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Abstract—Context: Advances in battery and automation tech-
nology have made routine air taxi and cargo transport in urban
areas a business model that can be attained by emerging aviation
innovators. The community vision and work to enable these novel
operations is discussed using the term ‘Urban Air Mobility’
or UAM. Small, piloted, airspace vehicles that fly with a few
passengers do operate in urban areas today, and these vehicles
can be studied as an early proxy for this future UAM traffic.

Aim: We seek to identify corridors already in daily operation
and their properties.

Method: We applied DBSCAN and HDBSCAN to Dallas
Forth-Worth TRACON flight data to identify corridors in use,
their density, and devised a method to annotate landing sites used
in these corridors with site metadata.

Results: While DBSCAN was unable to group similar trajec-
tories, we we were able to successfully identify corridors using
HDBSCAN, measure their density and annotate them.

Conclusion: The applied method can successfully identify
corridors in daily operation with additional metadata to help
domain expert understand the intent of UAM corridors.

Index Terms—UAM, Trajectory, TRACON, Clustering, DB-
SCAN, HDBSCAN

I. INTRODUCTION

Urban centers have begun encouraging novel aviation mis-
sions to transport goods and people for relatively short dis-
tances and at low altitudes over dense populations. These novel
aviation missions, known collectively as Urban Air Mobility or
UAM, require community consensus and potentially airspace
rules in order to enable the scale of operations that are
envisioned. Industry, academic, and government committees
are currently working through definitions and specifications
for this airspace [1]. A common assumption is that, at least
in the first-approved regular operations, this traffic will be
primarily confined to corridors. Early concepts of operation
imagine these corridors between smaller suburban airports,
larger airports, and downtown centers.

UAM at scale is being driven by innovations in electric
propulsion, battery density, and automation, and there are
very few of these novel, highly-automated, electric vehicles
in operation today, with even fewer being given waivers to fly
over dense populations. However, small piloted air vehicles
that fly with a few passengers do operate in urban areas today,
and these vehicles can be studied as an early proxy for this
future UAM traffic.

In this work, we use recent historical data from the Sherlock
Data Warehouse [2] in the Dallas metropolitan area (within
30 nautical miles of the Dallas-Fort Worth Terminal Radar
Approach Control (DFW-TRACON)) to identify these low-
altitude, primarily rotorcraft flights that can be used as proxies
for the future UAM traffic. We examine this traffic to identify
de facto corridors that already exist in flight operations today.
We created this UAM proxy dataset by identifying and filtering
flights that both originate and terminate within the Dallas-Fort
Worth metropolitan area and never exceed an altitude of 5000
feet. When the trajectories of these flights are visualized, clear
corridors emerge.

Fig. 1. Dallas Forth Worth Terminal Airspace (D10 TRACON) — 2019-06-
22.

To motivate our work, Figure 1 displays trajectories flown
by aircraft whose origin and destination is not specified in
the flight plan for the Dallas Forth Worth Terminal Airspace
(D10 TRACON) on June 22, 2019. The data is augmented with
FAA metadata of vertiports and airports represented as blue
circles, while the flown trajectories are shown in red. When



trajectory points overlap, the overlapping region is darkened.
As can be seen in the figure, common trajectory patterns
emerge, which hereafter we define as corridors. While many
of the corridors suggest landing maneuvers, others such as the
“heart shaped” corridor (-96.8,32.8) suggests the presence of
pre-existing corridors in current use. Our interest in this work
is to automatically identify such corridors, while providing
sufficient information for domain experts for sense making.
While the emergence of corridors may be manually visualized
by the overlay of their track points’ density, the study of the
set of track points as trajectories is required for automating
the identification of the corridors, and is non-trivial.

In this work, we utilize trajectory clustering to identify
UAM corridors, and subsequently study their properties given
these trajectories within the Dallas-Forth Worth metropolitan
area. We have prototyped an automated way to identify these
corridors, and have begun using statistical and automated
means for their analysis and specifications. This automated
toolchain allows us to replicate our analysis more quickly for
other metropolitan areas and enables rapid historical and future
change analysis.

