Integrated Human Health Risk Assessment: Requirements for Safe Expeditions to Mars

Dr. Azita Valinia NASA Engineering & Safety Center

COSPAR 2022 Athens, Greece

"Others have said they can go there earlier. Have at it. I want to see that. But when it comes to human life, NASA is going to be very particular, and there are a lot of ifs out there."

NASA Administrator Bill Nelson, during a Washington Post interview July 21, 2021, discussing long-term plans by the Agency to **send humans to Mars** in the late 2030s.

- This **NESC assessment** is the *first* of its kind focused on assessing integrated health risks to crew on **missions to Mars**, and the potential engineering solutions required to minimize those risks.
- By using a systems approach (rather than individual countermeasures), the assessment team has examined the trade space of a subset of human health hazards and the associated risks to find solutions to mitigate the risks.
- URL: <u>https://ntrs.nasa.gov/citations/20220002905</u>
 Safe Human Expeditions Beyond Low Earth Orbit (Valinia et. al.), February 2022

Hazards of Human Spaceflight

Space Radiation

Invisible to the human eye, radiation increases cancer risk, damages the central nervous system, and can alter cognitive function, reduce motor function and prompt behavioral changes.

Isolation and Confinement

Sleep loss, circadian desynchronization, and work overload may lead to performance reductions, adverse health outcomes, and compromised mission objectives.

Distance from Earth

3

Planning and self-sufficiency are essential keys to a successful mission. Communication delays, the possibility of equipment failures and medical emergencies are some situations the astronauts must be capable of confronting.

Gravity (or lack thereof)

4

Astronauts encounter a variance of gravity during missions. On Mars, astronauts would need to live and work in three-eighths of Earth's gravitational pull for up to two years.

5

Hostile/Closed Environments

The ecosystem inside a vehicle plays a big role in everyday astronaut life. Important habitability factors include temperature, pressure, lighting, noise, and quantity of space. It's essential that astronauts stay healthy and happy in such an environment.

Human System Risk Posture Summary – Risks by Hazard (as of November 2021)

	Low Earth Orbit	Low Earth Orbit	Lunar Orbital	Lunar Orbital	Lunar Orbital +	Lunar Orbital +	Mars	Mars	
Human Spaceflight Risks	(Short)	(Long)	(Short)	(Long)	Surface (Short)	Surface (Long)	(Preparatory)	(Planetary)	Notes:
	< 30 D	30 D - 1 Y	< 30 D	30 D - 1 Y	< 30 D	30 D - 1 Y	< 1 Y	730-1224D	Risk posture data managed,
Distance from Earth					4 L				controlled and approved by the
* Human Systems Integration Architecture (HSIA) Risk ^{5x5}									HMTA/Human System Risk Board
* Medical Conditions Risk ^{5x5}									(HSRB)
* Food and Nutrition Risk									*HSBB Bisks for which HBP has active
* Pharm Risk									rosparch (nor Human Posparch
Isolation and Confinement									= Tesearch (per human Research
* Behavioral Risk ^{5x5}									Roadmap)
* Team Risk									Data are for in-mission operations
Altered Gravity									unless otherwise noted for Long-Term
* Sensorimotor Risk ^{5x5}									Health (LTH)
* Bone Fracture Risk ^{5x5}									
* Cardiovascular Risk ^{5x5}									Risk text color:
* Renal Stone Risk									 Current risk ratings
* SANS Risk									 Risk ratings under HSRB review
Crew Egress Risk ^{5x5}									
* Microhost Risk									Risk colors [.]
Urinary Retention Risk									High LxC
* Aerobic Risk									Mid LxC
* Muscle Risk									
Venous Thromboembolism (VTE) Concern									
Hostile Closed Environment									
* EVA Risk									^{5x5} item - Risk has been updated using
* Dynamic Loads Risk									5x5 LxC scale (remaining risks use
Carbon Dioxide (CO2) Risk 5x5									previous 3x4 scale)
Toxic Exposure Risk ^{5x5}									
* Immune Risk									
* Sleep Risk									
Decompression Sickness (DCS) Risk									
Hypoxia Risk (LTH)									
* Dust Risk									
Electric Shock ^{5x5}									
Hearing Loss (LTH)									2
Radiation									3
* Radiation Carcinogenesis Risk (LTH)									
Non-Ionizing Radiation Risk									

