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Abstract—Demand Capacity Balancing (DCB) can be applied 
in strategic conflict management for safe Urban Air Mobility 
(UAM) operations. Even when the operational tempo is low, 
traffic demand can locally exceed the capacity at airspace 
resources like vertiports. This paper proposes a DCB algorithm 
to manage the UAM traffic demand strategically, given the 
capacity at vertiports. The DCB algorithm is evaluated with 
traffic scenarios at Dallas/Fort Worth urban area in terms of 
various metrics such as demand distribution changes, pre-
departure delay, and the number of simultaneous operations in 
the air. With the same experiment setup, more extended studies 
are also conducted to investigate how the UAM flight scheduling 
based on the DCB algorithm is affected by various conditions 
that can occur in a practical UAM environment, including 
vertiport capacity changes, a slot size parameter in capacity 
constraint, differences in operational policy between operators 
like lead time for flight plan submission and cruise flight speed, 
and uncertainties in actual departure and arrival times.  

Keywords—Urban Air Mobility (UAM), Strategic Conflict 
Management, Demand Capacity Balancing (DCB)  

I. INTRODUCTION 
Urban Air Mobility (UAM) is a new transportation concept 

that enables highly automated, cooperative, passenger or cargo-
carrying air transportation services in and around urban areas 
[1, 2]. To achieve the high level of operational density and 
complexity desired by the UAM community, an airspace 
system that allows UAM operators to readily access and 
operate safely and efficiently in the airspace is needed. This 
airspace system will require air traffic management designed to 
reduce the risk of conflicts and loss of separation between 
UAM flights.  

In air traffic management, strategic conflict management is 
generally considered as the first layer of conflict management 
for safe flight operations to condition the traffic to reduce the 
need for airborne separation provision, the second layer of 
conflict management [3]. Demand Capacity Balancing (DCB) 
is one of the concept components to achieve strategic conflict 
management, along with airspace organization and 
management and traffic synchronization components. For safe 
and efficient UAM operations, DCB strategically evaluates 

traffic demand and resource capacities to allow UAM operators 
to determine when, where and how they operate, while 
mitigating conflicting needs for airspace and vertiport capacity. 
The DCB can be applied whenever UAM demand exceeds the 
capacity in airspace or at vertiports where these facilities 
provide takeoff and landing areas and support other necessary 
services like maintenance and parking for UAM operations. As 
the UAM ecosystem evolves with advanced technologies and 
matured operational procedures, more complicated conflict 
management will likely be needed. However, even the UAM 
‘Concept of Operation (ConOps) 1.0’ operational stage defined 
by the FAA [4] for low operational tempo needs the DCB to 
manage demand. Also, the vertiport capacity may become a 
bottleneck of growing UAM traffic as the airport runway is for 
traditional air traffic. Therefore, it is meaningful to explore the 
demand capacity balancing at vertiports only, as an initial 
strategic conflict management approach for UAM operations.  

For this research, NASA has been developing a demand-
capacity imbalance detection and resolution service for UAM. 
This DCB service identifies the demand from UAM operators 
and compares the demand to a given capacity at the shared 
resources (i.e., vertiports) over the upcoming time horizon 
which is divided into time bins having a constant interval. 
When a new flight plan is submitted, the algorithm embedded 
in the DCB service checks the available time bins based on the 
desired departure time and estimated arrival time at origin and 
destination vertiports, respectively. If the time bins for the 
originally desired times are already occupied by other flights 
(i.e., demand is at or above capacity), the algorithm finds the 
next available time bins for takeoff and landing and shifts the 
conflicting departure time to the earliest time that satisfies the 
capacity constraints at both origin and destination vertiports. 
The details of this DCB algorithm will be described in Section 
II. 

When UAM flights are operated in urban areas, it is 
expected that many practical issues will arise. Due to many 
factors such as microclimate weather and facility conditions, 
vertiport capacity can change dynamically. Vertiport operators 
may adjust the parameters that define the capacity constraint 
like the slot size and the count of available operations in each 
slot. If the UAM ecosystem is built upon the federated system 



architecture with multiple operators, more complicated 
situations are expected to happen, which may require some 
Community Based Rules (CBRs) developed by stakeholders 
and approved by the FAA [4]. For example, UAM vehicles 
would fly at different flight speeds, depending on UAM 
vehicle models. While scheduling the same desired departure 
times, UAM operators may submit their flight plans in 
different timings by service type (e.g., regular shuttle service 
vs. on-demand service). Additionally, as in traditional flight 
operations, actual departure and arrival times can have large 
variations, compared to the schedule. Using the proposed DCB 
algorithm, we also investigate how the actual flight schedule 
and the DCB performance are affected by these practical 
considerations such as parameter changes in the vertiport 
capacity constraint, flight speed and lead time differences 
between operators, and actual departure and arrival time errors 
over the schedule.  