The novelty of our work, we argue, lies in a method
to study the emerging properties of these corridors, such
as the flights’ degree of separation, their likely locations,
and the current-day capacity. We also augment the identified
corridors with landing sites of each corridor, which facilitates
understanding the corridor’s purpose. The impact of the work
lies in understanding and specifying this traffic in the airspace
today, prior to operations at the scale envisioned by UAM.
This will allow us to compare today’s operations against the
concepts of operation of future air traffic, as it is proposed.
Additionally, it will give us a baseline of current operations to
use as we evolve traffic towards these novel large-scale UAM
operations.

Towards this vision, we ask the following research ques-
tions:

RQ1: Can we automatically identify existing corridors
using trajectory clustering?

While we may visually observe corridors in Figure 1 by
overlaying track points, it is not possible to immediately
identify which flights participated in different corridors as they
are represented mathematically as individual overlaid track
points. By identifying corridors, which cluster track points as
overlapping trajectories, we can leverage additional metadata
pertaining to each individual flight.

RQ2: Can corridors be automatically annotated for
domain expert sense making?

In Figure 1 we display FAA sites annotated in blue. If the
mapping of flights to corridors is possible, it would be useful
to know what landing sites are also part of the corridors, as the

purpose of the sites can provide further insight on the corridor
purpose. For instance, if a corridor uses landing sites such as
airports and heliports near tourist centers, its usage may be
associated to tourism. Other information such as time and day
of the week, combined with traffic, may also further enable
analysts to label the primary purpose of the corridor.

RQ3: Can the density of traffic within the corridors be
measured?

The density of airspace is inversely proportional to safety,
with increased density directly adding complexity to the
airspace. We derive a simple measure of corridor density, by
counting the number of flights in a corridor normalized by the
number of flights in a given a day.

RQ4: Do flights that participate in the same corridor
share the full trajectory, or only parts of it?

While visually adjacent track points of multiple flights may
suggest all start and end at the same airports or vertiports, it
may be possible smaller corridors may be used independently
by the flights. It would be therefore useful to dynamically
observe the formation of corridors from the individual flights
to assess their trajectory overlap.

II. RELATED WORK

The rising interest in Urban Air Mobility (UAM) has led
to a variety of studies concerning the airspace architecture.
Broadly, we consider studies whose primarily purpose is
concept proposals [1], simulations (e.g. NASA’s Terminal
AutoResolver [3], [4], MATSim [5]), and pattern finding
(e.g. identifying unused spaces [6], [7]). Our work fits under
pattern finding, and more specifically trajectory clustering.
When comparing trajectories for grouping based on similarity,
each combination of airspace and flight phase presents its
own challenges in choice of pre-processing techniques [8].
For example, airport surfaces require the handling of stop
points which can lead to an over-estimate of taxi distance
[9]. The types of airspace trajectory clustering that have been
applied can be broadly divided by terminal airspace [10]–
[12], transition en-route airspace [13], and airport surfaces
[8]. In this work, we are interested in Urban Air Mobility
in the terminal airspace using trajectory clustering. Related
work also reflects variability in how data is pre-processed
before trajectory clustering is performed. As such, we dedicate
the remainder of our related work discussion to enumerate
the pre-processing steps that have been applied for trajectory
clustering in terminal airspace (irrespective of being related
to urban air mobility) to contextualize our work contributions
and the possibilities for future work.

Dataset sub-setting. At its most basic form, the data
available at a TRACON provides us with a set of flights
in which the trajectories can be grouped. Different data



sources and areas have been used in related work such as the
Chicago Terminal Radar Control Airspace (C90 TRACON)
using FlightAware [10], [11]. Furthermore, trajectories have
been partitioned in different ways before clustering, such as
their arrival and departure, weather conditions [10] and visual
flight rules (VFR) [11]. In comparison to related work, we did
not perform any differentiation between arrival and departure
trajectories, as one of the criterion for filtering UAM flights
in our dataset was that, for the low-altitude small flights of
interest we are using as proxies, arrival and departure points
are often not specified in the given flight plan dataset. We also
have not performed any further subsetting of trajectories, as
we wish to assess what minimal set of data transformations
would suffice to identify UAM corridors.