Baselining In-Mission Mars Risk

Antonsen et al. Accepted NPJ Microgravity Oct 2021

IMM estimates suggest:

- At least a 1:90 likelihood of Loss of Crew Life for a 730-day Mars mission due to medical risk alone
 - This is comparable to the Space Shuttle total Loss of Crew risk at the end of the program
 - This is an underestimate
 - Depends on mission duration and effectiveness of the Crew Health and Performance System

The ISS experience suggests:

- At least 1.7 high-consequence events <u>requiring</u> <u>immediate intervention</u> occurred per year
- Around 3 to 4 high-consequence events requiring immediate intervention per year occurred in the first 6 years
- Appropriately responding to these types of events in a Mars mission will be significantly harder without real-time communications

Notional Risk Trends: Radiation Exposure

Showing Current Risk Space and Domains that illustrate Potential Improvements in LTH Outcomes from Radiation Exposure

Mission Duration (Days)

Notional Risk Trends: Altered Gravity Exposure

Return

Full AG

REGION C:

600

REGION A

Current High-

Risk Space

Safer Region

800

Risk can be reduced by providing

full or partial artificial gravity

Notional Risk Trends showing Current Risk Space and Domains that illustrate Potential Improvements in In-mission Risks due to Altered Gravity Exposure

Status Quo (no AG)

Transit

REGION B:

Risk can be reduced by

below <365 days

reducing mission time to

Safer Region

200

Notional Risk of LOMO/LOM

Human system risks affected by altered gravity in-mission:

- SANS
- Sensorimotor alterations
- Bone fracture
- Cardiovascular
- Aerobic capacity
- Muscle strength
- Venous thromboembolism
- Urinary retention
- Renal stone
- MicroHost
- Immune
- Sleep
- Dynamic loads
- EVA injury

Crew egress Human system risks affected by

altered gravity for LTH:

- SANS
- Bone fracture

But - HSIA Risk increases with increased system complexity

Mission Duration (Days)

400

Partial AG

Notional Risk Trends: Reduced Ground Support

Notional Risk Trends Due to Inadequate HSIA

One Way Comm. Delay

What shapes this risk curve?

- Crew performance degrades with time
- Training effectiveness degrades with time
- System knowledge improves with time
- Spares decrease with time
- Evacuation timeframe improves only at end of mission
- One-way communication time varies with distance from Earth

- Integrated Health Risk Analysis pointed to:
 - **Game-changing risk reduction** (needs fundamental paradigm shift in approaching the problem and may require decades of research and development (R&D))
 - Shorter Mars transit durations feasibility study with current technology shows promise, approach ensures sustainability
 - New paradigm for designing Human Systems Integration Architecture (HSIA) for long missions beyond low Earth orbit (LEO)
 - Artificial gravity or similar techniques to reduce microgravity exposure
 - Incremental risk reduction low-hanging fruit, also increases knowledge base and lays a strong foundation
 - Improved radiation monitoring/shielding and timing of missions to Mars
 - Galactic cosmic ray (GCR) reduction/standards

Incremental Risk Reduction

GCR - the main radiation health risk and challenge for crew health

- Complex mixture of highly energetic particles everything on the periodic table
- Highly penetrating throughout the solar cycle
- Continuous low exposure rate
- Significant uncertainties in projecting attributable health risks
- Combined models can reliably predict exposure, but <u>important gaps remain</u>
 - Precise spaceflight measurements of neutrons above 20 MeV
 - Ground-based measurements and models for neutron and light ions
 - Time-resolved measurements for GCR heavy ions

Slaba, Space Weather 19: e2021SW002851; 2021.

Model-calculated mission exposures

	Mission	Duration ⁽²⁾	Effective dose (mSv) ⁽¹⁾				
	WISSION	(days)	0 g/cm ²	20 g/cm ²	40 g/cm ²		
solar maximum	Artemis II	10	6.3	5.1	5.3		
	Artemis III	30	19.0	15.4	15.8		
	Artemis III (surf)	23.5/6.5	17.4	14.1	14.4		
	Gateway – 6 mo.	183	116	94	96		
	Gateway – 12 mo.	365	232	188	192		
	Mars DRM	621/40	405	331	339		
	Mars DRM	840	533	432	442		
solar minimum	Artemis II	10	14.6	10.9	10.7		
	Artemis III	30	43.8	32.8	32.1		
	Artemis III (surf)	23.5/6.5	39.8	29.9	29.2		
	Gateway – 6 mo.	183	267	200	196		
	Gateway – 12 mo.	365	533	399	391		
	Mars DRM	621/40	929	702	688		
	Mars DRM	840	1228	918	899		