This paper will describe the proposed DCB algorithm for 
UAM operations with a simple use case to explain how this 
algorithm works for flight schedule modification in Section II. 
After setting up the experiment environment with a route 
structure and a traffic scenario, the DCB algorithm is evaluated 
in Section III in terms of various metrics. Section IV provides 
the analytical results from the extended studies about the 
impacts of various practical considerations in UAM operations 
on the flight schedule and DCB performance. In Section V, 
conclusions and potential future work will be provided.  

II. DEMAND CAPACITY BALANCING ALGORITHM 
Demand Capacity Balancing (DCB) consists of two parts: 

demand-capacity imbalance detection and its resolution. For 
the DCB implementation at vertiports in UAM operations, 
NASA has developed two services, which are Strategic 
Conflict Management Service (SCMS) and Demand-Capacity 
imBalance Detection service (DCBD). The objective of SCMS 
is to ensure that pre-departure flights have sufficient separation 
from other flights in the strategic planning phase. For this, 
SCMS coordinates with a UAM fleet operator to receive a new 
operational intent, asks DCBD whether any demand-capacity 
imbalances are observed if this new operation were to be 
scheduled at the desired time, resolve the imbalances, if any 
exist, and sends the modified operational intent back to the 
operator. DCBD is designed to detect any imbalances between 
demand and capacity at the shared airspace resources. DCBD 
keeps monitoring the existing demand from all the operators 
through the Provider of Services for UAM (PSU) network and 
receiving the latest capacity information. Per SCMS’s request, 
DCBD checks the demand-capacity imbalance status at the 
airspace resources related to the new operational intent. If the 
new flight doesn’t violate the DCB, SCMS doesn’t need to 
modify its operational intent. On the contrary, if any airspace 
resource that the new flight plans to use is already at capacity, 
DCBD calculates the available capacity information at the 
current and future time horizon, comparing the given capacity 
with existing demand. The available capacity information 
(open slots) provided by DCBD is used by SCMS to find the 
best schedule that does not violate any capacity constraints at 
the shared resources. These services can be generally applied 
to all the shared airspace resources that UAM flights use 

during the entire flight phases such as origin/destination 
vertiports, entry/exit points of UAM corridors which are the 
UAM-specific performance-based airspace structures with 
defined dimensions [4], and crossing/merging waypoints in the 
UAM route structure. For the UAM ConOps 1.0 operations or 
the UAM Maturity Level (UML) 2 environment [5], however, 
we will focus on the DCB at origin/destination vertiports only.  

Fig. 1 shows the flow chart for the proposed DCB 
algorithm. When the UAM operator gets a trip request, it 
creates a new operational intent, including origin, destination, 
desired departure time at origin vertiport, and estimated arrival 
time at destination. When SCMS receives this operational 
intent, it checks if this flight is new and still on the ground. For 
the new flight, SCMS requires DCBD to check if inserting this 
new flight would violate any capacity constraints at origin and 
destination vertiports. DCBD reads the latest vertiport capacity 
information related to this flight and identifies the relevant 
demand at the shared airspace resources (i.e., active or planned 
flights using the same vertiports). If the current demand is 
already at (or over) the given capacity, the new flight cannot 
use the assigned vertiport at the desired time. In that case, 
DCBD calculates the available capacity information (= 
capacity – demand) in the current and following planning 
horizon and sends the open slot information back to SCMS. If 
any demand-capacity imbalances with respect to the new flight 
are identified by DCBD, SCMS tries to resolve this imbalance 
by shifting its departure time to the next available slot until the 
imbalances are resolved. Note that SCMS should check the 
imbalances both at origin and destination vertiports. Once 
resolved, based on the modified departure time, SCMS will 
build four-dimensional trajectories (i.e., Expected Times of 
Arrivals at waypoints along the given route) and relevant 
operational volumes for safe operations, and send them back to 
UAM operator.  

 

Fig. 1. Flow chart for demand capacity balancing services. 