Feature Engineering. When grouping trajectories, we must
decide what information of the trajectories should be used
for similarity. Minimally, latitude and longitude is used. Both
Li and Ryerson [10] and Gariel et al. [11] used the planar
coordinates (x,y) for trajectory clustering. Gariel et al. [11]
justifies not using altitude due to their definition of “at or above
ft”, being less accurate in contrast to the planar localization for
one of the two provided algorithms. For the second algorithm,
a combination of planar position, distance from center of
the TRACON, distance from “the top left corner” of the
bounding box containing the TRACON, the angular position
in cylindrical coordinates and heading of the aircraft are used.
In Li and Ryerson the planar coordinates are used “as-is”
for trajectory clustering, while in Gariel et al. the planar
coordinates (x,y) are used to derive the turning points of each
trajectory as features for clustering. The original trajectories
are then expressed as a sequence of clusters for longest
common sequence comparisons. In our work, we preferred
to only use planar coordinates, as the information is expected
to be available in other datasets, and thus allow for easier
replication.

Data Collection Irregularities. Beyond the choice of
dataset and partitions, the process of data collection itself
may require different pre-processing methods. For instance,
if collected data is not accurate, the use of a low-pass filter
may be desirable [11]. Another issue in the data collection
process is the irregularity of sampling interval. For example, if
one aircraft has a 30 second interval between two consecutive
observations, whereas another aircraft has a 1 minute interval
[10]. Such irregularities may result from the rotational speed
of the radar [11]; and when extreme, deriving a common
time index may be necessary. Li and Ryerson address the
irregularity by interpolation, whereas Gariel et al. use re-
sampling to reduce each feature vector to a size n=50 (smaller
vectors were discarded). The choice of size is stated to provide
the best accuracy for the model.

Trajectories of varying length. Another issue reported in
the literature is the variation of data points between trajecto-
ries, since it is not guaranteed that each aircraft will have the
same number of observations [6, p. 60], even if the sampling
interval was invariant [10]. While trajectories may vary in size,
a number of clustering methods, including those used in this

work, may require trajectories to be of the same observation
length. Trajectories can vary wildly in size (e.g. 10 to 550
points [11]) due to shorter flight duration. Re-sampling vectors
to constrain their length is a popular approach; however,
loss of the original trajectory’s smoothness to high length
variation may occur [6, p. 60]. This re-sampling can be
done by randomly choosing any trajectory’s track points,
or by choosing trajectory points indexed by time (temporal
normalization). For temporal normalization, the re-sampling
normalizes the time stamps for each trajectory in the interval
ρ = [0, 1], divides ρ into a fixed number of equally sized time
intervals, and linearly interpolates the spatial position for the
fixed number of normalized time stamps in ρ. The result is
a feature vector Fi = (xi1, yi1, xi2, yi2, ..., xin, yin) [6][p.62].
In our dataset, we addressed the trajectories’ varying length by
re-sampling larger trajectories, and discarding smaller trajec-
tories. We chose this approach over temporal normalization to
be conservative, and avoid introducing artificial track points.

Clustering Pre-processing. Clustering algorithms may re-
quire the use of normalization. To guarantee that features used
in trajectory clustering are considered with the same impor-
tance, their values are commonly normalized between 0 and
1 [11], [6, p. 63]. An additional reported pre-processing step
is the use of dimensionality reduction, specifically principal
component analysis [11], to reduce the number of features. For
instance, [11] reported using p=5 components provided best
accuracy results. In our work, we opted to evaluate if a simpler
pipeline could provide useful results for domain experts,
and decided to not perform normalization or dimensionality
reduction.

Model and Evaluation. Both the use of K-Means and
DBSCAN [14] have been reported in the literature for clus-
tering trajectories. Li and Ryerson [10] used DBSCAN for
each combination of STAR procedure and weather condition.
The authors assessed the quality of the obtained trajectory
clusters and choice of hyperparameters using the Davies-
Bouldin index, the percentage of trajectories classified as
outliers [13], and comparisons of the resultant clusters against
common runaway configurations in the chosen airport. In
Gariel et al. [11], the authors use K-Means or DBSCAN
depending on the density of points in subsets of the data. While
we have tested K-Means, DBSCAN and HDBSCAN [15], we
were only able to obtain meaningful results using HDBSCAN,
and therefore focus the presentation of the results on the latter.

