 2-mg-sized 
Ryugu samples analyzed at the University of California, Los Angeles (UCLA) have Δ17O values 
(permil deviation from the terrestrial fractionation line) (12) that are identical within the 
uncertainties, giving an average Δ17O = 0.68 ±0.05 ‰ (2 standard deviations (SD)). The sample 
analyzed at University of Göttingen (UG) is slightly different with Δ17O = 0.44 ±0.05 ‰. The 
two Ryugu samples analyzed at UCLA have higher Δ17O values than those for the three Orgueil 
chondrite samples (Δ17O = 0.42 – 0.53 ‰) analyzed in the same analytical session. The range in 
Orgueil values obtained at UG is similar (Δ17O = 0.39 – 0.57 ‰), suggesting that the differences 
between the Ryugu samples analyzed in the two laboratories are likely attributable to 
heterogeneity among the Ryugu samples at the mg scale. Nonetheless, the average Δ17O value of 
the three Ryugu samples, 0.61 ±0.08 (2SD), is somewhat higher than the average for the Orgueil 
samples in this study of 0.50 ±0.04 (2SD, n=5), a single measurement of the Ivuna CI chondrite 
samples of 0.41 ±0.05 ‰, and prior measurements of CI chondrites (0.39 – 0.47 ‰, (24)), which 
are all broadly comparable to each other. The difference may reflect either primary heterogeneity 
between mg-sized samples, or is the result of minor contamination of the meteorite samples by 
terrestrial water in the phyllosilicates, sulfates, and iron oxides/hydroxides. We note that the 
discrepancy in the Δ17O values between Ryugu and Orgueil at UCLA (~–0.15 ‰ for Orgueil) 
persists despite heating both groups of samples to ~116 °C for 2–4 hours to remove adsorbed 
water, suggesting that the terrestrial contamination in the Orgueil samples, if present, is part of 
the structure of the minerals and not simply adsorbed to surfaces.  
 Dolomite grains in the studied Ryugu samples are enriched in 18O relative to the whole 
rock values but have the same Δ17O values within measurement uncertainty, indicating that the 
constituent minerals generally lie along a single mass fractionation line within their uncertainties 
(Fig. 4) (12). The oxygen isotopic compositions of dolomite in Ryugu overlap with those of 
dolomite from Ivuna in the three-isotope oxygen diagram. Ryugu magnetite is depleted in 18O 
relative to the whole rock value and also plots on the Ryugu mass fractionation line with the 
exception of one measurement that clearly lies above it. The range of Ryugu magnetite grains in 
the three-isotope oxygen diagram is consistent with that of Ivuna (25, 26). The distributions of 
18O/16O ratios and the relative consistency of Δ17O values are indicative of isotopic equilibrium 
during growth of the secondary minerals produced by aqueous alteration. Nevertheless, oxygen 
isotopic equilibrium between dolomite and magnetite should be strictly evaluated only in 
microscale regions.  
 The dolomite grain #1 and magnetite grains #1, 3, 4, and 8 are located within ~100 µm 
of one another in the A0058-C1001 section (Fig. S1). The dolomite Δ17O value is –0.7 ±0.9 ‰ 
(2SD) (12). The magnetite grains have the same oxygen isotopic compositions within their 
uncertainties with a mean Δ17O value of –0.1 ±0.4 ‰ (2 standard error (SE)). Since the Δ17O 
values of dolomite and magnetite grains overlap within error, they appear to have precipitated 
from the same fluid. Assuming equilibrium, we can use oxygen-isotope thermometry (27-30) to 
estimate the temperature at which the dolomite-magnetite pair precipitated. The δ18O values of 
the dolomite and magnetite are 29.9 ±0.9 (2SD) ‰ and –3.0 ±1.1 (2SD) ‰, respectively. The 
difference in δ18O values between the dolomite and magnetite is 32.9 ±1.4 ‰, corresponding to 
an equilibration temperature of 37 ±10 °C (Fig. S2). The temperature is in the range (10 – 150 
°C) of previous estimates for aqueous alteration of CI chondrites (19, 24, 31-37).  