To help understand how the proposed DCB algorithm is 
working with an actual flight schedule, a simple use case is 
provided in Fig. 2. Suppose that a new flight shown as a red 
dot needs to be scheduled from vertiport A to vertiport Z with 



the desired departure time at 11:07 and the estimated arrival 
time at 11:21, as illustrated in Fig. 2. Assuming that only two 
operations are allowed in each 12-minute time slot as vertiport 
capacity, DCBD identifies which time bins at vertiports are 
already saturated with the existing demand. In Fig. 2, those 
blocked slots are marked as shaded boxes. Since the desired 
departure time of the new flight is within the blocked slot at 
origin vertiport A due to two existing flights illustrated as black 
dots, DCBD tells SCMS that there is a demand-capacity 
imbalance to be resolved. Then, SCMS shifts its departure time 
to the beginning of the next available time bin (open slot 
shown as a hollow box) in order to minimize the scheduled 
delay. In this example, the new departure time becomes 11:12, 
as shown as a blue dot in Fig. 2(b). However, it is found that 
the modified arrival time at destination vertiport Z is located 
within a blocked slot. Therefore, this flight is shifted to the 
next available time bin to satisfy the DCB conditions at both 
vertiports. Eventually, the new departure time is set to be 
11:22, as shown as a green dot, with a 15-minute ground delay.  

NASA is currently using these DCB services, DCBD and 
SCMS, to implement initial strategic conflict management in 
collaborative simulations with industry partners, called X4 
simulation, of which the objective is to establish, develop, and 
test the Minimum Viable Product (MVP) for the PSU needed 
to ensure scalable UAM operations [6]. In this paper, the 
algorithms embedded in these services were integrated and 

simplified for easier applications to various experimental 
studies in Section IV. A pseudocode describing this DCB 
algorithm is shown in Fig. 3.  

 

 

Fig. 2. Use case of demand capacity balancing algorithm. 

### Step 1. Initialization 
bin = 12; # time bin size in minutes  
c = 4; # capacity (ops/time bin) 
demandDB = [ , ]; # database for existing demand count at [vertiport, time bin] 
### Step 2. Read the traffic scenario and capacity information 
LOAD callsign, origin vertiport (vx

dep), destination vertiport (vx
arr), departure time (tx

dep), arrival time (tx
arr), etc. for all flights  

travelTx = tx
arr – tx

dep; # nominal travel time from Origin to Destination 
tx

dep, initial = tx
dep; # initial departure time for delay calculation 

### Step 3. Receive a new operational intent and update 4-Dimensional Trajectory (4DT) data for demand capacity balancing 
while a flight x for scheduling is remained from the traffic scenario (in the order of flight plan submission time),  
    jo = QUOTIENT(tx

dep, bin*60); tjo = QUOTIENT(tx
dep, bin*60)*bin*60; # At origin vertiport vx

dep, tjo <= tx
dep < tjo + bin; 

    jd = QUOTIENT(tx
arr, bin*60); tjd = QUOTIENT(tx

arr, bin*60)*bin*60; # At destination vertiport vx
arr, tjd <= tx

arr < tjd + bin; 
    dep_val = demandDB[vx

dep, jo]; # obtain existing demand at origin vertiport in the current time bin for desired departure time 
    arr_val = demandDB[vx

arr, jd]; # obtain existing demand at destination vertiport in the current time bin for estimated landing time 
    while (dep_val > = c) || (arr_val >= c)   # repeat the while loop until finding an open time bin  
        if (dep_val > = c),   # if the current time bin at origin vertiport is not available for takeoff,  
            jo = jo + 1; tjo = tjo + bin; # move to the next time bin 
            tx

dep = tjo; # update the departure time to the start time of the next time bin 
            tx

arr = tx
dep + travelT; # update the estimated arrival time 

            jd = QUOTIENT(tx
arr, bin*60); # update the jdth time bin for arrival  

            dep_val = demandDB[vx
dep, jo]; arr_val = demandDB[vx

arr, jd]; # update dep_val and arr_val 
        else if (arr_val >= c),   # if the current time bin at destination vertiport is not available for landing, 
            jd = jd + 1; tjd = tjd + bin; # move to the next time bin  
            tx

arr = tjd; # update the arrival time to the start time of the next time bin 
            tx

dep = tx
arr – travelTx; # update the departure time 

            tjo = QUOTIENT(tx
dep, bin*60)*bin*60; # update the start time of the departure time bin in which the new flight x will take off 

            jo = QUOTIENT(tx
dep, bin*60); # update the joth time bin for departure  

            dep_val = demandDB[vx
dep, jo]; arr_val = demandDB[vx

arr, jd]; # update dep_val and arr_val 
        end 
    end 
    demandDB[vx

dep, jo] = dep_val + 1; # update the existing demand database at origin vertiport with the current flight x 
    demandDB[vx

arr, jo] = arr_val + 1; # update the existing demand database at destination vertiport with the current flight x 
    delayx = tx

dep – tx
dep, initial; # calculate pre-departure delay 

    tx
wpt = tx

wpt + delayx; # update the Scheduled Times of Arrival at waypoints along the given route 
   RETURN the updated 4DT; # callsign, vx

dep, vx
arr, tx

dep,initial, tx
arr,initial, tx

dep, tx
arr, tx

wpt, delayx, etc.  
end 

Fig. 3. Pseudocode for demand capacity balancing algorithm.