III. METHOD

Trajectory clustering pipeline steps varied in related litera-
ture; we decided to build our model with the smallest number
of steps that would provide meaningful results. We elaborate
the steps in our pipeline in this section.

A. Dataset and Sub-setting.

To ensure replication and clarity of the dataset, we detail
in this section how the data can be obtained and what
transformations were performed.



Sherlock Data Warehousing. We obtained our flight
dataset from the Sherlock Data Warehouse [2]. Sherlock’s
raw data include a variety of flight information from live
streams of FAA operational systems, weather observations and
forecasts, and NAS advisories and statistics. Sherlock also
provides modified data, which comprise parsed and merged
data sources and metadata [2]. In the scope of this work, data
files are provided in the Integrated Flight Format (IFF) version
of November 25, 2020. Each IFF file can be parsed into three
tables containing header records, flight plan records, and track
point records. Moreover, the three tables can be combined via
a flight id (‘ftKey’) common to them.

We obtained 24 hours of flight data records from June 22,
2019 within 30 nautical miles of the DFW-TRACON and
an altitude of 5000 feet or below. Furthermore, to identify
candidate UAM flights, we preserved in the final dataset only
flights (‘ftKey’) which do not specify an origin or destination
(i.e. the header record table orig and dest fields are specified
as ‘?’). Of the remaining flight dataset we used their latitude
(‘coord1’), longitude (‘coord2’), altitude (‘alt’), and ground
speed (‘groundSpeed’) data obtained from the track point
records table. The plot in figure Figure 1, for example,
showcases the latitude and longitude information in red.

Sites Dataset. The sites dataset, displayed as blue circles
in Figure 1, was originally obtained from an FAA public
website 1; however, we noticed post-analysis the interface
has since changed. To obtain the current site dataset, the
ADIP interface can be used2. Specifically, a .csv table can be
obtained by clicking the ‘Go To Advanced Facility Research’,
choosing the State field as ‘Texas’, clicking ‘Execute Search’,
‘Download Results’ and ‘Facility Data’. From this table, we
utilized the ‘Loc ID’, ‘ARP Latitude’ and ‘ARP Longitude’
data for visualization. In addition, we converted the sites’
latitude and longitude from Degrees Minutes Second (DMS)
format to Decimal Degrees (DD), which is the format adopted
by the IFF dataset.

B. Trajectory Representation

In order to identify overlapping flight trajectories from
the IFF dataset flight track points, we must first define a
representation for the trajectories suitable for using in clus-
tering algorithms. This definition, in turn, directly impacts the
choice of distance function used to compare how similar two
trajectories are. Because we expect our dataset trajectories
to be of different sizes, that is, the number of track points
per flight to vary, we chose a fixed-size vector to represent
each trajectory [6, p. 60]. Specifically, we took the median
size of all flight trajectories in our dataset as our fixed-
size vector. Trajectories which contained more track points
than the specified threshold (which is discussed in the results
section) were reduced by track point re-sampling. Trajectories
which contained fewer track points than the median were
removed from the dataset. We believe the choice of removing

1https://web.archive.org/web/20200303055712/http://www.faa.gov/airports/
airport safety/airportdata 5010/

2https://adip.faa.gov/agis/public/

smaller trajectories is a more conservative approach than
generating artificial track points, as an incorrect track point
may potentially bias the properties of the identified corridors.
The impact of this decision on the number of flights is further
discussed in the results.

C. Feature Engineering

By defining a fixed n-sized vector of track points, we define
a table of size 2 ∗ n, containing per flight n-longitude and
n-latitude values. We defer to future work to examine how
other information (e.g. altitude) impacts the identification of
corridors.

