

Integrated Human Health Risk Assessment: Requirements for Safe Expeditions to Mars

Azita Valinia
NASA Engineering & Safety Center

Co-authors: John Allen, Erik Antonsen, David Francisco, Joe Minow, Jonny Pellish, Tony Slaba, Leland Stone, Jim Spann, Alonso Vera (NASA)

COSPAR 2022
Athens, Greece

NESC Safe Human Expeditions Workshop Participants

Jim Adams, University of Alabama at Huntsville
John Allen, NASA
Erik Antonsen, Baylor University
Maneesh Arya, NASA
Brad Bailey, NASA
Hazel Bain, NOAA
Robert Beil, NASA
Mario Berges, Carnegie Mellon University
Patrick Chai, NASA
Hector Chavez, NASA
Andrew Choate, ESSCA
Steven Christe, NASA
William Cirillo, NASA
James Clawson, Stellar Solutions, Inc.
Yaireska Collado-Vega, NASA
Michelle Courtney, Wyle Laboratories
Claudio Corti, University of Hawaii at Manoa
Vincent Cross, TACLABS, Inc.
Nancy Currie-Gregg, Texas A&M University
Steven Davison, NASA
Patrick Dees, NASA
Donna Dempsey, NASA
Charles Dischinger, NASA
Stephen Edwards, NASA
Brian Evans, ESSCA
James Favors, NASA
Dave Folta, NASA
David Francisco, NASA
Razvan Gaza, NASA
Brian Gore, NASA
Matthew Guibert, NASA
Alexa Halford, NASA
Noble Hatten, NASA

Michael Hess, NASA
Robert Hodson, NASA
Jon Holladay, NASA
Bryce Horvath, NASA
Robert Howard, NASA
Kyle Hughes, NASA
Kauser Imtiaz, NASA
Matt Johnson, Institute for Human and Machine Cognition
Insoo Jun, JPL
Paul Kessler, NASA
Michael Kirsch, NASA
Irina Kitiashvili, NASA
John Karasinski, NASA
Maria Kuznetsova, NASA
Kara Latorella, NASA
Ruthan Lewis, NASA
Douglas Litteken, NASA
Leila Mays, NASA
Torin McCoy, NASA
Kaitlin McTigue, NASA
Jim Meehan, NASA
Joseph Minow, NASA
Jeff Morrill, NASA
Tiffany Nickens, NASA
Ryan Norman, NASA
Cynthia Null, NASA
Andrew Owens, NASA
Tina Panontin, San Jose State University
Megan Parisi, NASA
Donald Parker, NASA
Jonathan Pellish, NASA
Arik Posner, NASA

James Polk, NASA
Tracie Prater, NASA
Antti Pulkkinen, NASA
Philip Quinn, Wyle Laboratories
Julie Robinson, NASA
Peter Robinson, NASA
Justin Rowe, ESSCA
Michelle Rucker, NASA
Janapriya Saha, Wyle Laboratories
Kevin Sato, NASA
Sabrina Savage, NASA
Victor Schneider, NASA
Richard Schunk, NASA
Edward Semones, NASA
Marc Shepanek, NASA
Lisa Simonsen, NASA

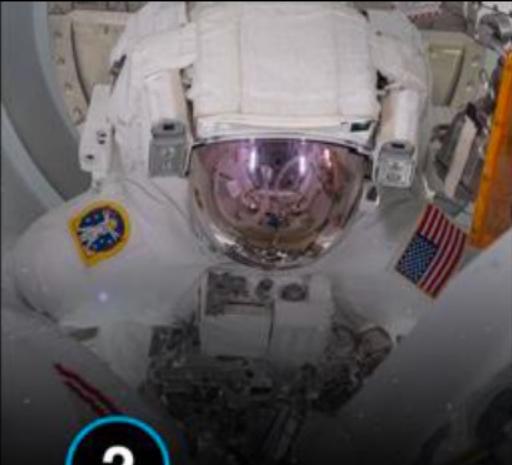
Upendra Singh, NASA
Brock Sishc, Wyle Laboratories
Tony Slaba, NASA
James Spann, NASA
Mike Stenger, NASA
Leland Stone, NASA
Scott Tingle, NASA
Ronald Turner, Analytic Services, Inc.
Walter Twetten, Booz, Allen, & Hamilton
Azita Valinia, NASA
Alonso Vera, NASA
Nicholas White, Space Science Solutions LLC
Tim Wilson, NASA
Edward Wollack, NASA

Shu-Chieh Wu, San Jose State University
Michael Xapsos, NASA
Janice Zawaski, NASA

“Others have said they can go there earlier. Have at it. I want to see that. But when it comes to human life, NASA is going to be very particular, and there are a lot of ifs out there.”

NASA Administrator Bill Nelson, during a Washington Post interview July 21, 2021, discussing long-term plans by the Agency to **send humans to Mars** in the late 2030s.