The oxygen isotopic compositions of the water and serpentine that would have been in 
equilibrium with magnetite and dolomite are calculated to be (δ18O, δ17O) = (1.0 ±1.0 ‰, 0.3 
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±1.0 ‰) and (18.6 ±2.0 ‰, 9.2 ±1.0 ‰), respectively (Fig. S2). The inferred oxygen isotopic 
composition of the serpentine is similar to that of the whole rock value within the uncertainties, 
as expected based on the high abundance of serpentine in the samples. The overall consistency 
between the estimated equilibration temperatures and the previous work that also indicated 
relatively low temperatures during CI alteration suggests that oxygen-isotope equilibrium was 
achieved, or at least nearly so, in the Ryugu samples during aqueous alteration.  
53Mn-53Cr isotope systematics 

The timing of dolomite and magnetite precipitation during aqueous alteration can be 
determined with the 53Mn-53Cr system (12), based on the decay of the short-lived radionuclide 
53Mn to 53Cr (t1/2 =3.7 Myr). Manganese-chromium isochrons for dolomite in the Ryugu and 
Ivuna samples are shown in Figure 5. The initial 53Mn/55Mn ratios obtained from these isochrons 
are (2.55 ±0.35) ×10–6 for Ryugu and (3.14 ±0.28) ×10–6 for Ivuna. These initial values are 
consistent with those of CI dolomites obtained in previous studies (38, 39). If we use the initial 
53Mn/55Mn ratio of the D’Orbigny angrite (40) and U-corrected Pb-Pb ages of D’Orbigny and 
CV CAIs (41-43), the initial 53Mn/55Mn ratio for the Ryugu sample suggests that dolomite 
precipitation occurred at 5.2 (+0.8/-0.7) million years after CAI formation, which is taken to 
represent the birth of the Solar System. However, the dolomite precipitation age includes some 
uncertainty because the initial Solar System ratio of 53Mn/55Mn has not been defined precisely. 
The dolomite precipitation age changes to 4.8 million years and 6.8 million years after the birth 
of the Solar System if we use the Solar System initial 53Mn/55Mn ratios proposed by (44) and 
(45), respectively. We note that there may be a small systematic uncertainty in the 53Mn-53Cr age 
due to the inherent analytical limitations of SIMS (12).  
Speciation of H2O and CO2 sources 
 The mass loss and differential thermogravimetric (DTG) curves (12) of our Ivuna 
sample (Fig. 6) are similar to those reported by (46). On the other hand, the total mass loss 
(15.38 wt.%) of the Ryugu sample is significantly smaller than that of Ivuna (Data S6). The 
species responsible for the mass loss are mainly H2O, CO2 and SO2 for both Ivuna and Ryugu, 
although the SO2 was not quantified for lack of an appropriate standard (Fig. 6).  

The total weights calculated by H2O and CO2 gases released from the Ryugu sample 
measured by mass spectrometry coupled with thermogravimetric analysis (TG-MS) (20.78 wt.%) 
are larger than the real total mass loss (15.38 wt.%) measured by TG (12), indicating that 
carbonates were not the only sources of CO2 during the TG-MS measurement, but organic 
carbon was oxidized to CO2 by residual O2 in the He flow. This oxidation caused the excess CO2 
measured by the mass spectrometry. Because decomposition of carbonates occurs within a small 
temperature range (46), the sharp CO2 peaks at 600–800 °C (Fig. 6) can be confidently attributed 
to carbonates. There were double peaks for Ryugu carbonates. Ryugu samples contain three 
carbonates (dolomite, breunnerite, and calcite). We could not attribute the peak to specific 
carbonates because of the limited Ryugu samples allocated for this work. The double peaks 
might be due to sealed pore space effects because we analyzed intact chips, not powders.  

The remaining broad continuum is probably due to oxidation of organic carbon by the 
indigenous oxygen and by small amounts of residual O2 in the He flow of the instrument. 
Therefore, we can determine CO2 contents from carbonate as shown in Figure 6. The organic 
carbon contents determined from Figure 6 are lower limits on the organic carbon contents 
because the TG-MS analysis cannot detect all organic carbon in the sample. Indeed, organic 
carbon and total carbon concentrations determined by the TG-MS were lower than those 
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determined by the combined analyses of pyrolysis and combustion (EMIA-Step) (12) (Data S6). 
We estimate that 74% of Ryugu organic carbon was released as the broad organic carbon 
continuum, as compared to 93% for Ivuna. Moreover, the release profiles of the broad organic 
carbon continuum are different for both samples. These results suggest that the organic 
components are not exactly the same for both Ryugu and Ivuna.  