D. Clustering Algorithm

As noted in the related literature section, several types
of clustering algorithms have been proposed for trajectory
clustering, including hierarchical, partitioning (e.g. k-means),
density-based (e.g. DBSCAN) and grid-based [6, p. 61]. We
decided to evaluate both DBSCAN [14] and HDBSCAN [15]
which have observed successful results in related literature,
and defer to future work more sophisticated methods such as
Dynamic Time Warping [16] which can account for varying
length trajectories. Both DBSCAN and HDBSCAN implemen-
tations are available in R3 [17].

E. Model Tuning

The DBSCAN model introduces two thresholds that must
be specified a priori, the number of neighbors MinPts and
the radius Eps [14]. A intuitive idea of the two parameters is
to consider that for a trajectory to be considered a corridor
(cluster), it is required to have at least a minimum number
of neighbor trajectories MinPts in an Eps-neighborhood of
that trajectory (point) [18]. For HDBSCAN [15], only MinPts
is required to be specified a priori. The full details of the
algorithm can be found in its seminal work [18] and revisions
[14].

F. Site to Trajectory Mapping

To facilitate the exploration of corridors and answer RQ2,
it would be helpful for experts to know which sites are used
for landing in the identified corridors. We hypothesize and
subsequently evaluate if a flight landing at a given site can
be inferred from the chosen dataset if the altitude or ground
speed of the aircraft falls below a threshold. Specifically, for
each track point of a given flight, we evaluate if the track
point can be considered as an intent to land. For each of
these track points, the closest site location is then verified
using the Vincenty inverse formula for ellipsoids [19]. Note
that because multiple track points of the same flight may be in
close proximity, they may collectively map to the same closest
site. To the unique set of sites obtained in this manner, we
consider them the landing sites of the corridor. In the Results
section, we assess the altitude and ground speed separately
and combined.

3https://cran.r-project.org/web/packages/dbscan/index.html



G. Dynamic Reconstruction of Trajectories

To evaluate if identified corridors’ trajectories overlap over
the full length of the corridor in order to answer RQ4, we
used moveVis [20]. The R library moveVis provides tools
to visualize movement data (e.g. from GPS tracking) and
temporal changes of environmental data (e.g. from remote
sensing) by creating video animations4. By first identifying
the corridors, and their associated trajectories, we can recreate
the corridors separately to inspect their formation.

IV. RESULTS

We begin the results discussion by motivating our choice of
pre-processing and model parameters in Figure 2 and Figure 3.
As we would expect and as shown in Figure 1, trajectories
come in different sizes (i.e. number of track points), due to
different flight duration. From figure Figure 2, we can see
that in our single day dataset (n. trajectories = 593), the
vast majority of flights contained 250 track points or less. To
construct our feature vector in order to group the trajectories,
we chose to use trajectories with at least 50 or more track
points. The intent is that we preserve as many flights as
possible, while still providing a sufficient number of features
(track points) to be grouped for similarity. This choice of
vector size is also consistent with [11], and resulted in a final
dataset of 414 trajectories. As noted in our method section, and
similar to related work, larger trajectories are downsampled
to match a size of 50 track points (and hence 50 longitude
features and 50 latitude features).

Fig. 2. Number of track points per trajectory.

While trajectories may be of similar sizes, their sampling
rate may vary. The average and standard deviation cumulative
distribution of the trajectories’ sampling rate is shown in
Figure 3. We can see nearly 100% of the trajectories in our
one day dataset have an average sampling rate of 25 seconds
or less; however, 25 seconds only accounts for nearly 75%
or the trajectories standard deviation, with an upper bound
of 200 seconds. Based on these statistics, we can conclude
our dataset suffers from irregularity of sampling interval. As
we noted in the related work section, a common approach to
address this issue is the use of interpolation; however, this is
not without its shortcomings due to generating artificial track
points. Therefore, we decided to keep the data “as-is” to assess

4http://movevis.org/

if both DBSCAN and HDBSCAN could still identify corridors
with minimal pre-processing.

Fig. 3. Sampling Rate Statistics.

RQ1: Can we automatically identify existing corridors
using trajectory clustering?

