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Ordinary Differential Equations (ODE)

• Mathematical modeling of physical phenomenon (e.g., for 

fluid flows, Navier-Stokes equations):

• Simplified to a time stepping problem or ODE

• NASA CFD Vision 2030 Report (2014): Time-stepping  

remains to be a bottleneck for turbulent flow simulations. 
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𝑢𝑡 + 𝑓𝑥 + 𝑔𝑦 + ℎ𝑧 = 0

𝑢 0 = 𝑢0

𝑢𝑡 = 𝐹(𝑡, 𝑢)

𝑢 0 = 𝑢0



ODE (𝑡 replaced by 𝑥)

• Find 𝑢(𝑥)

• Example 1: quadrature

• Example 2: stability and accuracy (imaginary 𝜆 for 

advection, real and negative 𝜆 for diffusion)
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ቊ
𝑢′ 𝑥 = 𝑓(𝑥, 𝑢(𝑥))

𝑢 0 = 𝑢0

ቊ
𝑢′ 𝑥 = 𝑓(𝑥)

𝑢 0 = 𝑢0
Solution 𝑢 𝑥 = 𝑢0 +න

0

𝑥

𝑓 𝜉 𝑑𝜉

ቊ
𝑢′(𝑥) = 𝜆𝑢(𝑥)

𝑢 0 = 1
Solution 𝑢 𝑥 = 𝑒𝜆𝑥
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Outline

o Formulation of discontinuous Galerkin 

method for ODE (geometric and constructive 

point of view, different from standard 

algebraic and analytic view) 

o Resulting implicit Runge-Kutta scheme

o Stability and Accuracy

o Conclusions and discussion
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Local Frame (Coordinate)

• ODE:

• Suppose data 𝑢𝑛 at 𝑥𝑛 is known; with step size ℎ, wish to obtain solution 

𝑢𝑛+1 at 𝑥𝑛+1 = 𝑥𝑛 + ℎ.

• Rescale so step size equals 1: with 𝜉 on 0, 1 ,  set 𝑥 = 𝑥𝑛 + 𝜉ℎ.  Then

𝑑𝑥

𝑑𝜉
= ℎ and    

𝑑𝑢

𝑑𝜉
=

𝑑𝑢

𝑑𝑥

𝑑𝑥

𝑑𝜉
= ℎ

𝑑𝑢

𝑑𝑥
.

• On 0, 1 , solve

• Absorb ℎ into 𝑓.  On 0, 1 , solve

𝑑𝑢

𝑑𝑥
= 𝑓 𝑥, 𝑢(𝑥) , 𝑢(0) = 𝑢0

𝑑𝑢

𝑑𝜉
= ℎ𝑓 𝜉, 𝑢(𝜉) , 𝑢(0) = 𝑢𝑛

𝑑𝑢

𝑑𝜉
= 𝑓 𝜉, 𝑢(𝜉) , 𝑢(0) = 𝑢𝑛
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Discontinuous Galerkin Formulation for ODE

• On 0, 1 , solve  𝑢′ 𝜉 = 𝑓 𝜉, 𝑢 𝜉 , 𝑢 0 = 𝑢𝑛.

The DG method seeks a polynomial 𝑢ℎ of degree 𝑘 on (0, 1] such that                 

𝑢ℎ
′ ≈ 𝑓 in an average sense, i.e., for 𝑣 = 1, 𝜉, 𝜉2, … , 𝜉𝑘,

and 𝑢ℎ can be discontinuous at 𝑥𝑛. To involve 𝑢𝑛, use integration by parts

• Replace 𝑢ℎ 0 above with 𝑢𝑛 to involve the starting data.         

The DG method seeks 𝑢ℎ of degree 𝑘 such that for 𝑣 = 1, 𝜉, 𝜉2, … , 𝜉𝑘,

න
0

1

𝑢ℎ
′ 𝜉 𝑣 𝜉 𝑑𝜉 ≈ න

0

1

𝑓 𝜉, 𝑢ℎ 𝜉 𝑣 𝜉 𝑑𝜉

න
0

1

𝑢ℎ
′ 𝜉 𝑣 𝜉 𝑑𝜉 ≈ 𝑢ℎ 1 𝑣 1 − 𝑢ℎ 0 𝑣 0 − න

0

1

𝑢ℎ 𝜉 𝑣′ 𝜉 𝑑𝜉.