Many peaks are apparent in the H2O release curves (Fig. 6). There are several sources of 
H2O, e.g., the minor source is adsorbed H2O from sulfates (at ~250 °C, Fig. 6), whereas the 
major source is H2O from phyllosilicates (at ~600 °C, Fig. 6). The phyllosilicates consist of 
serpentine and saponite. Serpentine contains structural OH sites in the crystal structure, while 
saponite contains interlayer H2O in addition to structural OH sites. The petrologic and 
mineralogic observations suggest that the sulfate contribution is insignificant for Ryugu, but 
significant for Ivuna. Indeed, the SO2 and H2O peak releases coincide in Ivuna (e.g., at 250 °C 
and 450 °C), but not Ryugu. Therefore, phyllosilicates are the dominant source of H2O in the 
Ryugu sample.  

From the results reported by (46) and the H2O release curves displayed in Figure 6, 
dehydration of the interlayer H2O of saponite is complete at 170 °C (the peak is at 90 °C) for 
Ryugu and at 350 °C (the peak is at 100 °C) for Ivuna. Dehydroxylation of structural OH in 
saponite and serpentine occurs at 300 – 800 °C for Ryugu and at 350–800 °C for Ivuna. The 
structural OH is dominant (6.54 H2O wt.%) in the Ryugu sample, whereas the abundance of 
interlayer H2O is small (0.30 H2O wt.%). On the other hand, both types of H2O are present at 
comparable levels in Ivuna (Data S6).  
Inorganic/organic correlations for hydrogen and carbon contents 