When testing DBSCAN over varying parameters of MinPts
and Eps, we observed all trajectories were consistently mapped
to a single cluster. We therefore dedicate the remainder of the
discussion to HDBSCAN.

When using HDBSCAN, we must decide on the choice
of the MinPts hyperparameter. Intuitively, we are modify-
ing the minimum number of trajectories within close planar
proximity which we wish to consider a cluster (and thus
a candidate corridor). Figure 4 shows how the number of
identified trajectory clusters varies as we increase MinPts. In
the interest of space, we selected three representative values
of the MinPts hyperparameter to explore our first research
question. Figure 5, Figure 6, and Figure 7 display the results
for 2, 5, and 10 clusters respectively. As the minimum number
of trajectories requirement increases, the number of clusters
declines. Moreover, from the figures, we can see the identified
clusters are consistent. Therefore, we chose to examine for
the remainder of this work MinPts = 5, N. clusters = 10.
Regardless, the answer to our first research question is yes,
we can identify potential corridors already in daily operation,
using HDBSCAN on a single day’s worth of trajectories.

Fig. 4. HDBSCAN Number of clusters vs MinPts.



Fig. 5. HDBSCAN - MinPts = 5, N. clusters = 10.

Fig. 6. HDBSCAN - MinPts = 10, N. clusters = 5.

RQ2: Can corridors be automatically annotated for
domain expert sense making?

We experimented separately with different thresholds of
altitude and with ground speed to determine which track points
to classify as intention to land. These track points were used
in order to map the ‘landing’ track points to the nearest
FAA landing site. The full set of track points available can
be seen in Figure 1. Figure 8 shows our choice for ground
speed threshold and Figure 9 for altitude threshold, which
provide two different subsets of the track points of Figure 1.
We can see both thresholds filter out some of the sites in

Fig. 7. HDBSCAN - MinPts = 35, N. clusters = 2.

Figure 1. Moreover, a small amount of sites do not overlap
when we consider low altitude or ground speed track points
as landing intent. We speculate this difference may be due
to sites in which sightseeing may happen in the air over
the landing site, or simply the threshold choice leading to
false positives. Regardless, both variables, separately and or
in combination to others can be adjusted in this manner for
corridor interpretation.

Fig. 8. Automatically annotated sites based on planar proximity. Blue dots
represent FAA landing sites and green track points had a speed threshold of
lower than 30 knots.

With the identified sites, we can further look into their
metadata for corridor sense-making. Table I displays the sites
identified in Figure 8. As shown, the corridor display con-



TABLE I
CLOSEST SITES USING GROUND SPEED THRESHOLD

Location ID Facility Name Owner
1 ’66R ROBERT R WELLS JR COLORADO COUNTY
2 ’XA61 BAYLOR UNIVERSITY MEDICAL CENTER DALLAS BAYLOR HEALTH CARE SYSTEM
3 ’TX98 CRESPI HELISTOP BRAD OELLETMAN
4 ’49T DALLAS CBD VERTIPORT CITY OF DALLAS
5 ’TA40 DALLAS CITY HALL CITY OF DALLAS
6 ’RBD DALLAS EXEC CITY OF DALLAS
7 ’73TS FIRE DEPARTMENT TRAINING CENTER CITY OF DALLAS
8 ’XA62 METHODIST DALLAS MEDICAL CENTER METHODIST DALLAS MEDICAL CENTER
9 ’TX53 POLICE H PORT-REDBIRD CITY OF DALLAS

10 ’TX18 REDMOND TAYLOR AHP TEXAS ARMY NATIONAL GUARD
11 ’9TS9 TOYOTA OF DALLAS INC WAYNE STEPHENS
12 ’38TX UT SOUTHWESTERN MEDICAL CENTER UNIV OF TEXAS SW MEDICAL CENTER
13 ’T57 GARLAND/DFW HELOPLEX CITY OF GARLAND
14 ’TA88 PREMIER AVIATION INC PREMIER AVIATION, INC.
15 ’LNC LANCASTER RGNL CITY OF LANCASTER
16 ’2TA2 THE MEDICAL CENTER OF MESQUITE PRIME HEALTH CARE SERVICES-MESQUITE
17 ’5TA0 HAMILTON AIRCRAFT, INC DONALD P. KUBECKA
18 ’TA69 LUPTON FARMS LUPTON FAMILY CAPITAL CORP
19 ’23TE TEXAS RGNL MEDICAL CENTER ROCKWALL HOSPITAL CORP
20 ’TT00 TREE TOP AIR WAYNE THURMAN

