

Discontinuous Galerkin and Related Methods for ODE

ICCFD 11

(International Conference on Computational Fluid Dynamics) July 11-15, 2022, Maui, Hawaii, USA

H. T. Huynh

NASA Glenn Research Center, Cleveland, Ohio

Supported by NASA Transformational Tools and Technologies Project

• Mathematical modeling of physical phenomenon (e.g., for fluid flows, Navier-Stokes equations):

$$u_t + f_x + g_y + h_z = 0$$
$$u(0) = u_0$$

• Simplified to a time stepping problem or ODE

$$u_t = F(t, u)$$
$$u(0) = u_0$$

• NASA CFD Vision 2030 Report (2014): Time-stepping remains to be a bottleneck for turbulent flow simulations.

ODE (*t* replaced by *x*)

• Find
$$u(x)$$

$$\begin{cases} u'(x) = f(x, u(x)) \\ u(0) = u_0 \end{cases}$$

• Example 1: quadrature

$$\begin{cases} u'(x) = f(x) \\ u(0) = u_0 \end{cases} \quad \text{Solution} \quad u(x) = u_0 + \int_0^x f(\xi) d\xi \end{cases}$$

• Example 2: stability and accuracy (imaginary λ for advection, real and negative λ for diffusion)

$$\begin{cases} u'(x) = \lambda u(x) \\ u(0) = 1 \end{cases} \quad \text{Solution} \quad u(x) = e^{\lambda x} \end{cases}$$

Outline

- Formulation of discontinuous Galerkin method for ODE (geometric and constructive point of view, different from standard algebraic and analytic view)
- Resulting implicit Runge-Kutta scheme
- Stability and Accuracy
- Conclusions and discussion

Local Frame (Coordinate)

• ODE:

$$\frac{du}{dx} = f(x, u(x)), \qquad u(0) = u_0$$

- Suppose data u_n at x_n is known; with step size h, wish to obtain solution u_{n+1} at $x_{n+1} = x_n + h$.
- Rescale so step size equals 1: with ξ on [0, 1], set $x = x_n + \xi h$. Then

$$\frac{dx}{d\xi} = h$$
 and $\frac{du}{d\xi} = \frac{du}{dx}\frac{dx}{d\xi} = h\frac{du}{dx}$.

- On [0, 1], solve $\frac{du}{d\xi} = hf(\xi, u(\xi)), \qquad u(0) = u_n$
- Absorb h into f. On [0, 1], solve

$$\frac{du}{d\xi} = f(\xi, u(\xi)), \qquad u(0) = u_n$$

Discontinuous Galerkin Formulation for ODE

• On [0, 1], solve $u'(\xi) = f(\xi, u(\xi))$, $u(0) = u_n$. The DG method seeks a polynomial u_h of degree k on (0, 1] such that $u'_h \approx f$ in an average sense, i.e., for $v = 1, \xi, \xi^2, ..., \xi^k$, $\int_0^1 u'_h(\xi) v(\xi) d\xi \approx \int_0^1 f(\xi, u_h(\xi)) v(\xi) d\xi$

and u_h can be discontinuous at x_n . To involve u_n , use integration by parts $\int_0^1 u'_h(\xi) v(\xi) d\xi \approx u_h(1) v(1) - u_h(0) v(0) - \int_0^1 u_h(\xi) v'(\xi) d\xi.$

• Replace $u_h(0)$ above with u_n to involve the starting data. The DG method seeks u_h of degree k such that for $v = 1, \xi, \xi^2, ..., \xi^k$,

Example

• On [0, 1], find the linear DG solution for

$$u'(\xi) = 6\xi - 5, \qquad u(0) = u_n = 3.$$

• The exact solution

$$U(\xi) = 3\xi^2 - 5\xi + 3.$$

• The linear DG solution $u_h = a\xi + b$ satisfies, with v = 1 and $v = \xi$,

$$u_h(1)v(1) - u_n v(0) - \int_0^1 u_h(\xi)v'(\xi)d\xi = \int_0^1 f(\xi)v(\xi)d\xi$$

$$v = 1$$
, $a + b - 3 = 3 - 5$ or $a + b = 1$
 $v = \xi$, $a + b - \left(\frac{a}{2} + b\right) = 2 - \frac{5}{2}$ or $a = -1$