- This **NESC assessment** is the *first* of its kind focused on assessing **integrated health risks** to crew on **missions to Mars**, and the **potential engineering solutions** required to minimize those risks.
- By using a **systems approach** (rather than individual countermeasures), the assessment team has examined the trade space of a subset of human health hazards and the associated risks to find solutions to mitigate the risks.
- URL: <https://ntrs.nasa.gov/citations/20220002905>
Safe Human Expeditions Beyond Low Earth Orbit (Valinia et. al.), February 2022

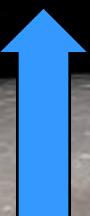

Hazards of Human Spaceflight

1

Space Radiation

Invisible to the human eye, radiation increases cancer risk, damages the central nervous system, and can alter cognitive function, reduce motor function and prompt behavioral changes.

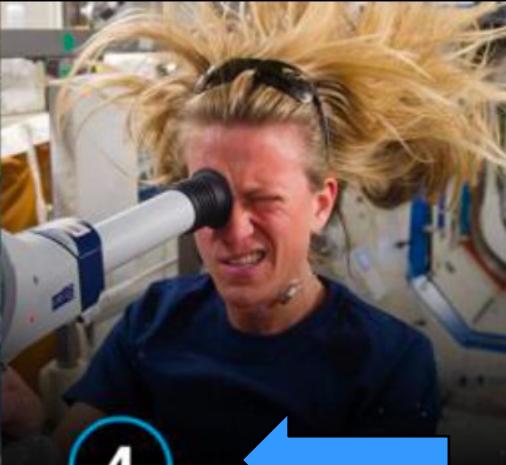
2


Isolation and Confinement

Sleep loss, circadian desynchronization, and work overload may lead to performance reductions, adverse health outcomes, and compromised mission objectives.

3

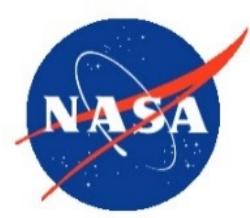
Distance from Earth


Planning and self-sufficiency are essential keys to a successful mission. Communication delays, the possibility of equipment failures and medical emergencies are some situations the astronauts must be capable of confronting.

4

Gravity (or lack thereof)

Astronauts encounter a variance of gravity during missions. On Mars, astronauts would need to live and work in three-eighths of Earth's gravitational pull for up to two years.



5

Hostile/Closed Environments

The ecosystem inside a vehicle plays a big role in everyday astronaut life. Important habitability factors include temperature, pressure, lighting, noise, and quantity of space. It's essential that astronauts stay healthy and happy in such an environment.

Human System Risk Posture Summary – Risks by Hazard

(as of November 2021)

Human Spaceflight Risks	Low Earth Orbit (Short)	Low Earth Orbit (Long)	Lunar Orbital (Short)	Lunar Orbital (Long)	Lunar Orbital + Surface (Short)	Lunar Orbital + Surface (Long)	Mars (Preparatory)	Mars (Planetary)
Distance from Earth	< 30 D	30 D - 1 Y	< 30 D	30 D - 1 Y	< 30 D	30 D - 1 Y	< 1 Y	730-1224D
* Human Systems Integration Architecture (HSIA) Risk ^{5x5}	Yellow	Yellow	Yellow	Red	Red	Red	Red	Red
* Medical Conditions Risk ^{5x5}	Green	Green	Green	Green	Green	Green	Red	Red
* Food and Nutrition Risk	Green	Green	Green	Yellow	Green	Yellow	Red	Red
* Pharm Risk	Yellow	Green	Green	Green	Green	Green	Red	Red
Isolation and Confinement	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
* Behavioral Risk ^{5x5}	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
* Team Risk	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Red	Red
Altered Gravity	Green	Green	Green	Red	Red	Green	Yellow	Red
* Sensorimotor Risk ^{5x5}	Green	Green	Green	Yellow	Yellow	Green	Red	Red
* Bone Fracture Risk ^{5x5}	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
* Cardiovascular Risk ^{5x5}	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
* Renal Stone Risk	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Red	Red
* SANS Risk	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
Crew Egress Risk ^{5x5}	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Red	Red
* Microhost Risk	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Red	Red
Urinary Retention Risk	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Red	Red
* Aerobic Risk	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
* Muscle Risk	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
Venous Thromboembolism (VTE) Concern	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Red	Red
Hostile Closed Environment	Yellow	Yellow	Yellow	Red	Red	Yellow	Red	Red
* EVA Risk	Yellow	Yellow	Yellow	Red	Red	Yellow	Red	Red
* Dynamic Loads Risk	Yellow	Yellow	Yellow	Red	Red	Yellow	Red	Red
Carbon Dioxide (CO ₂) Risk ^{5x5}	Yellow	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
Toxic Exposure Risk ^{5x5}	Yellow	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
* Immune Risk	Yellow	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
* Sleep Risk	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
Decompression Sickness (DCS) Risk	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
Hypoxia Risk (LTH)	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
* Dust Risk	Yellow	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
Electric Shock ^{5x5}	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
Hearing Loss (LTH)	Green	Yellow	Green	Yellow	Yellow	Yellow	Red	Red
Radiation	Green	Yellow	Green	Yellow	Green	Yellow	Red	Red
* Radiation Carcinogenesis Risk (LTH)	Green	Yellow	Green	Yellow	Green	Yellow	Red	Red
Non-Ionizing Radiation Risk	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Red	Red