Fig. 9. Automatically annotated sites based on planar proximity. Blue dots
represent FAA landing sites and green track points had an a altitude threshold
of lower than 1000 feet.

tains corriders that are used for both tourism and emergency
services.

For completeness, we also present the set of outliers with
annotated landing sites in Figure 10. We observed that the
general pattern of outliers is similar to Gariel et al. [11, i.e.
Fig 14], in the sense that they cover track points across all
identified clusters. More generally, the outlier clusters appear
to capture trajectories that bridge two or more clusters in DFW.

Fig. 10. Annotated Outliers.

RQ3: Can the density of corridors be measured?

When comparing the identified clusters by HDBSCAN in
Figure 7 to the motivating example in Figure 1 in our introduc-
tion, we can see we are now able to mathematically distinguish
close and distant trajectories in an automated manner. Because
each trajectory is assigned a cluster identifier, we can define
a candidate corridor density simply as the cluster size, i.e. the
number of trajectories assigned to each cluster.

Table II shows the relative assignment numbers of the



TABLE II
CLUSTER ID TRAJECTORIES

Cluster ID N. Trajectories Proportion
0 217 52.4%
1 34 8.2%
2 7 1.6%
3 10 2.4%
4 15 3.6%
5 15 3.6%
6 25 6 %
7 5 1.2 %
8 20 4.8 %
9 60 14.4 %

10 6 1.4 %

trajectories to each of the 10 clusters. Cluster 0, which is
not shown in the prior figures, aggregates outlier trajectories.
In Figure 7, for example, 60 flights create the heart-shaped
trajectory displayed on the bottom right of the figure out of
the 404 analyzed flights in that day. Therefore, the answer to
our research question 3 is yes, we can measure the density
of corridors over a day. Further research is needed to refine
these density metrics so that they are of value for evaluating
efficiency and safety.

RQ4: Do flights that participate in the same corridor
share the full trajectory, or only parts of it?

To answer RQ4, we created a visualization that dynamically
reconstructs a given cluster output by HDBSCAN. The recon-
struction draws one trajectory assigned to the cluster at a time
in a different color, with a thicker line indicating the direction
of the flight. A white trace is left behind by each colored
trajectory, which over time reconstructs a given cluster iden-
tified in Figure 7. Due to medium limitations and space, we
present here three frames of this visualization for cluster 9 (the
cluster with the distinctive heart shape): The first (Figure 11),
second (Figure 12) and final two trajectory frames ( Figure 13)
are displayed. We see clearly that the automatically-identified
corridors consist of both a.) flights that participate in only part
of the corridor (Figure 11 and Figure 12), and b.) flights that
trace the corridor from beginning to end (Figure 13).

V. CONCLUSION AND FUTURE WORK

In this work, we demonstrated a method to identify corridors
already in use, and augmented the data with visualization for
sense making. Identifying the corridors allows for the study of
their properties, such as quantifying their density on a given
day, and also allows an analyst to reconstruct each trajectory
dynamically to verify if the corridor is being used differently
by different aircraft.

One limitation of this work is the use of only a single
day’s worth of data. In future work, we intend to extend
the framework to perform a more comprehensive analysis of
UAM corridors over time and cross-site. We also intend to
assess the use of other metadata, such as weather and traffic

congestion, to better understand the motivation behind the
existing corridors.

As acknowledged in our related work section, different
pre-processing, feature engineering, and clustering algorithm
schemes (such as dynamic time warping, and utilizing the
hierarchical relationship of the identified clusters) may provide
further insight, and are will be explored in future work. Finally,
extending the 2D visualizations of corridors into 3D and the
study of their properties and overlap may lead to further
insight.
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