Thus,

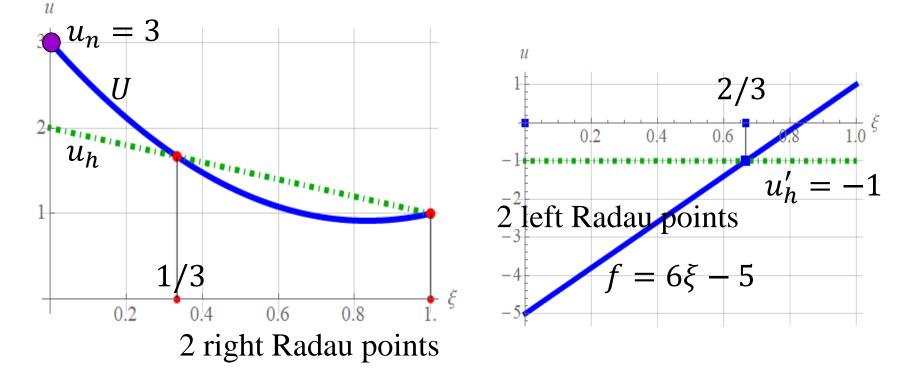
$$a = -1$$
 and $b = 2$

Example

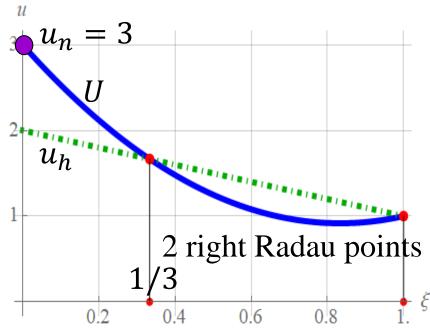
• On [0, 1], find the linear DG solution for

 $u'(\xi) = 6\xi - 5, \qquad u(0) = u_n = 3.$

- The exact solution $U(\xi) = 3\xi^2 5\xi + 3.$
- The linear DG solution $u_h(\xi) = -\xi + 2$.



Derivative of a Function with a Jump

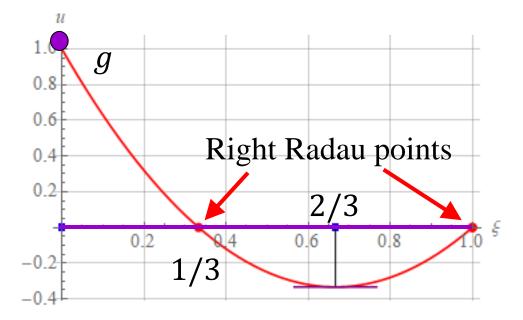


• How to calculate the derivative of a function with a jump:

At
$$\xi = 0$$
, $w(0) = 3$; for $0 < \xi \le 1$, $w(\xi) = -\xi + 2$

- Obtain quadratic *U* that satisfies $U(0) = u_n = 3$ and *U* matches u_h at the 2 right Radau points.
- w' by the DG method is given by U'.

Approximating a Jump by a Polynomial

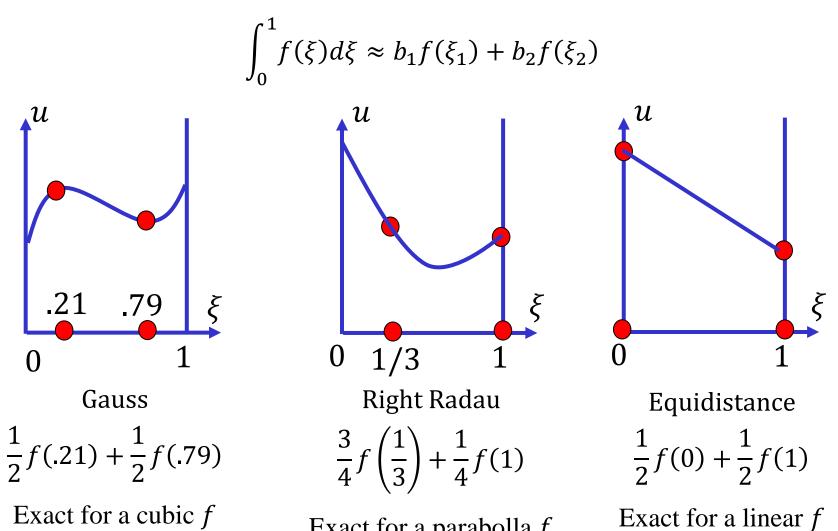


Approximating the jump from 1 at $\xi = 0$ to 0 for $0 < \xi \le 1$ by a polynomial of degree k + 1 defined by k + 2 conditions:

g(0) = 1 and g vanishes at the k + 1 right Radau points

Then *g* is the right Radau polynomial $R_{R,k+1}$, and $U = u_h + [u_n - u_h(0)]g$

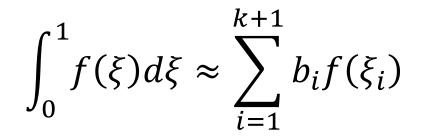
2-Point Quadratures

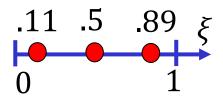


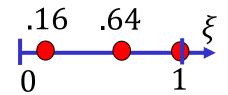
Exact for a parabolla f

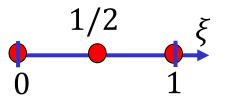
11

(k + 1)-Point Quadratures



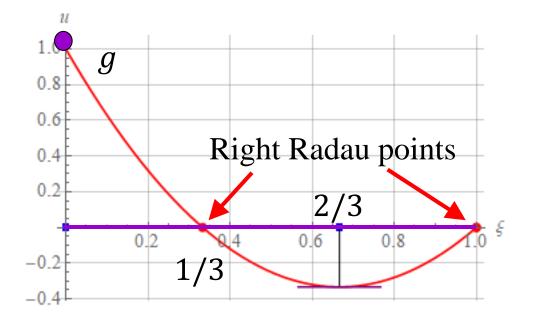






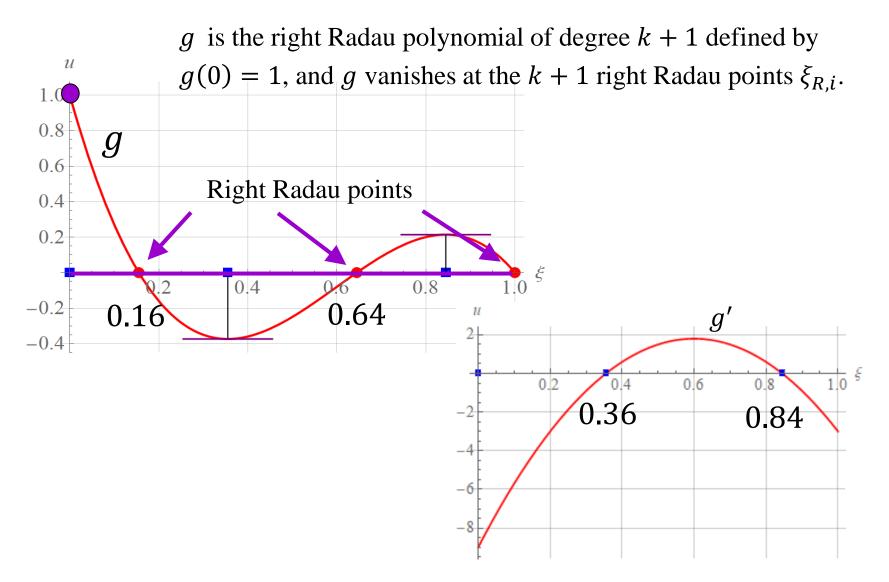
Gauss Exact for polynomials of degree 2k + 1 Right Radau Exact for polynomials of degree 2k Equidistance Exact for polynomials of degree k + 1