III. DCB ALGORITHM EVALUATION 
In this section, the proposed algorithm for the DCB at 

vertiports is evaluated with traffic scenarios. The DCB 
algorithm is evaluated with a typical scenario first. Then, the 
same evaluation process is repeated for ten different traffic 
scenarios to obtain more general results in terms of various 
metrics.  

A. Experiment Setup 
We set up the experiment environment for the DCB 

algorithm evaluation. It is assumed that there are two UAM 
fleet operators sharing the traffic demand equally in the UAM 
network. We start with an assumption that these two operators 
use the same UAM vehicle model having identical 
performance (e.g., cruise speed, banked turn angle, and 
climb/descent gradient) and the same lead time from flight plan 
submission to desired departure time. To represent the UAM 
ConOps 1.0 operations environment, five vertiports and ten 
routes connecting those vertiports are considered in the 
Dallas/Fort Worth metropolitan area. Fig. 4 illustrates the route 
structure used in this experiment in which five vertiports 
starting with the “DF” tag are marked as black circles. All the 
vertiports and routes are shared between operators (i.e., no 
airspace resources are dedicated to a specific operator). For the 
vertiport capacity, up to 4 operations in the fixed 12-minute 
time bins are allowed at each vertiport, but simultaneous 
takeoffs and/or landings are allowed within the given capacity.  

 

Fig. 4. Route network in Dallas/Fort Worth urban area. 

For the traffic scenario, a two-hour long scenario with one 
peak is developed. Corresponding to the UML-2’s low density 
traffic, this scenario has 60 flights in total (30 flights for each 
operator), of which demand-capacity ratio is 60% as the 
demand is 120 operations (= 60 departures + 60 arrivals) and 
the vertiport capacity is 200 (= 4 ops/vertiport/time bin x 5 
vertiports x 10 time bins/2hour). The departure times are 
properly distributed to have a peak in the middle of scenario, 
and demand is evenly distributed over ten routes (i.e., 3 flights 
per route from each operator). Then, the departure times and 
routes are randomly assigned to each flight. With the flight 
speed assumed to meet the performance requirements in the 
initial UAM corridors (e.g., 120knots for cruise speed), 

nominal flight times are computed for the given routes, as 
summarized in Table I. These flight times are used to estimate 
the landing times at destination vertiports.   

TABLE I.  FLIGHT TIMES FOR NOMINAL ROUTES 

No. Origin Destination Flight Time (min) 
1 DF100 DF25 11.2 

2 DF100 DF101 24.7 

3 DF101 DF30 15.3 

4 DF101 DF100 25.4 

5 DF25 DF100 10.5 

6 DF25 DF32 10.6 

7 DF30 DF101 16.5 

8 DF30 DF32 15.8 

9 DF32 DF25 10.7 

10 DF32 DF30 17.0 

B. Algorithm Evaluation for a Typical Scenario 
Fig. 5 shows the traffic demand profile for a typical 

scenario developed in this experiment setup. Each stacked bar 
consists of departure demand (blue bars) and arrival demand 
(green bars) from two operators in each 12-min time bin.  

 

Fig. 5. Demand (departure and arrival) distribution by operator. 

The proposed DCB algorithm was applied to resolve the 
demand-capacity imbalances that this traffic scenario would 
encounter. The comparison of the heatmaps in Fig. 6 shows 
how the DCB algorithm successfully mitigated the demand at 
vertiports. In the heatmaps, the horizontal axis shows ten time 
bins where each bin represents a 12-minute interval, and the 
vertical axis shows five vertiports. The number in each cell 
shows the number of operations, counting both departures and 
arrivals, at a specific vertiport in each time bin. For the given 
capacity of 4 operations/vertiport/bin, Fig. 6 shows that the 
original demand sometimes exceeds the capacity (e.g., 7 
operations at DF100 in ‘bin4’), but the modified demand is 
reduced to the given capacity or lower after resolving demand-
capacity imbalances.   



       

Fig. 6. Heatmaps for (a) original demand and (b) modified demand at five vertiports in each 12-min time bin. 

In the strategic conflict management layer like the proposed 
DCB algorithm, the demand mitigation is achieved by 
assigning pre-departure delay. Fig. 7 compares the departure 
time distributions of original and modified flight schedules. 
Beyond 48 minutes, we can observe that the departure times of 
some flights are shifted to the later time bins to meet the 
capacity constraint at vertiports. The arrival time distributions 
also show a similar tendency because the same amount of time 
is shifted for each delayed flight. Fig. 8 shows the histogram 
for the pre-departure delay distribution by operator. In this 
scenario, 15 flights (25% of total flights) get delayed for the 
DCB. Those flights having positive delay values are delayed 
for 7.1min on average, with the maximum delay of 21.0min 
assigned to Operator 2’s flight. The sum of delays is 55.5min 
(7 flights) and 51.5min (8 flights) for Operator 1 and 2, 
respectively, indicating that the scheduled delays are fairly 
distributed between operators in this case. 