- NASA PEL is now 600 mSv effective dose
- Summary for crew with no prior flight experience
 - All crew qualify for Artemis missions
 - All crew qualify for Gateway missions
 - Certification for Mars DRM depends on mission timing (solar cycle)
 - Solar maximum within PEL
 - Solar minimum exceeds PEL

⁽¹⁾ICRP effective dose is calculated using the approach described by Slaba et al. *Adv. Space Res.* **45**: 866-883; 2010. ⁽²⁾X/Y format denotes X days in free space and Y days on the surface.

GCR Dose Variation with Solar Cycle

- The energetic GCR ions are so penetrating that large shielding mass is required to mitigate GCR threats to crew health; GCR is a major radiation issue for long-term exploration of deep space
- GCR flux varies slowly over solar cycle time scales (about a decade)
- The ability to forecast the shielding mass required to protect crew for upcoming missions as a function of phase in the solar cycle will complicate mission planning
- Long-range Mars mission planning would benefit from efforts to improve the ability to forecast solar cycle length
 - Mars missions during solar maximum will substantially reduce crew dose
 - Increased shielding mass is required to keep crew radiation dose within program limits during solar minimum
 - Additional shielding mass reduces payload, impacting overall mission capability

Effective Dose Equivalent (n	nSv/da
1965 Solar Minimum	0.8
1977 Solar Minimum	0.92
1987 Solar Minimum	0.8
1997 Solar Minimum	0.9
2010 Solar Minimum	0.9
2019 Approaching Minimum	1.0
1970 Solar Maximum	0.5
1982 Solar Maximum	0.4
1991 Solar Maximum	0.44
2001 Solar Maximum	0.5

12

- A standard for GCR shielding for human exploration missions beyond LEO is needed
- It is recommended that vehicles and habitat systems provide sufficient protection to reduce exposure from GCRs by 15% compared with free space such that the effective dose from GCR remains below:
 - 1.3 millisieverts per day (mSv/day) for systems in space
 - 0.8 mSv/day for systems on planetary surfaces
- This standard is based on missions during solar minimum (the worst-case scenario); it can be achieved with current aluminum spacecraft structures
- Note: For Mars missions *longer than 600 days*, additional GCR mitigation strategies will be required to meet the newly proposed 600 mSv crew lifetime exposure limit (except for potentially limited opportunities for missions during solar maximum when the overall GCR exposure is the lowest)

Monitoring of SPEs: Sun-Earth L4, L5, Sun-Mars L1 and L4, L5

- Additional space weather monitoring assets (i.e., coronagraphs and particle detector suites) at Sun-Earth Lagrange points L4 and L5 and Sun-Mars L1 and L4/L5 can enable sufficient early warnings for Mars missions during transit and long-term stays on the planet surface
- The Sun-Earth and Sun-Mars L4/L5 assets would also provide a communications relay solution for when the Earth line-of-sight to Mars is behind or close to the Sun, leading to a 2-week blackout period every 2 years

Fast Mars Round Trips and SWx Safety Zones

Additional space weather monitoring assets (solar coronagraph and particle detector suites) at Sun-Earth Lagrange point L4 and Sun-Mars L1 and L4/L5 can enable sufficient early warnings for Mars missions during transit and stay. The Sun-Mars L4/L5 assets would also provide a communications relay solution for when the Earth line of sight to Mars is behind/close to the Sun, leading to a 2-week blackout period every 2 years.