Correction Function g for k = 1

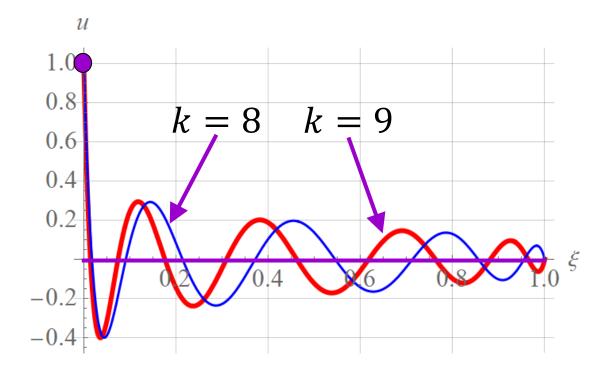


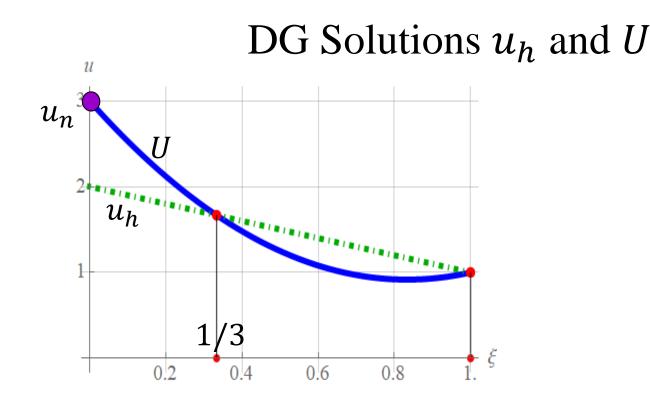
 $U = u_h + [u_n - u_h(0)]g$

Correction Function g for k = 2



Correction Functions (Radau Polynomial) of degree k for k = 8 and k = 9





 $u_h \text{ is of degree } k; \ U \text{ and } g \text{ are of degree } k + 1,$ $U(\xi) = u_h + [u_n - u_h(0)]g$ $U \text{ satisfies } U(0) = u_n \text{ and, for } v = 1, \xi, \xi^2, \dots, \xi^k,$ $\int_0^1 U'(\xi) \ v(\xi) d\xi = \int_0^1 f(\xi, u_h(\xi)) \ v(\xi) \ d\xi$

DG, CG, and Collocation Methods under Right Radau quadrature

$$U = u_h + [u_n - u_h(0)]g$$

- u_h and U take on the same values at the k + 1 right Radau points.
- u_h is discontinuous, but U is continuous.
- Under the k + 1 point right Radau quadrature, the DG, CG, and collocation methods yield the same solution U.

