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Ordinary Differential Equations (ODE)

« Mathematical modeling of physical phenomenon (e.g., for
fluid flows, Navier-Stokes equations):

U+ fr+9y+h, =0
u(0) = u,
« Simplified to a time stepping problem or ODE
us = F(t,u)
u(0) = uyg

 NASA CFD Vision 2030 Report (2014): Time-stepping
remains to be a bottleneck for turbulent flow simulations.



ODE (t replaced by x)

* Find u(x) {Z,((ox)): 1{0 (x, u(x))

« Example 1: quadrature

{U’(x) =f(x)

1(0) = 1 Solution u(x) = u, +JO f(&)dé

« Example 2: stability and accuracy (imaginary A for

advection, real and negative A for diffusion)

u'(x) = Au(x)
u(0) =1

Solution u(x) = e™*



Outline

o Formulation of discontinuous Galerkin
method for ODE (geometric and constructive
point of view, different from standard
algebraic and analytic view)

o Resulting implicit Runge-Kutta scheme
o Stability and Accuracy

o Conclusions and discussion



Local Frame (Coordinate)

ODE:
du

a = f(X,U(X)), U,(O) = Up

Suppose data u,, at x,, is known; with step size h, wish to obtain solution
un+1 at xn_l_l — xn + h
Rescale so step size equals 1: with € on [0, 1], setx = x,, + £h. Then

E_h and du dudx @
dé dé¢  dxdé dx

On [0, 1], solve

du

@ hf(Gu(),  u(0) =uy,

Absorb h into f. On [0, 1], solve

du_ 0) —
d—f—f(f,u(f)), u(0) = uy



Discontinuous Galerkin Formulation for ODE

On [0, 1], solve u'(§) = f(&,u(8)), u(0) = u,.
The DG method seeks a polynomial u;, of degree k on (0, 1] such that

uj,~ f in an average sense, i.e., for v = 1,¢,£2, ..., &k,
[ v = [ rlem©) ve)dg
and w,, can be discontinuous at x,,. To involve w,,, use integration by parts
joluh(f)V(f)df ~ up, (Dv(1) — u,(0)v(0) — Lluh(f)v’(f)df.

Replace u; (0) above with u,, to involve the starting data.

The DG method seeks u,, of degree k such that for v = 1, &, &2, ..., &¥,

1 1
wy (Dv(1) — 1y (0) — ] (' (§)d¢ = f £(8,u(®)) v(&) dé.
0 0



Example

On [0, 1], find the linear DG solution for
u'(¢§) = 66 -5, u(0) =u, = 3.

The exact solution
U(§) = 362 — 58 + 3.

The linear DG solution u;, = a& + b satisfies, withv = 1and v = ¢,

1 1
wy (Dv(1) — 1y w(0) — f () (€)dé = j FE)v(E)de
0 0

v=1l a+b—-—3=3-5 or a+b=1
v =_¢, a+b—(§+b)=2—§ or a=-1
Thus,

a=—-—1 and b =2



Example

On [0, 1], find the linear DG solution for
u'(¢) = 66 -5, u(0) =u, = 3.

The exact solution U(§) = 362 —5& + 3.
The linear DG solution  u,(¢) = —¢& + 2.
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Derivative of a Function with a Jump

0.2 0.4 0.6 0.8 1.~

« How to calculate the derivative of a function with a jump:
At £¢=0, w(0)=3;for0<é<1, w()=-¢+2
e Obtain quadratic U that satisfies U(0) = u,, = 3 and U matches u,, at
the 2 right Radau points.
 w' by the DG method is given by U".
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Approximating a Jump by a Polynomial

Right Radau points

0.4+

Approximating the jump fromlaté =0toOfor0 <& <1bya
polynomial of degree k + 1 defined by k + 2 conditions:

g(0) =1 and g vanishes at the k + 1 right Radau points

Then g is the right Radau polynomial Ry, x4+, and
U=up+ [up —un(0)]g



2-Point Quadratures

1
j FEVIE ~ byf(6) + baf (&)
0

U u u
21 .79
O O § O 0—5 O J
0 1 0 1/3 1 0 1
Gauss Right Radau Equidistance
1 1 3 /1 1 1 1
F(21) 45 £(79) 3 (§> F2FD) FO) 4 £(1)

Exact for a cubic f Exact for a parabolla f Exact for a linear f
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(k + 1)-Point Quadratures

k+1

1
fo F©)dE ~ ;biﬂa)

11 .5 .89 ¢ 16 .64 £ 1/2 &
-—&—e{— Fo—0—@— —o—0¢-—
0 1 0 1 0 1
Gauss Right Radau Equidistance
Exact for Exact for Exact for
polynomials of polynomials of polynomials of

degree 2k + 1 degree 2k degree k + 1
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Correction Function g fork = 1