Recommendations for Future Research & Development

Mars Mission Architecture Investigate fast Mars transit Benefit: Reduces overall risks and enables sustainability

Human Research Investigate AG Prescription Benefit: Will inform gamechanging engineering solutions Radiation Monitoring Consider adding additional assets: Earth-Sun L4, Mars-Sun L1, L4, L5 Benefit: Improves early SW warning

Spacecraft Shielding Implement GCR shielding for humans-to-Mars missions Benefit: Impact future spacecraft designs now

Cross-Cutting Implement a paradigm shift in Human Systems Integration Architecture (HSIA) Benefit: Enable Earthindependent operations

Bottom Line

- Our understanding of the integrated Human System Risks for Mars missions is in its early stage. We don't have strong quantitative estimates, but we can establish a lower bound and a qualitative picture of how some engineering solutions will affect mission risk.
- A fundamental paradigm shift is needed to enable safe, sustainable, and Earth-independent human expeditions to Mars in the near term.
 - Requires both game-changing (i.e., revolutionary) as well as incremental (i.e., evolutionary) risk-reduction strategies.
- Engineering, human, and medical technical authorities should partner to further explore the integrated human risk trade space to prioritize gamechanging technologies and investments needed to significantly reduce the risk on future human Mars missions.

NESC Workshop Participants (September 14-16, 2021)

Jim Adams, University of Alabama at	Michael Hess, NASA
Huntsville	Robert Hodson, NASA
John Allen, NASA	Jon Holladay, NASA
Erik Antonsen, Baylor University	Bryce Horvath, NASA
Maneesh Arya, NASA	Robert Howard, NASA
Brad Bailey, NASA	Kyle Hughes NASA
Hazel Bain, NOAA	Kauser Intiaz NASA
Robert Beil, NASA	Matt Johnson Institute for Human and
Mario Berges, Carnegie Mellon	Matt Johnson, Institute for Fuman and
University	Machine Cognition
Patrick Chai, NASA	Insoo Jun, JPL
Hector Chavez, NASA	Paul Kessler, NASA
Andrew Choate, ESSCA	Michael Kirsch, NASA
Steven Christe, NASA	Irina Kitiashvili, NASA
William Cirillo, NASA	John Karasinski, NASA
James Clawson, Stellar Solutions, Inc.	Maria Kuznetsova, NASA
Yaireska Collado-Vega, NASA	Kara Latorella, NASA
Michelle Courtney, Wyle Laboratories	Ruthan Lewis, NASA
Claudio Corti, University of Hawan at	Douglas Litteken, NASA
Manoa	Leila Mays NASA
Vincent Cross, TACLABS, Inc.	$\frac{1}{10000000000000000000000000000000000$
Nancy Currie-Gregg, Texas A&M	Vaitin MaTique NASA
	Kalum Nici igue, NASA
Steven Davison, NASA	Jim Meenan, NASA
Patrick Dees, NASA	Joseph Minow, NASA
Donna Dempsey, NASA	Jeff Morrill, NASA
Charles Dischinger, NASA	Tiffany Nickens, NASA
Stephen Edwards, NASA	Ryan Norman, NASA
Brian Evans, ESSCA	Cynthia Null, NASA
James Favors, NASA	Andrew Owens, NASA
Dave Folta, NASA	Tina Panontin, San Jose State
David Francisco, NASA	University
Razvan Gaza, NASA	Megan Parisi NASA
Brian Gore, NASA	Donald Parker NASA
Matthew Guideri, NASA	Jonathan Pellish NASA
Alexa Hallord, NASA	Joliatian Fensil, NASA
I NODIE Hatten, NASA	Arik Posher, NASA

	James Polk, NASA	Upendra Singh, NASA	Shu-Chieh Wu, San Jose
A	Tracie Prater, NASA	Brock Sishc, Wyle Laboratories	State University
ASA	Antti Pulkkinen, NASA	Tony Slaba, NASA	Michael Xapsos, NASA
	Philip Quinn, Wyle Laboratories	James Spann, NASA	Janice Zawaski, NASA
SA	Julie Robinson, NASA	Mike Stenger, NASA	
	Peter Robinson, NASA	Leland Stone, NASA	
ASA	Justin Rowe, ESSCA	Scott Tingle, NASA	
A	Michelle Rucker, NASA	Ronald Turner, Analytic Services, Inc.	
ł	Janapriya Saha, Wyle Laboratories	Walter Twetten, Booz, Allen, &	
SA	Kevin Sato, NASA	Hamilton	
Jose State	Sabrina Savage, NASA	Azita Valinia, NASA	
	Victor Schneider, NASA	Alonso Vera, NASA	
4	Richard Schunk, NASA	Nicholas White, Space Science	
SA	Edward Semones, NASA	Solutions LLC	
ASA	Marc Shepanek, NASA	Tim Wilson, NASA	
	Lisa Simonsen, NASA	Edward Wollack, NASA	
	1	<i>,</i>	