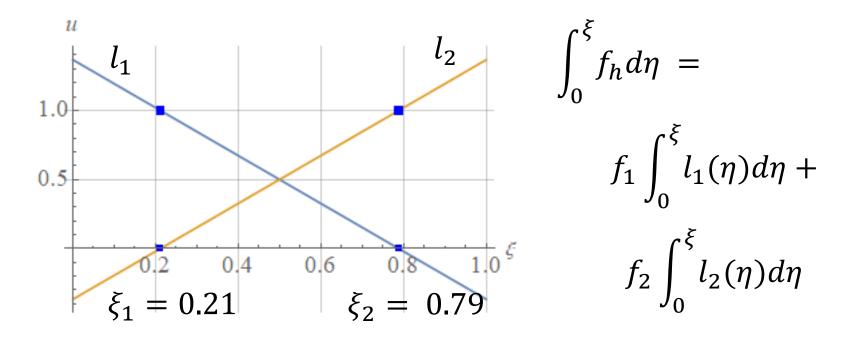
DG under Gauss Quadrature

$$U' = f_h, \quad U(0) = u_n;$$

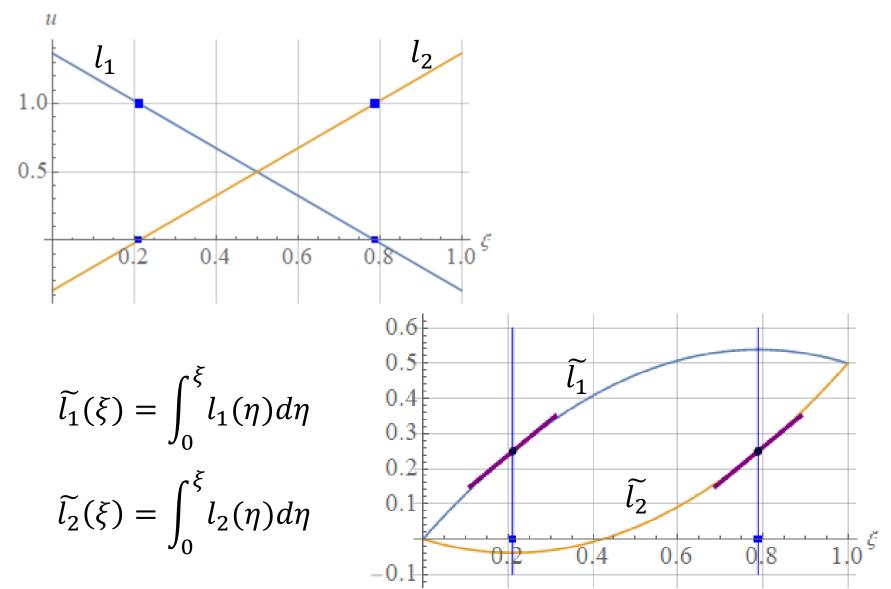
$$U(\xi) = u_n + \int_0^{\xi} f_h d\eta; \quad U = u_h + [u_n - u_h(0)]g$$

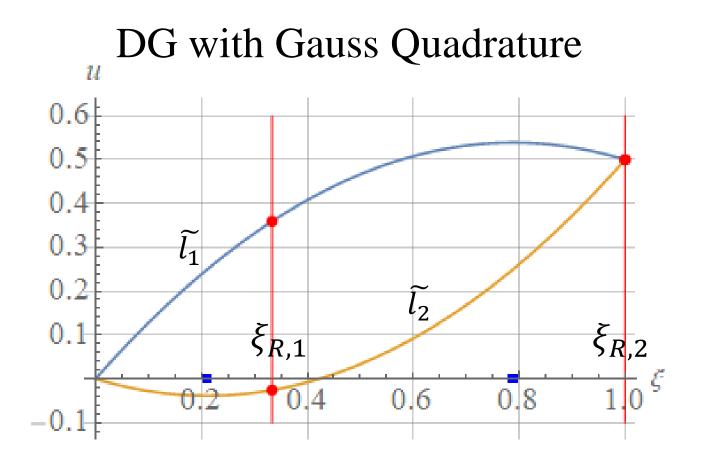
2 Gauss points: linear $f_h = f_h l_h + f_h l_h$

2 Gauss points; linear $f_h = f_1 l_1 + f_2 l_2$



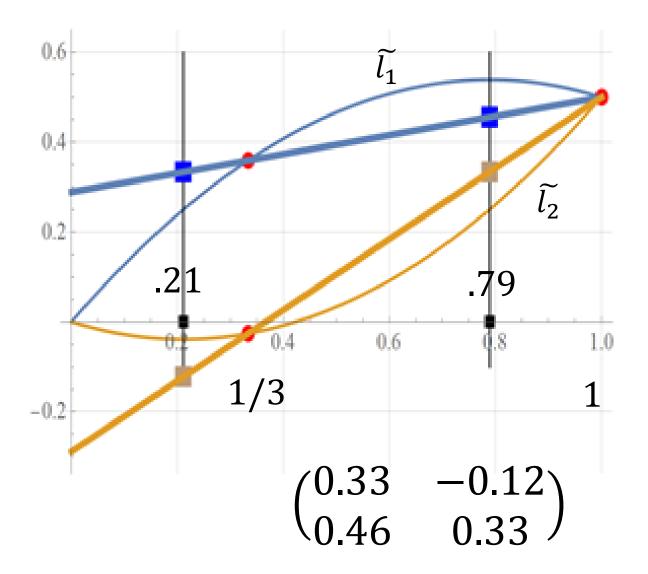
DG with Gauss Quadrature





 $U(\xi) = u_n + f_1 \tilde{l_1}(\xi) + f_2 \tilde{l_2}(\xi); \quad U = u_h + [u_n - u_h(0)]g$ $i = 1, 2, \quad u_h(\xi_{R,i}) = U(\xi_{R,i}) = u_n + f_1 \tilde{l_1}(\xi_{R,i}) + f_2 \tilde{l_2}(\xi_{R,i})$