Right Radau points
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Correction Function g for k = 2

g 1s the right Radau polynomial of degree k + 1 defined by
g(0) = 1, and g vanishes at the k + 1 right Radau points &z ;.
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Right Radau points
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Correction Functions (Radau Polynomial)
of degree k fork =8and k =9

U
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DG Solutions u, and U

1/3

1

I & I I | E
0.2 04 0.6 0.8 1. ~

uy Is of degree k; U and g are of degree k + 1,
U§) = up + [uy —up(0)lg
U satisfies U(0) = u,, and, forv = 1,¢§, &2, ..., &,

1 1
fo U'(§) v(§)dE = jo £ (6 un () v(E) dé
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DG, CG, and Collocation Methods
under Right Radau quadrature

U=up+ |u, —up(0)lg

uy, and U take on the same values at the k + 1
right Radau points.

uy, 1s discontinuous, but U Is continuous.

Under the k£ + 1 point right Radau quadrature, the

DG, CG, and collocation methods yield the same
solution U.
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DG under Gauss Quadrature
U' = fn, U0) = uy;

U(§) =up + fogfhdﬂ; U=up+ u, —up(0)lg
2 Gauss points; linear f;, = f1l; + f,1,

1 l £
b 2| fadn =
- 0

].':'-

3
™~ f fo L ()dn +

02 04 06 O\ _10° fzf [(n)dn
51 o 021 52 — 07 0




DG with Gauss Quadrature
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) DG with Gauss Quadrature

0.1

U(¢) :un+f1[i(€)+fzzg(€); U:uh‘l'[un_uh(o)]g
i =1,2, uh(fR,i) = U(fR,i) = Uy +f1i1(€R,i) +f2Z;(€R,i)



DG with Gauss Quadrature

A A

i 04 {5 ] A |
1/3 1
(0.33 —0.12)
0.46 0.33
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Implicit Runge-Kutta Method DG-Gauss

33 =12 Butcher Tableau
(.46 .33)

21 (.33 —-.12
79 |46 .33
* 5 5

Up1 =Upt h [.33f(xn + .21h, un,l) — .12f(xn +.79h, un,z)]
Upp = Up + h [46f(x, +.21h,uy ) + .33 (%, + .79, uy5)]

Uppr = Uy + W [ 5f (%, + 21hup ) +.5 f(xn +.790,uy )]
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DG-Gauss and Gauss Collocation Methods

21| .33 —-.12 21| .25 -.04
79| .46 .33 79| .54 .25

* 5 5 * 5 5
DG-Gauss Gauss-Collocation

3rd-order accurate 4rd-order accurate
|_-stable Not L-stable

We can adjust numerical dissipation by blending
these methods

23



DG with Left Radau Quadrature, k = 2

u
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Radau A Method
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IRK-DG

DG
| eft Radau Quadrature
Right Radau Quadrature

Gauss Quadrature

IRK Counterpart
Radau A
Radau 1A

DG-Gauss



IRK-DG

(a) Radau IA (left Radau) (¢) Radau ITA (right Raday)
1 1 s _1
0 4 4 2 12 12
2 1 E 3 1
4 12 1 4 4
1 3 3 1
4 4 4 4
(b) DG-Gauss
1 V31 1-V3

2 6 3 6

1 n E 1+'|.,."'§ 1

2 6 6 3

1 1

2 2
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Example

On|0,1], withA =2nmi/3 and A = i /3, find
linear DG solution u;, and quadratic solution U for
u' = Au
u(0) =1

Exact solution:

Ugxact(§) = et?

After one step of size h = 1, the exact solution Is

uExact(l) = e’
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Example of DG Solutions

SR N S
o«
1\1 ----- .8'
\ el ..
W\ L nel T )
\\ ¢ Up N\ L.
\\0.4!
\
h.ﬂ_ U
—54—52 OE Oﬁ Ob Oé 1.
A=2mi/3

Er = |ugxact (1) — up (1)

Er, = 0.17; Er, = 0.015;

Im
0.8}
0.6
0.4}
. U
0.2t e h
Uy -
— 1 Re
02 04 06 08 1.
A=mi/3

Er,/Er, = 11.2 then 15 and 15.7; third-order accuracy
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Linear DG Solution

uExact(l) = e’

2Z+ 6
Ry (2) T 22— 47+6
z¥  19z°
E1=€Z—R1(Z) = —+

72 1080
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Conclusions and Discussion

DG method for ODE was formulated from a
constructive and geometric and point of view by
using the correction function, which is a polynomial
approximating the jump.

Derived IRK-DG methods, namely, Radau IA, Radau
1A, and DG-Gauss.

The approach provides intuitions on DG for ODE,
show relations between continuous and discontinuous
solutions, as well as clarifies relations among CG,
DG, and collocation methods.

An effective iteration procedure for these IRK
methods remains to be found.



Thank you.