𝑢ℎ 1 𝑣 1 − 𝑢𝑛𝑣 0 − න
0

1

𝑢 𝜉 𝑣′ 𝜉 𝑑𝜉 = න
0

1

𝑓 𝜉, 𝑢 𝜉 𝑣 𝜉 𝑑𝜉.
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Example

• On 0, 1 , find the linear DG solution for  

𝑢′ 𝜉 = 6𝜉 − 5, 𝑢 0 = 𝑢𝑛 = 3.

• The exact solution

𝑈 𝜉 = 3𝜉2 − 5𝜉 + 3.

• The linear DG solution 𝑢ℎ = 𝑎𝜉 + 𝑏 satisfies, with 𝑣 = 1 and 𝑣 = 𝜉,

𝑣 = 1,    𝑎 + 𝑏 − 3 = 3 − 5 or       𝑎 + 𝑏 = 1

𝑣 = 𝜉,   𝑎 + 𝑏 −
𝑎

2
+ 𝑏 = 2 −

5

2
or     𝑎 = −1

Thus,

𝑎 = −1 and  𝑏 = 2

𝑢ℎ 1 𝑣 1 − 𝑢𝑛𝑣 0 − න
0

1

𝑢ℎ 𝜉 𝑣′ 𝜉 𝑑𝜉 = න
0

1

𝑓 𝜉 𝑣 𝜉 𝑑𝜉
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Example
• On 0, 1 , find the linear DG solution for  

𝑢′ 𝜉 = 6𝜉 − 5, 𝑢 0 = 𝑢𝑛 = 3.

• The exact solution         𝑈 𝜉 = 3𝜉2 − 5𝜉 + 3.

• The linear DG solution      𝑢ℎ 𝜉 = −𝜉 + 2.

𝑈

𝑢ℎ

𝑓 = 6𝜉 − 51/3

2 right Radau points

2 left Radau points

𝑢𝑛 = 3

𝑢ℎ
′ = −1

2/3
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Derivative of a Function with a Jump

• How to calculate the derivative of a function with a jump: 

At   𝜉 = 0, 𝑤 0 = 3 ;  for 0 < 𝜉 ≤ 1, 𝑤 𝜉 = −𝜉 + 2

• Obtain quadratic 𝑈 that satisfies 𝑈 0 = 𝑢𝑛 = 3 and 𝑈 matches 𝑢ℎ at     

the 2 right Radau points. 

• 𝑤′ by the DG method is given by 𝑈′.

𝑈

𝑢ℎ

1/3
2 right Radau points

𝑢𝑛 = 3
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Approximating a Jump by a Polynomial

Approximating the jump from 1 at 𝜉 = 0 to 0 for 0 < 𝜉 ≤ 1 by a 

polynomial of degree 𝑘 + 1 defined by 𝑘 + 2 conditions:

𝑔 0 = 1 and 𝑔 vanishes at the 𝑘 + 1 right Radau points

Then 𝑔 is the right Radau polynomial 𝑅𝑅,𝑘+1, and

𝑈 = 𝑢ℎ + 𝑢𝑛 − 𝑢ℎ(0) 𝑔

𝑔

1/3

Right Radau points

2/3
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2-Point Quadratures

න
0

1

𝑓 𝜉 𝑑𝜉 ≈ 𝑏1𝑓 𝜉1 + 𝑏2𝑓 𝜉2

0 1

Gauss

1

2
𝑓 .21 +

1

2
𝑓 .79

Exact for a cubic 𝑓

1/3 1

Right Radau

3

4
𝑓

1

3
+
1

4
𝑓 1

Exact for a parabolla 𝑓

0

𝜉

𝑢 𝑢

𝜉

1

Equidistance

1

2
𝑓 0 +

1

2
𝑓 1

Exact for a linear 𝑓

0

𝑢

𝜉.21 .79
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(𝑘 + 1)-Point Quadratures