By the EMIA-Step analyses (12), the total carbon concentration and the organic carbon to 
total carbon fraction are 3.31 wt.% and 90 %, respectively, for our Ivuna sample (Fig. 7, Data 
S6), which are consistent with the results of (47). The total hydrogen and inorganic hydrogen to 
total hydrogen fraction are 1.59 wt.% and 89 % for Ivuna, respectively, which are also consistent 
with the results of (47). The total H2O for Ivuna is 12.73 wt.%, and is distributed between 
interlayer and structural sites in the phyllosilicates: the interlayer H2O is 6.58 wt.% and the 
structural-OH H2O is 6.15 wt.%.  
 In contrast, Ryugu contains less H2O than Ivuna. The total H2O is 6.84 wt.% including 
0.30 wt.% interlayer H2O and 6.54 wt.% structural-OH H2O (Data S6). Remarkably, the amount 
of structural-OH H2O is similar between Ryugu and Ivuna. The total hydrogen is 0.94 wt.% for 
Ryugu, and the inorganic hydrogen (i.e., H2O) comprises 81 % of the total hydrogen. The 
amount of organic carbon in Ryugu (3.08 wt.%) is essentially the same as in Ivuna (2.97 wt.%) 
(Fig. 7, Data S6), suggesting that inorganic/organic matter ratio is similar in the Ryugu and the 
Ivuna samples studied. This evidence would rule out the suggestion that Ryugu’s low albedo is 
due to exceedingly high organic carbon contents (48). However, the total carbon is higher in 
Ryugu (4.63 wt.%) than in Ivuna due to the higher abundances of carbonates in the Ryugu 
samples.  
Formation history of Ryugu 
 The CI-like elemental abundances of Ryugu suggest that all elements of the Solar 
System with 50 % condensation temperature higher than 500 K accreted into its parent body 
(probably closely related to the parent body(ies) of the CI chondrites) along with ice-forming 
elements (Fig. 2). The accreted material was likely mainly anhydrous dust and ice. The 53Mn-
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53Cr systematics of Ryugu dolomite, physical modeling of the thermal evolution of a water ice-
bearing CI-like planetesimal (14, 38), and oxygen-isotope thermometry suggest that the Ryugu 
material accreted 2–4 million years after the birth of the Solar System. Approximately one to two 
million years later, or roughly 5 million years after the birth of the Solar System (Fig. 5), the 
Ryugu material experienced aqueous alteration resulting in precipitation of dolomite and 
magnetite from an aqueous solution at about 37 °C.  
 The aqueous alteration of the primary accreted Ryugu materials was very extensive. The 
saponite produced by this fluid-assisted alteration in the parent body of Ryugu must have 
contained significant interlayer water (~7 wt.%) in its crystal structure when it formed under 
saturated water activity, as observed in Ivuna (Data S6). The low abundance of interlayer water 
in the Ryugu samples (0.3 wt.%) indicates that it escaped to space, most likely after disruption of 
the parent body and formation of the asteroid Ryugu. The dehydration mechanism has yet to be 
definitively identified, but likely included some combination of impact heating, solar heating, 
space weathering, and long-term exposure of the asteroid surface to the ultra-high vacuum of 
space. A conservative estimate of the dehydration temperature would be 170 °C. However, if the 
dehydration temperature did reach to 170 °C, the interlayer water escaped completely from the 
Ryugu sample (Fig. 6). It is plausible that the Ryugu samples have not been heated above ~90 °C 
since their aqueous alteration because the small emission peak of interlayer water still remains at 
90 °C (Fig. 6). The temperatures are not consistent with the thermal history of Ryugu estimated 
by (6). However, this is not surprising because the temperature estimated by (6) was not directly 
determined from the remote sensing data, but based mainly on laboratory heating experiments of 
carbonaceous chondrites. Therefore, the temperatures estimated in this study do not contradict 
the remote sensing data, and agrees with the surface temperature at the present orbit of Ryugu 
(7).  
 Some asteroids show comet-like activity, the origin of which is uncertain and could 
have involved several mechanisms (49). This activity can be subtle, as documented in the B-type 
asteroid Bennu visited by the OSIRIS-REx spacecraft, where plumes of dust particles and rocks 
were observed (50). These authors concluded that thermal fracturing, phyllosilicate dehydration, 
and meteoroid impact were the most plausible explanations for the ejection of solid particles 
from Bennu’s surface. Our finding that saponite in Ryugu is partially dehydrated supports the 
view that volatile release associated with loss of loosely bound interlayer water in phyllosilicate 
can induce comet-like activity at the surface of low-perihelion carbonaceous asteroids. The 
mechanisms that we envision to lift dust and rocks from asteroidal surfaces may be (i) 
anisotropic release of water molecules from phyllosilicate-rich dust particles, imparting a net 
momentum to those particles, and (ii) buildup of vapor pressure in sealed pore space, leading 
eventually to their bursting and propelling dust particles away from the surface. Phyllosilicate 
dehydration could also play a role in the production of interplanetary dust particles and 
micrometeorites. The thermal release pattern of Ivuna (Fig. 6) shows that interlayer water is lost 
from saponite at a relatively low temperature of ~0 – 200 °C. The maximum surface 
temperatures of ~100 °C for Ryugu (7) and ~170 °C for Bennu (51) would therefore be sufficient 
for such devolatilization to take place. Such devolatilization is largely complete for surface 
particles on Ryugu. Current particle ejections from the asteroid surface were not observed by the 
Hayabusa2 spacecraft.  
Implications for CI chondrites and cosmochemistry 
 The rare CI chondrites play a unique role in our understanding of the formation of the 
Solar System because among all meteorites, they are the ones whose elemental compositions 
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closely matches measurements of the solar photosphere composition (52) for all but the 
atmophile elements and lithium. CI chondrites experienced pervasive aqueous alteration, bearing 
witness to water-rock interactions in the early Solar System. All CI chondrites have been stored 
in meteorite collections for decades to centuries, and it is unknown the extent to which handling 
and exposure to atmospheric moisture modified their mineralogies and elemental compositions. 
Unlike CI chondrites that have fallen to the Earth, the Ryugu samples are nearly free of sulfates, 
ferrihydrite, and interlayer water. This could be due to either CI chondrites having originated on 
parent asteroids with higher water contents than Ryugu, or having been contaminated by 
terrestrial moisture during residence on Earth (53, 54). The lower abundance of anhydrous 
silicates and the small but clear shift in the Δ17O measured in Ryugu relative to the Orgueil CI 
chondrite, and in the Orgueil measurements in this study (Fig. 4) compared to the previous work 
support the terrestrial contamination explanation. The slightly higher Δ17O values of Orgueil in 
this study compared to earlier studies suggest that the O-isotope exchange in structural-OH water 
of CI chondrites could have happened even under room temperature conditions. Furthermore, the 
gas emission patterns of the TG-MS and EMIA-Step for Ryugu are clearly different from those 
measured in the Ivuna CI chondrite (Figs. 6 and 7). This suggests that the structures of the 
organic matter differ between Ryugu samples and the known CI chondrites and have been 
modified in the CI chondrites during residence on Earth. Indeed, some unique characteristics of 
organic matter have been observed in Ryugu samples (55, 56). 