DG with Gauss Quadrature



Implicit Runge-Kutta Method DG-Gauss2212Butcher Tableau

$$\begin{pmatrix} .33 & -.12 \\ .46 & .33 \end{pmatrix}$$

.21 .33 -.12 .79 .46 .33 * .5 .5

$$u_{n,1} = u_n + h \left[.33f(x_n + .21h, u_{n,1}) - .12f(x_n + .79h, u_{n,2}) \right]$$
$$u_{n,2} = u_n + h \left[.46f(x_n + .21h, u_{n,1}) + .33f(x_n + .79h, u_{n,2}) \right]$$
$$u_{n+1} = u_n + h \left[.5f(x_n + .21h, u_{n,1}) + .5f(x_n + .79h, u_{n,2}) \right]$$

DG-Gauss and Gauss Collocation Methods

.21	.33	12			04
.79	.46	.33	.79	.54	.25
*	.5	.5	*	.5	.5

DG-Gauss Gauss-Collocation

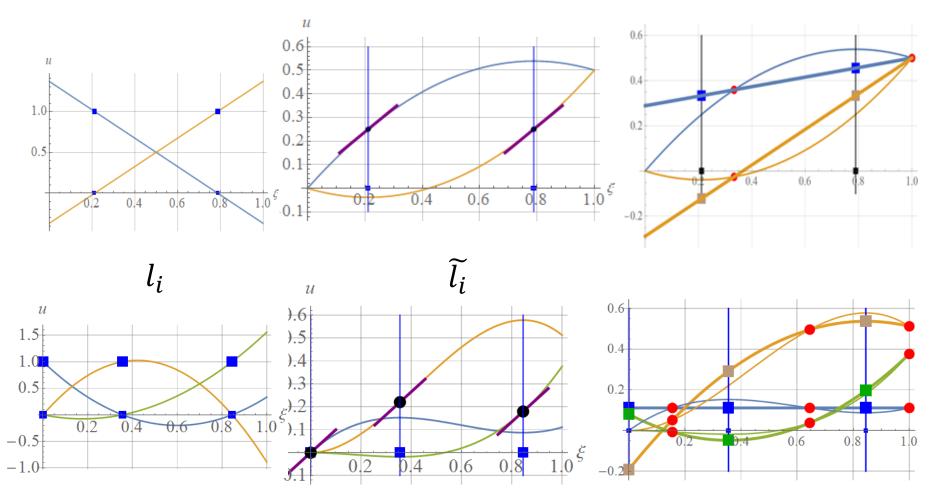
3rd-order accurate

4rd-order accurate

L-stable Not L-stable

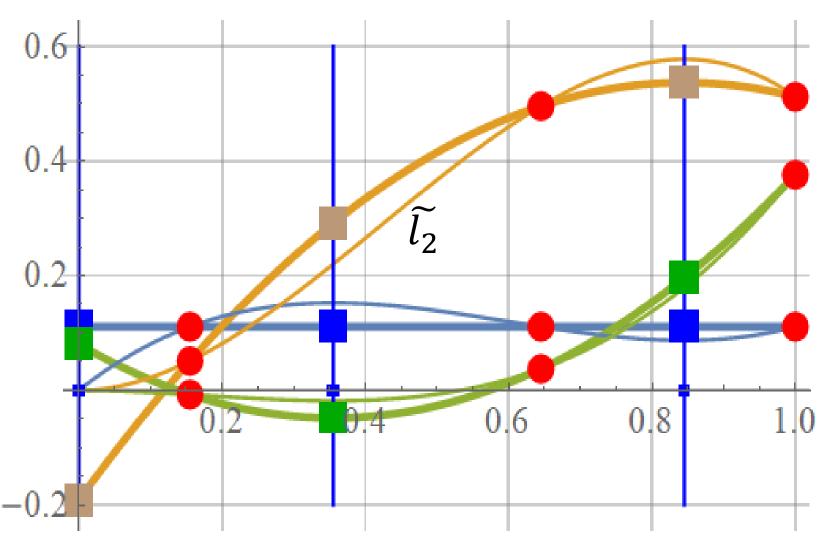
We can adjust numerical dissipation by blending these methods