To measure the traffic density in the airspace, we also 
counted the number of simultaneous operations based on the 

 

Fig. 7. Histogram for departure time changes before and after DCB. 

modified schedule after DCB. Fig. 9 shows how the aircraft 
counts for each operator and in total change as the simulation 
time progresses. It is observed that the number of simultaneous 
flights reaches up to 15 flights in this scenario. As there are 10 
routes available, that means more than one flight is flying 
along some of the individual routes during the peak.  

C. Evaluation Metrics for Ten Traffic Scenarios 
The evaluation has been repeated for ten different traffic 

scenarios in which the departure times and OD pairs are 
randomly assigned while keeping the same departure demand 
profile and demand distribution over the given ten routes. The 
main metrics measured are summarized in Table II. In most 
metrics, the average values from the ten random scenarios are 
similar to the ones for a typical scenario shown in Section 
III.B. Depending on the OD pair and departure time 
assignments in the given scenario, the delay distribution 
between operators can be varied, as shown in the large standard 
deviation values for the sum of delays by operator.  

 

Fig. 8. Histogram for pre-departure delay distribution. 



 

Fig. 9. Number of simultaneous flights over simulation time. 

TABLE II.  METRICS FOR EVALUATION FROM TEN RUNS 

Measurement Average Standard 
Deviation 

Number of flights delayed 15.7 4.2 
Number of flights delayed  
[Operator 1 : Operator 2] 7.4 : 8.3 2.8 : 2.5 

Number of flights delayed 
more than 5min 8.7 4.6 

Mean delay (min) 1.95 0.85 

Median delay (min) 0.00 0.00 

Maximum delay (min) 16.50 4.01 

Mean delay (nonzero only) 7.23 1.81 

Median delay (nonzero only) 6.60 2.07 
Sum of delays (min)  

[Operator 1 : Operator 2] 57.5 : 59.7  30.4 : 32.0 

IV. EXTENDED STUDIES FOR PRACTICAL CONSIDERATIONS 
There are various practical issues that should be considered 

when actual UAM flights are operated, which can affect the 
flight scheduling and DCB performance. Therefore, based on 
the same experiment setup using the proposed DCB algorithm 
and the traffic scenario in Dallas/Fort Worth urban area, we 
have conducted various experimental studies to see the impacts 
of practical concerns that can occur in actual UAM operations. 
These concerns include vertiport capacity changes (different 
demand-capacity ratios), a time bin size parameter (slot size) 
used in vertiport capacity constraint, lead time differences 
between operators for flight plan submission (fairness and 
prioritization issues in scheduling), flight speed differences 
between operators depending on the operating vehicle models, 
and uncertainties in actual departure/arrival times over the 
schedule.  

A. Effects of Vertiport Capacity Constraint 
The objective of the first extended study is to see the 

impact of vertiport capacity changes on traffic congestion and 
pre-departure delay. For a fixed demand level, vertiport 
capacity can be varied both in short and long terms. For 
example, the vertiport capacity can be temporarily reduced in 
daily operations due to adverse weather condition, vertiport 
facility issues, or resource shortage. On the other hand, the 
vertiport capacity can increase with additional vertipads 

(touchdown and liftoff (TLOF) areas), parking spaces, battery 
charging stations, and/or ground crew.  

In this study, the experiment variable is the capacity value 
in the 12-min time bin at each vertiport, and ranges from 
2ops/12min (equivalent to 120% of demand-capacity ratio) to 
6ops/12min (equivalent to 40% of demand-capacity ratio). 
Note that the baseline capacity used in the example scenario 
and the following experiments is 4ops/12min at each vertiport, 
which corresponds to the demand-capacity ratio of 60% over 
capacity for the given traffic scenario.  

Figs. 10-11 show the number of delayed flights and the 
mean delay for the given capacity values. In the figures, the bar 
chart shows the average values from 10 scenarios, while the 
whiskers represent the standard deviations. With the 
4ops/12min vertiport capacity (baseline), 26% of flights are 
delayed for 7 minutes on average. When including flights that 
were not delayed, the mean delay goes down to 2 minutes, with 
zero for the median delay. The results in this study show that 
the higher vertiport capacity can accommodate the given 
demand with fewer delayed flights and lower delay. On the 
other hand, a capacity reduction that produces a demand-
capacity ratio of 80% or higher may lead to passenger 
inconvenience with long delay. If the capacity constraint is 
reduced to 2ops/12min and 3ops/12min, the maximum ground 
delay can increase to 69 and 29 minutes, respectively, which 
may not be acceptable to the UAM transportation service users.  