Notes:

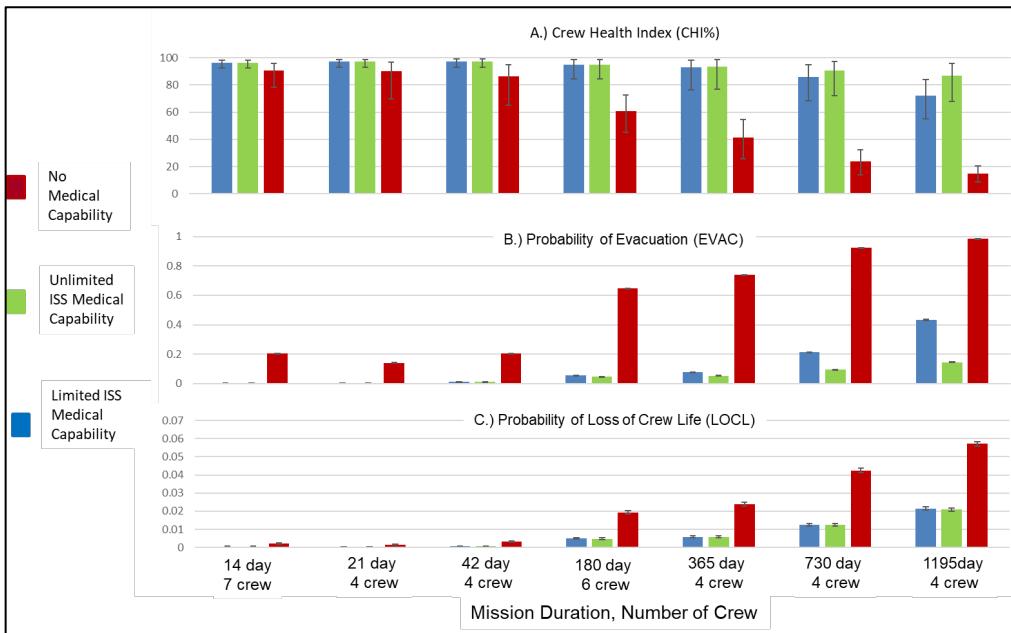
Risk posture data managed, controlled and approved by the HMTA/Human System Risk Board (HSRB)

* HSRB Risks for which HRP has active research (per Human Research Roadmap)

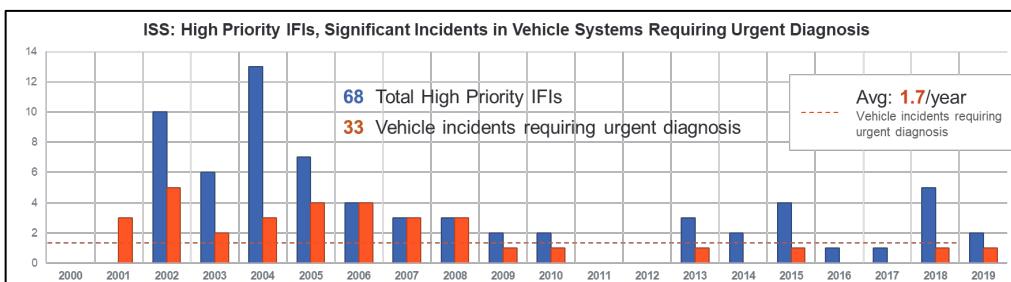
Data are for in-mission operations unless otherwise noted for Long-Term Health (LTH)

Risk text color:

- Current risk ratings
- Risk ratings under HSRB review

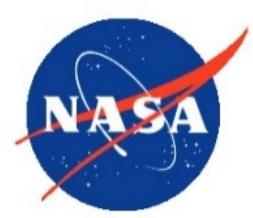

Risk colors:

- High LxC
- Mid LxC
- Low LxC


5x5 item - Risk has been updated using 5x5 LxC scale (remaining risks use previous 3x4 scale)