DG with Left Radau Quadrature, k = 2



Radau IA Method

DG with Left Radau Quadrature



IRK-DG

DG IRK Counterpart

Left Radau Quadrature

Radau IA

Right Radau Quadrature

Radau IIA

Gauss Quadrature

DG-Gauss

IRK-DG

(a) <u>Radau</u> IA (left <u>Radau</u>)			(C)	(c) Radau IIA (right Radau)						
0	$\frac{1}{4}$	$-\frac{1}{4}$		$\frac{1}{3}$	5 12	$-\frac{1}{12}$				
<u>2</u> 3	$\frac{1}{4}$	5 12		1	<u>3</u> 4	$\frac{1}{4}$				
	$\frac{1}{4}$	3 4			<u>3</u> 4	<u>1</u> 4				
(b) DG-Gauss										
		$\frac{1}{2} - \frac{\sqrt{3}}{6}$	$\frac{1}{3}$	$\frac{1-\sqrt{3}}{6}$						
		$\frac{1}{2} + \frac{\sqrt{3}}{6}$	$\frac{1+\sqrt{3}}{6}$	$\frac{1}{3}$						
			$\frac{1}{2}$	$\frac{1}{2}$	-					

Example

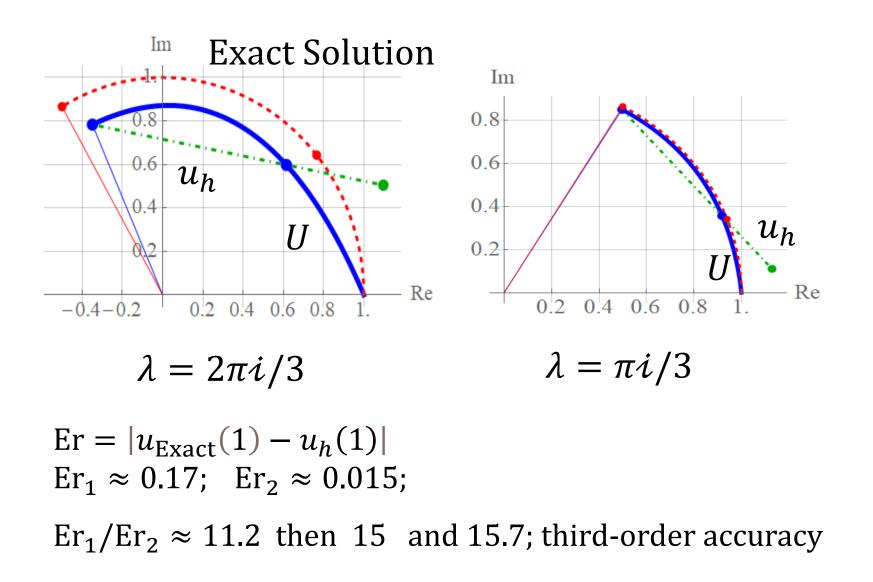
On [0, 1], with $\lambda = 2\pi i/3$ and $\lambda = \pi i/3$, find linear DG solution u_h and quadratic solution U for $u' = \lambda u$ u(0) = 1

Exact solution:

$$u_{\text{Exact}}(\xi) = e^{\lambda \, \xi}$$

After one step of size h = 1, the exact solution is $u_{\text{Exact}}(1) = e^{\lambda}$

Example of DG Solutions



Linear DG Solution

$$u_{\text{Exact}}(1) = e^{z}$$

$$R_1(z) = \frac{2z+6}{z^2-4z+6}$$

$$E_1 = e^z - R_1(z) = \frac{z^4}{72} + \frac{19z^5}{1080} + \cdots$$

Conclusions and Discussion

- DG method for ODE was formulated from a constructive and geometric and point of view by using the correction function, which is a polynomial approximating the jump.
- Derived IRK-DG methods, namely, Radau IA, Radau IA, and DG-Gauss.
- The approach provides intuitions on DG for ODE, show relations between continuous and discontinuous solutions, as well as clarifies relations among CG, DG, and collocation methods.
- An effective iteration procedure for these IRK methods remains to be found.

Thank you.