 

Fig. 10. Number of delayed flights for different vertiport capacity constraints.  

 

Fig. 11. Mean delay for different vertiport capacity constraints (all flights). 



B. Effects of Time Bin Size in Capacity Constraint 
Next, we investigate the impact of the time bin size (slot 

size) used in the vertiport capacity constraint on the assigned 
delay. As the baseline, we have assumed that the time bin size 
is 12 minutes for capacity constraints, but other time bin sizes 
can be used in the future UAM operations. In this study, we try 
various time bin sizes, ranging from 3min (1ops/3min) to 
18min (6ops/18min), while keeping the same capacity rate 
(1operation every 3min).  

Figs. 12-13 show the number of delayed flights and the 
mean delay for the different time bin sizes in the vertiport 
capacity constraint. As can be seen, the smaller capacity bin 
size can result in more delays with more delayed flights. When 
only one operation is allowed in 3min time bin at a vertiport, 
for instance, more than 60% of flights are delayed because of 
too tight capacity constraints. However, the large time bin size 
has a potential risk to increase the frequency of tactical 
separation provision in the air, which is the second layer in 
conflict management before collision avoidance, since the 
proposed strategic conflict management approach through 
DCB does not provide sufficient separation between 
consecutive departures. Also, with the large time bin size, the 
suggested approach cannot resolve the potential problem that 
the traffic may be concentrated at a specific time (i.e., many 
flights scheduled at the top of the hour), as in the typical flight 
schedule for legacy airlines operations.  

 

Fig. 12. Number of delayed flights for various bin sizes in capacity constraint. 

 

Fig. 13. Mean delay for various time bin sizes in capacity constraint (all flights). 

C. Effects of Lead Time Differences 
In this paper, we assume that the UAM flight scheduling is 

based on the First-Request, First-Served discipline. In this 
scheduling rule, the lead time for flight plan submission can 
affect the scheduling outcomes and assigned delays, as well as 
the fairness when there exist multiple operators in the UAM 
ecosystem. Therefore, we also investigate the impact of lead 
time differences between operators in this study. The lead time 
is defined as the time difference between flight plan 
submission and desired departure time. This lead time is 
required to go through the flight plan approval procedure, have 
an allocated UAM vehicle ready for this trip, and prepare the 
actual departure flight such as passenger boarding, ground 
movement to the assigned vertipad for takeoff, and takeoff 
clearance request and approval.  

While the baseline case assumes two UAM operators use 
the same lead time of 6 minutes, different lead times between 
operators are explored in this study. As an extreme case, we 
test the case where one operator submits all the flight plans 
much earlier than the other operator’s, for example, with 2-
hour lead time. As another case for the competitive condition, 
we also test the case where one operator’s lead time is 9 
minutes, while the other operator’s is still 6 minutes. Then, we 
measure the sum of scheduled delays by operator for 
comparison.  

Figs. 14-15 show the number of delayed flights and the 
sum of delays by operator. Based on the First-Request, First-
Service discipline, earlier flight plan submissions take the 
available capacity slots in advance, leading to fewer delayed 
flights and lower delays. For example, when all the flights 
from Operator 1 are submitted in advance with 2-hour lead 
time like a pre-scheduled shuttle service, Operator 1 is 
expected to have the minimum delay whereas Operator 2’s 
flights providing ad hoc on-demand transportation service take 
most of delays because of few vertiport slots remained. Note 
that Operator 1 can still have some delays due to the demand-
capacity imbalances induced by its own flights only. This 
result shows that the different lead time between operators can 
raise a fairness issue on scheduled delay distribution, which 
needs more research and the development of Community 
Based Rules (CBRs) in scheduling scheme and prioritization 
for UAM operations in the federated operating system.  

 

Fig. 14. Number of delayed flights by operator for different lead times. 



 

Fig. 15. Sum of delays by operator for different lead times. 

Competitive vertiport slot assignment between multiple 
operators may help reduce the total delay in the whole system. 
Figs. 16-17 show the number of delayed flights and the mean 
delay for all the flights. Although the total number of delayed 
flights in the baseline case having the same lead time is higher 
than the extreme cases that one operator submits its flight plans 
very early, the bar graph shows that the mean delay (or the sum 
of delays) is lower in the baseline. If one operator (e.g., UAM 
shuttle service provider) pre-occupies the vertiport slots, then 
its flights are free from delay, leading to the reduce number of 
delayed flights in total. However, the other operator (e.g., on-
demand UAM service provider) may get more delay penalty 
with more delayed flights and longer delay, resulting in a total 
delay that is even higher than the sum of delays from two 
operators when having the same lead time.  