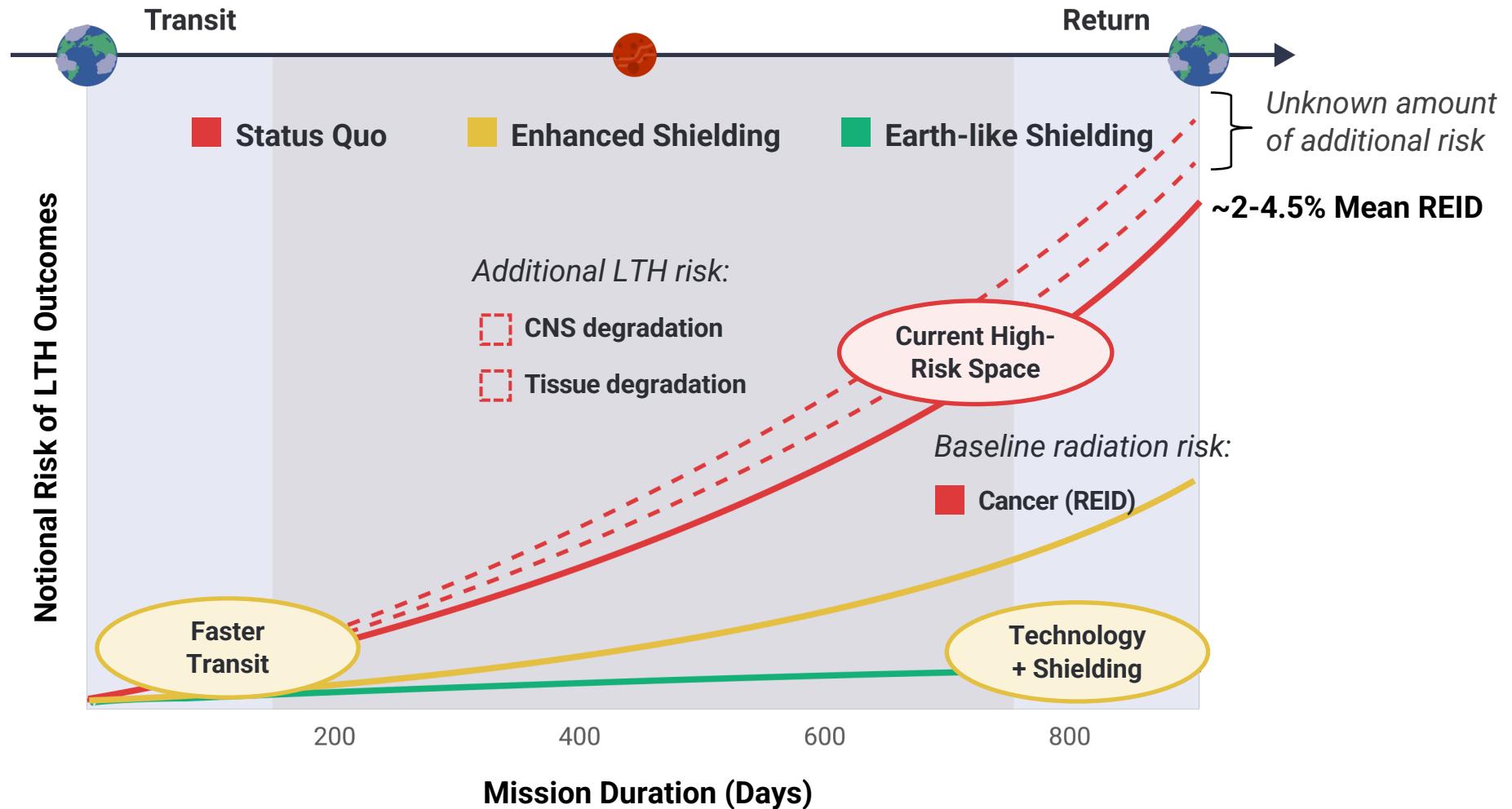
Baselining In-Mission Mars Risk

Antonsen et al. Accepted NPJ Microgravity Oct 2021



IMM estimates suggest:

- ❖ At least a 1:90 likelihood of Loss of Crew Life for a 730-day Mars mission due to medical risk alone
 - This is comparable to the Space Shuttle total Loss of Crew risk at the end of the program
 - This is an underestimate
 - Depends on mission duration and effectiveness of the Crew Health and Performance System