න
0

1

𝑓 𝜉 𝑑𝜉 ≈ ෍

𝑖=1

𝑘+1

𝑏𝑖𝑓 𝜉𝑖

Gauss

Exact for 

polynomials of 

degree 2𝑘 + 1

Right Radau

Exact for 

polynomials of 

degree 2𝑘

Equidistance

Exact for 

polynomials of 

degree 𝑘 + 1

0 1

𝜉

0 1

𝜉.16 .64.11 .5 .89

0 1

𝜉1/2
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Correction Function 𝑔 for 𝑘 = 1

𝑈 = 𝑢ℎ + 𝑢𝑛 − 𝑢ℎ(0) 𝑔

𝑔

1/3

Right Radau points

2/3
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Correction Function 𝑔 for 𝑘 = 2

𝑔 is the right Radau polynomial of degree 𝑘 + 1 defined by

𝑔 0 = 1, and 𝑔 vanishes at the 𝑘 + 1 right Radau points 𝜉𝑅,𝑖.

Right Radau points

𝑔′

𝑔

0.16 0.64

0.840.36
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Correction Functions (Radau Polynomial)

of degree 𝑘 for 𝑘 = 8 and 𝑘 = 9

𝑘 = 8 𝑘 = 9
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DG Solutions 𝑢ℎ and 𝑈

𝑢ℎ is of degree 𝑘;  𝑈 and 𝑔 are of degree 𝑘 + 1,

𝑈 𝜉 = 𝑢ℎ + 𝑢𝑛 − 𝑢ℎ 0 𝑔

𝑈 satisfies 𝑈 0 = 𝑢𝑛 and, for 𝑣 = 1, 𝜉, 𝜉2, … , 𝜉𝑘,

න
0

1

𝑈′ 𝜉 𝑣 𝜉 𝑑𝜉 = න
0

1

𝑓 𝜉, 𝑢ℎ(𝜉) 𝑣(𝜉) 𝑑𝜉

𝑈

𝑢ℎ

1/3

𝑢𝑛
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DG, CG, and Collocation Methods

under Right Radau quadrature

𝑈 = 𝑢ℎ + 𝑢𝑛 − 𝑢ℎ(0) 𝑔

• 𝑢ℎ and 𝑈 take on the same values at the 𝑘 + 1
right Radau points.

• 𝑢ℎ is discontinuous, but 𝑈 is continuous.

• Under the 𝑘 + 1 point right Radau quadrature, the 

DG, CG, and collocation methods yield the same 

solution 𝑈.



𝑈′ = 𝑓ℎ,    𝑈 0 = 𝑢𝑛;             

𝑈 𝜉 = 𝑢𝑛 + 0׬
𝜉
𝑓ℎ𝑑𝜂;    𝑈 = 𝑢ℎ + 𝑢𝑛 − 𝑢ℎ(0) 𝑔

2 Gauss points;  linear  𝑓ℎ = 𝑓1𝑙1 + 𝑓2𝑙2
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DG under Gauss Quadrature

𝑙1 𝑙2 න
0

𝜉

𝑓ℎ𝑑𝜂 =

𝑓1න
0

𝜉

𝑙1(𝜂)𝑑𝜂 +

𝑓2න
0

𝜉

𝑙2(𝜂)𝑑𝜂
𝜉1 = 0.21 𝜉2 = 0.79
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DG with Gauss Quadrature

𝑙1 𝑙2

෩𝑙1(𝜉) = න
0

𝜉

𝑙1(𝜂)𝑑𝜂

෩𝑙2 𝜉 = න
0

𝜉

𝑙2(𝜂)𝑑𝜂

෩𝑙1

෩𝑙2
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DG with Gauss Quadrature