D. Effects of Flight Speed Differences 
In the UAM ecosystem, it is expected that each operator 

operates different UAM vehicle models, which have different 
flight characteristics and performance. As one of the main 
vehicle performance characteristics, for instance, the cruise 
speed (or energy-efficient flight speed) can be varied by the 

 

Fig. 16. Number of delayed flights for different lead times. 

 

Fig. 17. Mean delay for different lead times (all flights). 

vehicle models, which results in the different nominal flight 
times for the same origin-destination route between operators. 
In this subsection, we investigate the impact of the flight speed 
differences on the scheduled delay and the maximum number 
of simultaneous operations in the air.  

The baseline case assumes that the two operators use the 
same flight speed. To differ the flight speed, four other cases 
assume that all the flights from Operator 1 fly faster or slower 
than Operator 2’s by 10% and 20%.  

Figs. 18-19 show the number of delayed flights and the 
mean delay for five different flight speeds of Operator 1, 
compared to the fixed flight speed of Operator 2. According to 
the results, various flight speeds between operators may induce 
the demand mitigation by shifting the arrival demand peak, 
resulting in fewer delayed flights and less delay, compared to 
the same flight speed case (baseline). However, the large 
variations are observed in individual runs, as indicated by the 
large standard deviations (whiskers in the bar graphs), which 
requires further investigation with more traffic scenarios in the 
future to find out what factors contribute to the scheduled delay 
when the flights are operated at different flight speeds.  

 

Fig. 18. Number of delayed flights when Operator 1 has different flight speeds. 



 

Fig. 19. Mean delay when Operator 1 has different flight speeds (all flights). 

Flight speed can also affect the traffic density and 
throughput in the airspace. UAM flights flying at a slower 
speed will stay in the air for a longer time, leading to denser 
traffic. Fig. 20 shows the maximum number of simultaneous 
operations for Operators 1 and 2, as well as in total, based on 
the modified schedule after resolving demand-capacity 
imbalances. As expected, the maximum number of concurrent 
flights operated by Operator 1 in the given traffic scenario 
increases as its flight speed gets slower.  

 

Fig. 20. Maximum number of simultaneous operations averaged from ten runs 
by operator and in total, when Operator 1 has different flight speeds. 

If the UAM vehicles fly at different speeds in the shared 
airspace, there is a potential safety issue related to the 
overtaking case where a flight is moving faster than the other 
flights flying along the same route. In the experimental runs, a 
few cases were observed where a flight departing the origin 
vertiport later arrived at the destination earlier than the other 
flight having the same origin-destination route because of the 
flight speed difference. In future work, the proposed strategic 
conflict management needs to be improved to prevent flights 
from overtaking or tail-to-nose colliding in the air by 
considering additional constraints or introducing multi-lanes in 
the UAM corridors with sufficient lateral separations.  

E. Effects of Departure & Arrival Time Errors 
Lastly, we explore the impact of departure and arrival time 

errors from the schedule determined by the proposed DCB 
algorithm. As observed in the legacy airline industry, it is 
expected to have some levels of deviations in actual takeoff or 
landing times from the given schedule. For departures, actual 
takeoff time can be different from the schedule because of 
many reasons, including passenger’s early/late arrival, pilot 
and aircraft readiness status, passenger boarding time delay, 
uncertainty in aircraft ground movement, communication delay 
with vertiport operator, and traffic congestion near vertipad. 
Similarly, actual arrival time at destination vertiport can have 
large deviations from the estimated landing time due to various 
uncertainties such as unexpected departure delay, convective 
weather along the route, localized wind impact, vehicle 
performance, and traffic congestion near and/or on vertiport. 
These errors do not only cause the adverse effects in aircraft 
scheduling like unscheduled delays and reduced throughput [7, 
8], but also lead to violations in demand capacity balancing. In 
this study, we will focus on the DCB violations only. In the 
strategic conflict management phase, tactical rescheduling in a 
short time right before takeoff is not taken into consideration 
when detecting a DCB violation in actual operations.  

To see the effects of departure time errors from the 
schedule, we implemented 10 runs for each scenario with 
different deviations, ranging from ±1min to ±5min errors, in 
which the actual departure times were randomly deviated from 
the scheduled departure times with a uniform distribution. 
Since there are 10 test scenarios in this study, we conducted 
500 runs in total (= 10 scenarios x 5 deviation cases x 10 
runs/case) and averaged the number of DCB violations for each 
deviation case.  