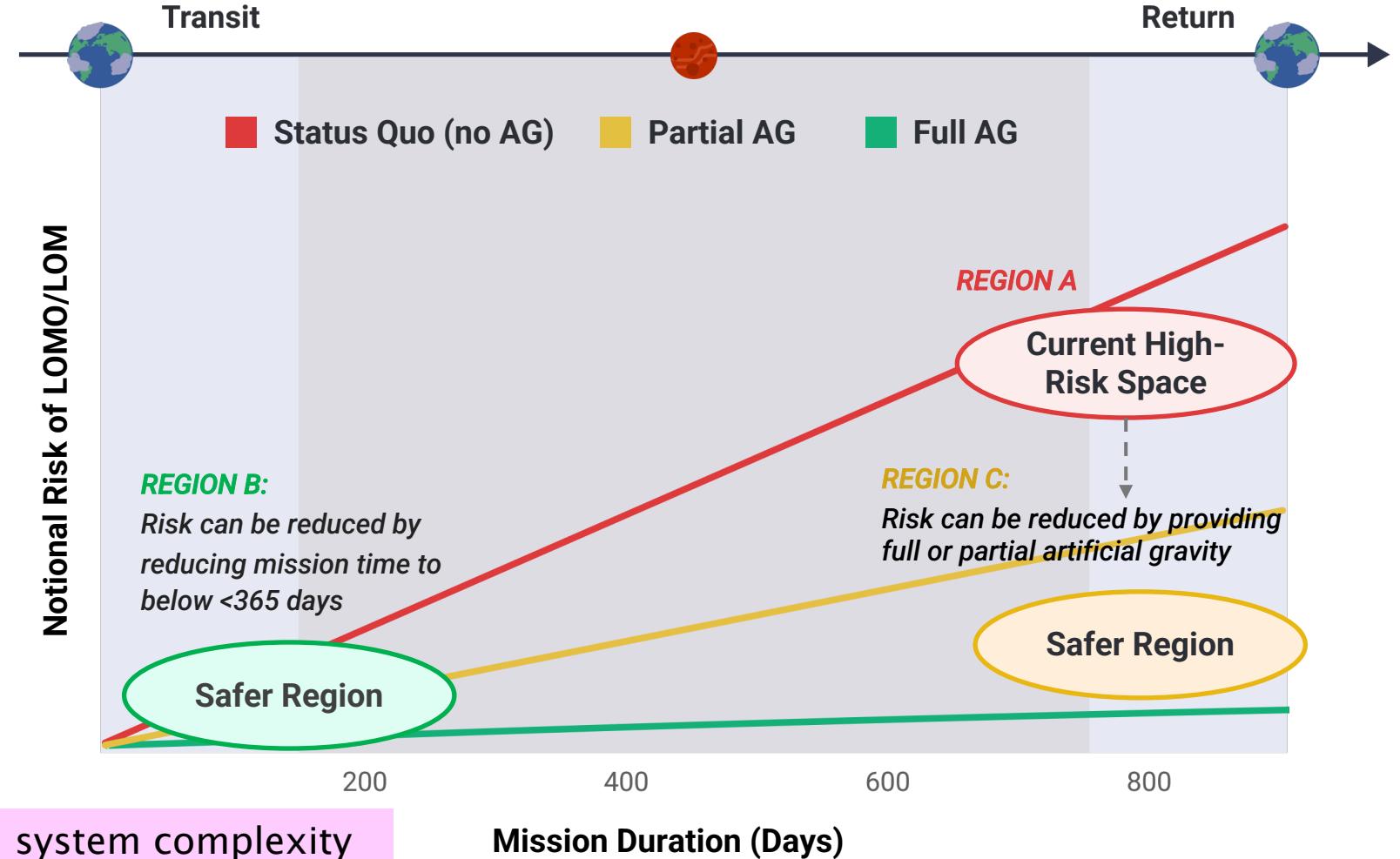

The ISS experience suggests:


- ❖ At least 1.7 high-consequence events requiring immediate intervention occurred per year
- ❖ Around 3 to 4 high-consequence events requiring immediate intervention per year occurred in the first 6 years
- ❖ Appropriately responding to these types of events in a Mars mission will be significantly harder without real-time communications

Notional Risk Trends: Radiation Exposure

Showing Current Risk Space and Domains that illustrate Potential Improvements in LTH Outcomes from Radiation Exposure

Notional Risk Trends: Altered Gravity Exposure


Notional Risk Trends showing Current Risk Space and Domains that illustrate Potential Improvements in In-mission Risks due to Altered Gravity Exposure

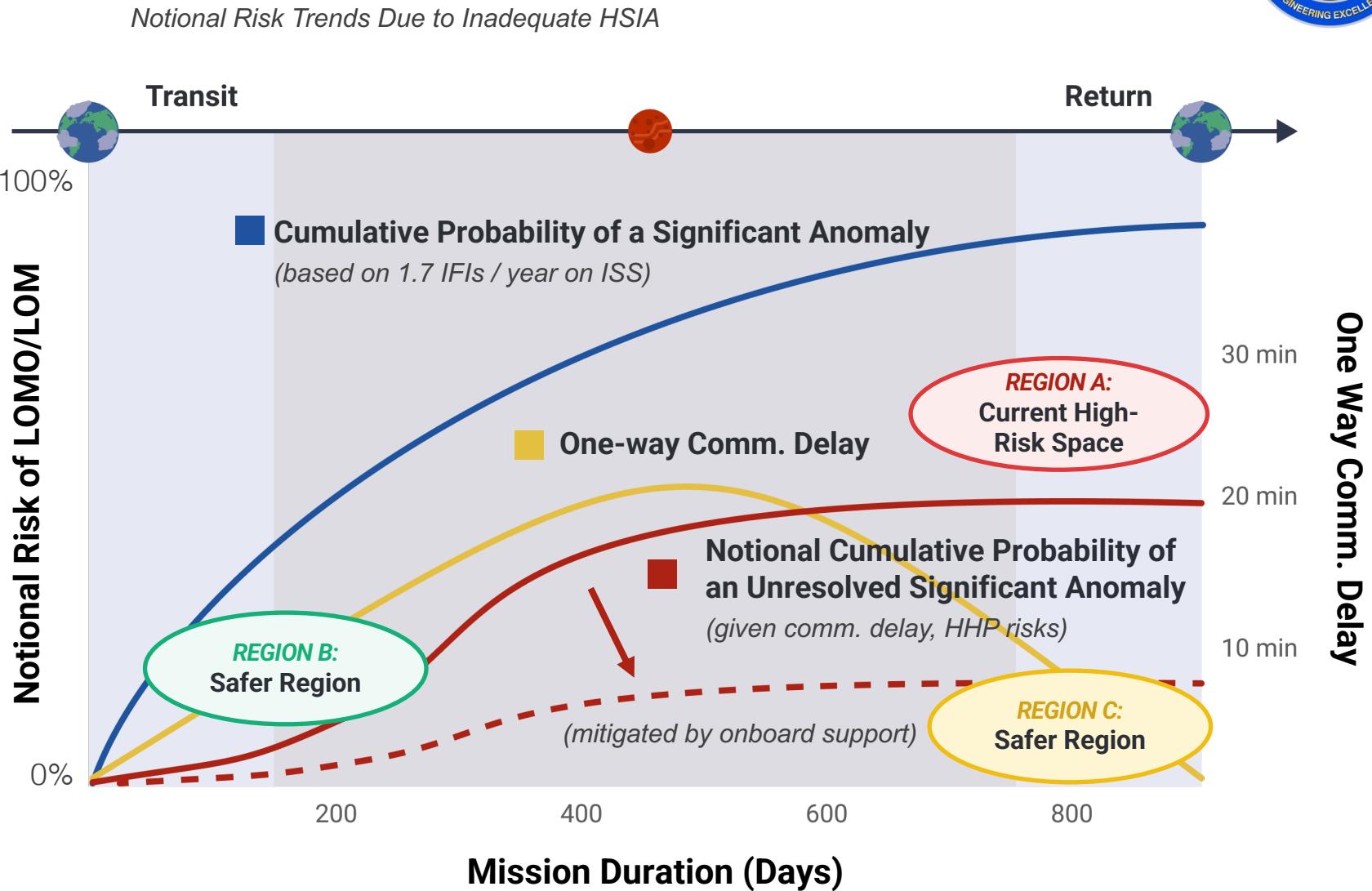
Human system risks affected by altered gravity in-mission:

- SANS
- Sensorimotor alterations
- Bone fracture
- Cardiovascular
- Aerobic capacity
- Muscle strength
- Venous thromboembolism
- Urinary retention
- Renal stone
- MicroHost
- Immune
- Sleep
- Dynamic loads
- EVA injury
- Crew egress

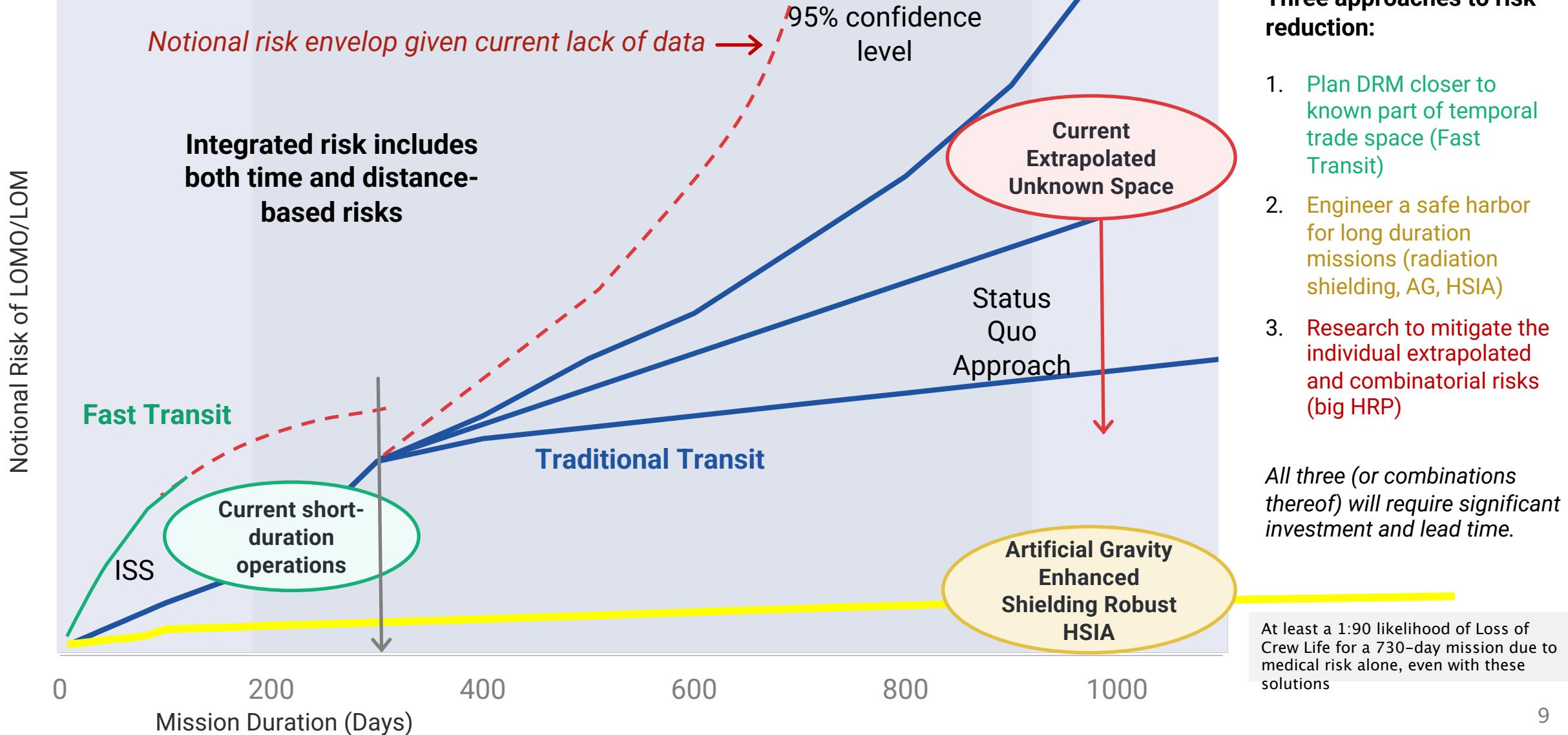
Human system risks affected by altered gravity for LTH:

- SANS
- Bone fracture

But – HSIA Risk increases with increased system complexity



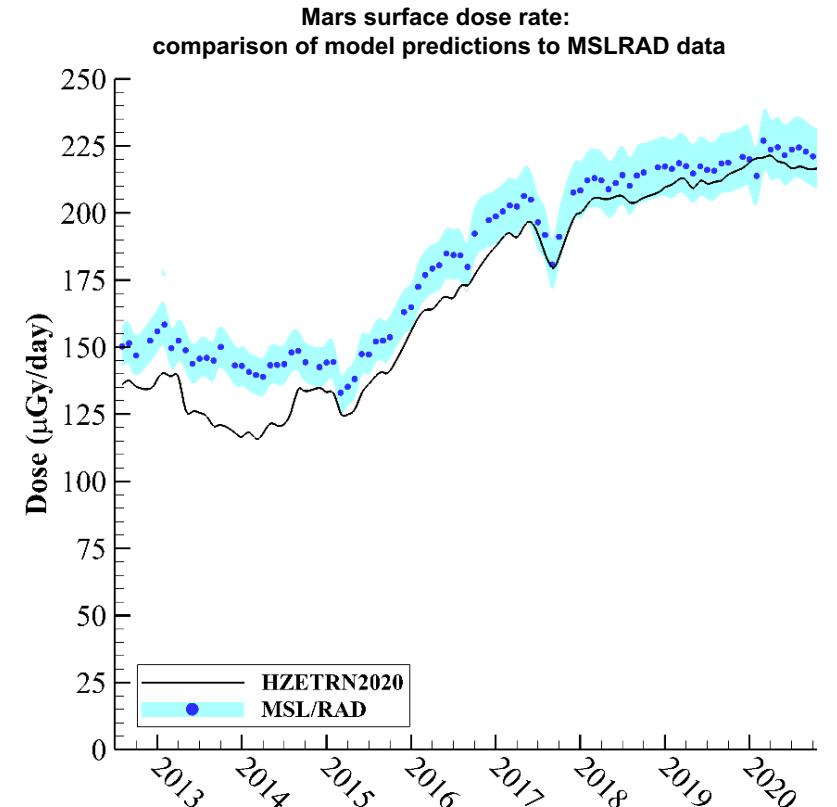
Notional Risk Trends: Reduced Ground Support


What shapes this **risk curve**?

- Crew performance degrades with time
- Training effectiveness degrades with time
- System knowledge improves with time
- Spares decrease with time
- Evacuation timeframe improves only at end of mission
- One-way communication time varies with distance from Earth

Integrated Mars Mission Risk

Integrated Risk Analysis Summary


- **Integrated Health Risk Analysis** pointed to:
 - **Game-changing risk reduction** (needs fundamental paradigm shift in approaching the problem and may require decades of research and development (R&D))
 - **Shorter Mars transit durations** – feasibility study with current technology shows promise, approach ensures sustainability
 - **New paradigm for designing Human Systems Integration Architecture (HSIA)** for long missions beyond low Earth orbit (LEO)
 - **Artificial gravity or similar techniques** to reduce microgravity exposure
 - **Incremental risk reduction** – low-hanging fruit, also increases knowledge base and lays a strong foundation
 - Improved radiation monitoring/shielding and timing of missions to Mars
 - Galactic cosmic ray (GCR) reduction/standards


Incremental Risk Reduction

- **GCR - the main radiation health risk and challenge for crew health**
 - Complex mixture of highly energetic particles – everything on the periodic table
 - Highly penetrating throughout the solar cycle
 - Continuous low exposure rate
 - Significant uncertainties in projecting attributable health risks
- **Combined models can reliably predict exposure, but *important gaps remain***
 - Precise spaceflight measurements of neutrons above 20 MeV
 - Ground-based measurements and models for neutron and light ions
 - Time-resolved measurements for GCR heavy ions

Slaba, Space Weather 19: e2021SW002851; 2021.