෩𝑙1

෩𝑙2

𝑈 𝜉 = 𝑢𝑛 + 𝑓1෩𝑙1 𝜉 + 𝑓2෩𝑙2(𝜉);      𝑈 = 𝑢ℎ + 𝑢𝑛 − 𝑢ℎ(0) 𝑔

𝑖 = 1, 2,   𝑢ℎ 𝜉𝑅, 𝑖 = 𝑈 𝜉𝑅, 𝑖 = 𝑢𝑛 + 𝑓1෩𝑙1 𝜉𝑅, 𝑖 + 𝑓2෩𝑙2(𝜉𝑅, 𝑖)

𝜉𝑅,1 𝜉𝑅,2
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DG with Gauss Quadrature

෩𝑙1

෩𝑙2

0.33 −0.12
0.46 0.33

1/3 1

.21 .79
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Implicit Runge-Kutta Method DG-Gauss

.33 −.12

.46 .33

Butcher Tableau

.21 .33 −.12

.79 .46 .33
∗ .5 .5

𝑢𝑛,1 = 𝑢𝑛 + ℎ [ .33𝑓 𝑥𝑛 + .21ℎ, 𝑢𝑛,1 − .12𝑓 𝑥𝑛 + .79ℎ, 𝑢𝑛,2 ]

𝑢𝑛,2 = 𝑢𝑛 + ℎ [ .46𝑓 𝑥𝑛 + .21ℎ, 𝑢𝑛,1 + .33𝑓 𝑥𝑛 + .79ℎ, 𝑢𝑛,2 ]

𝑢𝑛+1 = 𝑢𝑛 + h [ .5𝑓 𝑥𝑛 + .21ℎ, 𝑢𝑛,1 + .5 𝑓 𝑥𝑛 + .79ℎ, 𝑢𝑛,2 ]
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DG-Gauss and Gauss Collocation Methods

.21 .33 −.12

.79 .46 .33
∗ .5 .5

.21 .25 −.04

.79 .54 .25
∗ .5 .5

DG-Gauss

3rd-order accurate

L-stable

Gauss-Collocation

4rd-order accurate

Not L-stable

We can adjust numerical dissipation by blending 

these methods
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DG with Left Radau Quadrature, 𝑘 = 2

𝑙𝑖 ෩𝑙𝑖

Radau IA Method
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DG with Left Radau Quadrature

෩𝑙2
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IRK-DG

DG 

Left Radau Quadrature

Right Radau Quadrature

Gauss Quadrature

IRK Counterpart

Radau IA

Radau IIA

DG-Gauss
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IRK-DG
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Example

On 0, 1 , with 𝜆 = 2𝜋𝒾/3 and 𝜆 = 𝜋𝒾/3,  find 

linear DG solution 𝑢ℎ and quadratic solution 𝑈 for

𝑢′ = 𝜆𝑢

𝑢 0 = 1

Exact solution:

𝑢Exact 𝜉 = 𝑒𝜆 𝜉

After one step of size ℎ = 1, the exact solution is

𝑢Exact 1 = 𝑒𝜆
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Example of DG Solutions

𝜆 = 2𝜋𝒾/3

𝑢ℎ

𝜆 = 𝜋𝒾/3

𝑈

Exact Solution

𝑈
𝑢ℎ

Er = 𝑢Exact 1 − 𝑢ℎ 1
Er1 ≈ 0.17; Er2 ≈ 0.015;

Er1/Er2 ≈ 11.2 then 15 and 15.7; third-order accuracy 



30

Linear DG Solution

𝑢Exact 1 = 𝑒𝑧

𝑅1 𝑧 =
2𝑧 + 6

𝑧2 − 4𝑧 + 6

𝐸1 = 𝑒𝑧 − 𝑅1 𝑧 =
𝑧4

72
+
19𝑧5

1080
+⋯
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Conclusions and Discussion

o DG method for ODE was formulated from a 

constructive and geometric and point of view by 

using the correction function, which is a polynomial 

approximating the jump.

o Derived IRK-DG methods, namely, Radau IA, Radau

IIA, and DG-Gauss.

o The approach provides intuitions on DG for ODE, 

show relations between continuous and discontinuous 

solutions, as well as clarifies relations among CG, 

DG, and collocation methods.

o An effective iteration procedure for these IRK 

methods remains to be found.
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Thank you.