Our characterization of Ryugu samples suggests that they are chemically the most 
pristine Solar System materials analyzed to date in laboratories and that the materials observed in 
CI chondrites may be significantly changed/modified on the Earth from their primary states in 
space. CI chondrites may have been modified from their pre-atmospheric state by phyllosilicate 
hydration, organic matter transformation and contamination, adsorption/reaction of atmospheric 
components, and oxidation. These modifications might have changed the albedo, porosity, and 
density of the CI chondrites leading to the observed differences with the Ryugu samples (5, 7, 
10). Because Ryugu material is the most chemically pristine member of the CI chondrite group 
known, it can provide a more reliable estimate of bulk Solar System elemental abundances.  
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Fig. 1. Petrography of Ryugu sample. (A) Backscattered electron (BSE) image and (B) 
combined characteristic X-ray elemental map in Ca Kα (red), Fe Kα (green), S Kα (blue) of 
A0058-C1001 (12), showing carbonate (dolomite), sulfide (pyrrhotite) and iron-oxide 
(magnetite) minerals precipitated in veinlets. The sulfide texture is similar to that in the C1 
chondrite Flensburg (57). (C) Bulk chemical composition of matrix in A0058-C1001. (D) BSE 
image of C0002-C1001, showing brecciated matrix. Note texture similarities with CI chondrites 
(58).  
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Fig. 2. Elemental abundances of Ryugu relative to CI chondrite (52) as a function of 50 % 
condensation temperature (52) (A) and REE pattern (B). There are no systematic depletions 
of the elemental abundances with elemental volatilities. The high abundances of tantalum 
(upward arrow) reflect contaminants from the Ta projectiles used in the sampling apparatus of 
Hayabusa2 that impacted the Ryugu surfaces (12). A and C are samples from Touchdown sites 
#1 and #2, respectively. Rigaku_C: XRF analysis using laboratory X-rays at Rigaku company, 
Horiba_C: XRF analysis using laboratory X-rays at Horiba company, BL37XU_C and 
BL08W_C: XRF analysis using synchrotron radiation at SPring-8, TG EMIA_C: combination of 
thermogravimetric analysis coupled with mass spectrometry and pyrolysis/combustion analysis 
at Rigaku and Horiba, ICP MS_C and ICP MS_A: ICP-MS at Tokyo Tech., CM: representative 
value of CM chondrites (52). Data are shown in Data S2 (12).  
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Fig. 3. Ti-Cr isotope systematics of Ryugu. The Ryugu values plot near the CB and CI 
chondrite values in the CC meteorites region. CC: Carbonaceous, NC: Non-carbonaceous. CI, 
CM, CO, CV, CK, CR, CB: groups of carbonaceous chondrite class, OC: ordinary chondrite 
class, EC: enstatite chondrite class. The CC achondrites and NC achondrites are differentiated 
stony meteorites that have Ti and Cr isotopic compositions similar to CC and NC meteorites, 
respectively. Data except Ryugu from (22, 59, 60). Data of Ryugu are shown in Data S3 (12). 
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Fig. 4. Oxygen isotopic compositions of Ryugu, Ivuna, and Orgueil. Oxygen isotopic 
compositions of H2O and phyllosilicate of Ryugu are calculated from equilibrium pair between 
dolomite and magnetite (symbols rimmed by read line) shown in Figure S1 (12). The oxygen 
isotopic characteristics of Ryugu resemble those of the CI chondrites. TF: terrestrial mass 
fractionation line, CCAM: carbonaceous chondrite anhydrous mineral line, Ryugu FL: mass 
fractionation line of Ryugu. Data are shown in Data S4 (12).  



21 
 

 

Fig. 5. 53Mn-53Cr systematics for dolomite from Ryugu (A) and Ivuna (B). The same symbol 
corresponds to measurements in the same crystal. The isochron for Ryugu suggests that dolomite 
precipitation occurred at 5.2 (+0.8/-0.7) million years after the birth of the Solar System. Data 
are shown in Data S5 (12). 
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Fig. 6. Thermogravimetric analysis coupled with mass spectrometry (TG-MS) for Ryugu 
and Ivuna. Mass loss (blue) and DTG (red) curves for Ryugu (A) and Ivuna (B). Mass intensity 
curves generated from Ryugu (C) and Ivuna (D). H2O: m/z =18, CO2: m/z =44, SO2: m/z =64. 
Contributions from carbonates and organics for CO2 curve are shown by the different colors. 
Data are shown in Data S7 (12). 
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Fig. 7. CO2 curve generated from Ryugu (A) and Ivuna (B) by combination of pyrolysis 
and combustion analyses with step heating (EMIA-Step). Data are shown in Data S8 (12). 
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