The stacked bar chart in Fig. 21 shows the number of DCB 
violations at the given five vertiports, depending on the level of 
departure time errors from 1min to 5min. Note that the baseline 
case having no departure time errors is not shown in this graph 
because it has zero DCB violations. Even with the 1min 
deviation in departure time, more than 4 DCB violations are 
observed since the modified departure time for resolving a 
demand-capacity imbalance is assigned to the beginning of the 
next available time bin. The number of DCB violations also 
increases, as the departure time error increases from 1min to 
5min. To mitigate these kinds of violations, we may assign the 
modified departure time to the middle of the next available 
time bin or add a buffer of 1 or 2 minutes to the next time bin 
start time. However, this mitigation plan will increase the 
scheduled delay up to 6min, if a 12min time bin is used. It is 
noted that there is a tradeoff between DCB violations and pre-
departure scheduled delay in the DCB algorithm design, when 
considering the departure time uncertainty. Since the 
uncertainty is unavoidable in actual operations, on the other 
hand, the DCB violations in the strategic planning phase may 
be ignored by setting the capacity constraints with appropriate 
buffers such that there is still plenty of spacing in the demand 
for separation provision to deal with any potential conflicts.  

Similar runs were executed to evaluate the impact of the 
arrival time errors. Fig. 22 illustrates the number of DCB 
violations for five different levels of arrival time errors. The 
bar chart shows that the number of DCB violations increases, 
as the arrival time error level increases from 1min to 5min. 
However, the DCB violations are relatively fewer, compared  



 

Fig. 21. DCB violation count for various departure time deviation levels. 

 

Fig. 22. DCB violation count for various arrival time deviation levels. 

to the departure time error cases, because the departure time 
adjustment at origin vertiport is the main solution to resolve the 
demand-capacity imbalance. In most cases, the shifted arrival 
times after the DCB resolution can be located at any of the 
points in the given time bin, instead of the beginning of the 
next available time bin, depending on the nominal flight time. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, the demand capacity balancing (DCB) at 

vertiports was explored to provide the UAM traffic with 
sufficient separation for takeoffs and landings in the strategic 
flight planning phase, aiming to reduce the need of tactical 
separation provision. Given the traffic scenarios in Dallas/Fort 
Worth urban area, we verified that the proposed DCB 
algorithm could work well to manage the demand effectively 
by assigning pre-departure delays. We also investigated how 
the flight schedule modified by DCB and the DCB 
performance would be affected by practical issues. The 
experiment results showed that the reduction in vertiport 
capacity could increase both the number of delayed flights and 
the mean delay significantly. Whereas the smaller time bin size 
in capacity constraint could result in more delays, the larger bin 
size might require more frequent tactical separation provisions 
in the air. In a competitive environment with multiple UAM 
operators, it was found that the difference in the lead time from 
flight plan submission to desired departure time would cause a 
fairness issue in terms of delay distribution between operators 
and that the difference in flight speed could not only affect the 
estimated arrival demand peak, but also change the traffic 
density in the UAM airspace. Lastly, we found that the 

uncertainty in actual departure and arrival times could bring 
about DCB violations at vertiports.  

The experiment results about the DCB at vertiports shown 
in this paper provide a useful guideline for future research 
work with respect to the strategic conflict management for 
UAM operations. First, it is required to enhance the strategic 
conflict management approach to managing a higher 
operational tempo, taking the proposed DCB algorithm as a 
starting point. The current DCB has focused on the demand 
management at vertiports only, but it should deal with the other 
airspace resources like UAM corridor entry and exit points and 
intersection waypoints for crossing and/or merging. To reduce 
the need for tactical separation provision, more sophisticated 
aircraft control by assigning different flight speeds by route 
segment or providing the estimated times of arrival at 
significant waypoints may be needed in the strategic conflict 
management layer. Next, we need to consider the UAM 
operational conditions in the federated network system having 
multiple operators. As shown in Section IV.C, different 
operational rules between operators lead to the fairness and 
prioritization issues in the usage of shared airspace resources. It 
is required to develop appropriate scheduling disciplines (e.g., 
First-Come, First-Served vs. First-Request, First-Served) that 
can handle higher priority flights within and between UAM 
operators while satisfying all the stakeholders and to establish 
the relevant CBRs. Lastly, more realistic constraints in UAM 
operations should be considered in the DCB algorithm. These 
may include the maximum delay allowed, the possibility of 
flight cancellation, the minimum separation requirements 
between flights, freeze horizon for rescheduling, conformance 
requirements with the schedule, vehicle performance 
requirements within UAM corridors and near vertiports, the 
availability of vehicles, pilots, and ground crew resources at 
vertiports, and the integration with other traffic like helicopters 
and general aviation.  
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