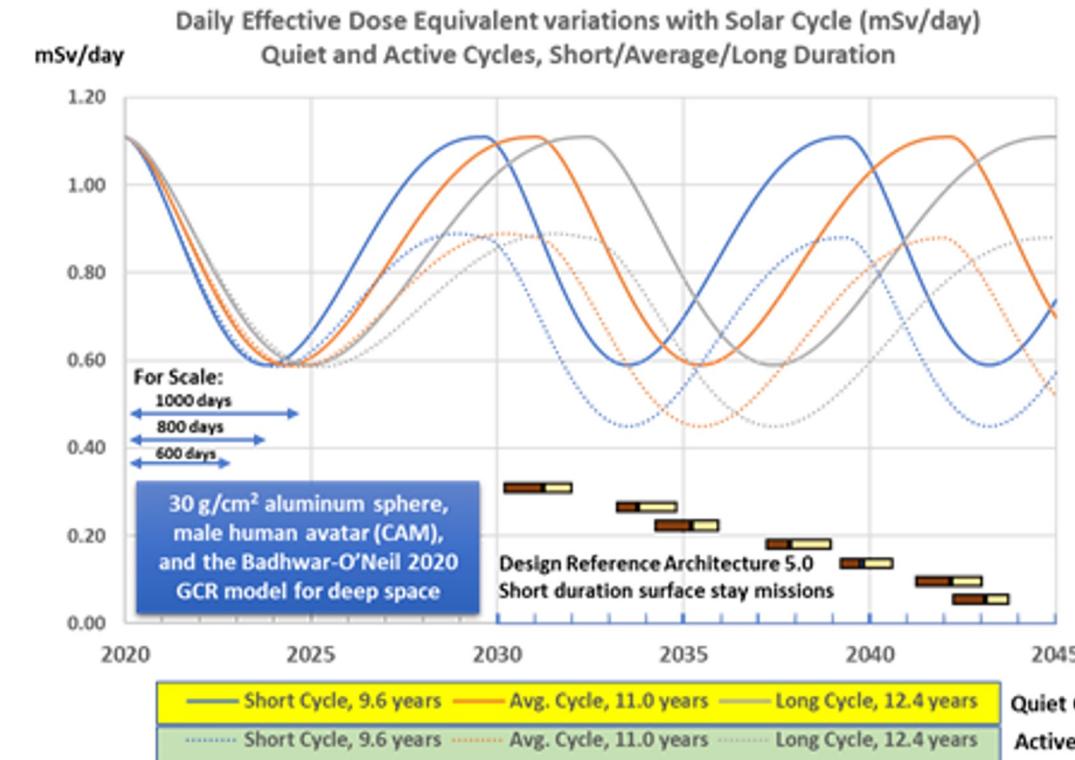
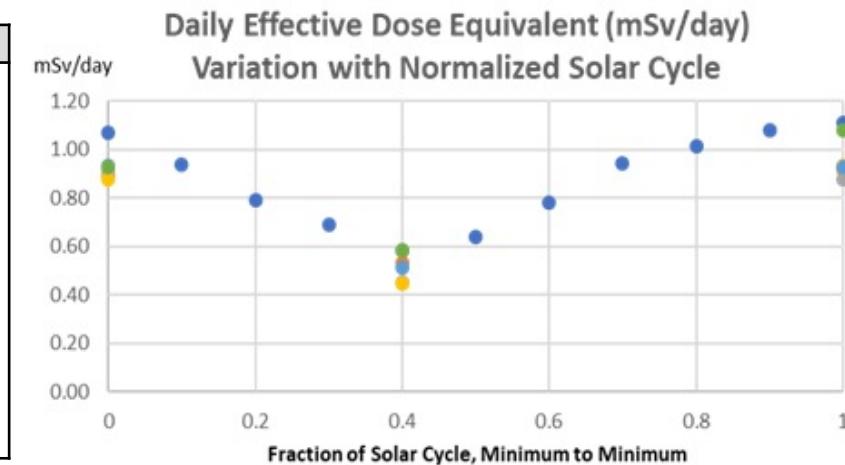
Model-calculated mission exposures

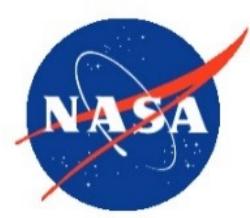
Mission	Duration ⁽²⁾ (days)	Effective dose (mSv) ⁽¹⁾		
		0 g/cm ²	20 g/cm ²	40 g/cm ²
solar maximum	Artemis II	10	6.3	5.1
	Artemis III	30	19.0	15.4
	Artemis III (surf)	23.5/6.5	17.4	14.1
	Gateway – 6 mo.	183	116	94
	Gateway – 12 mo.	365	232	188
	Mars DRM	621/40	405	331
	Mars DRM	840	533	432
solar minimum	Artemis II	10	14.6	10.9
	Artemis III	30	43.8	32.8
	Artemis III (surf)	23.5/6.5	39.8	29.9
	Gateway – 6 mo.	183	267	200
	Gateway – 12 mo.	365	533	399
	Mars DRM	621/40	929	702
	Mars DRM	840	1228	918

⁽¹⁾ICRP effective dose is calculated using the approach described by Slaba et al. *Adv. Space Res.* **45**: 866-883; 2010.

⁽²⁾X/Y format denotes X days in free space and Y days on the surface.

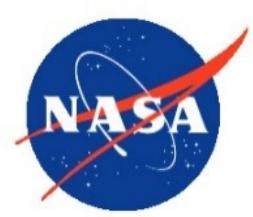
- **NASA PEL is now 600 mSv effective dose**
- **Summary for crew with no prior flight experience**
 - All crew qualify for Artemis missions
 - All crew qualify for Gateway missions
 - Certification for Mars DRM depends on mission timing (solar cycle)
 - Solar maximum – within PEL
 - Solar minimum – exceeds PEL

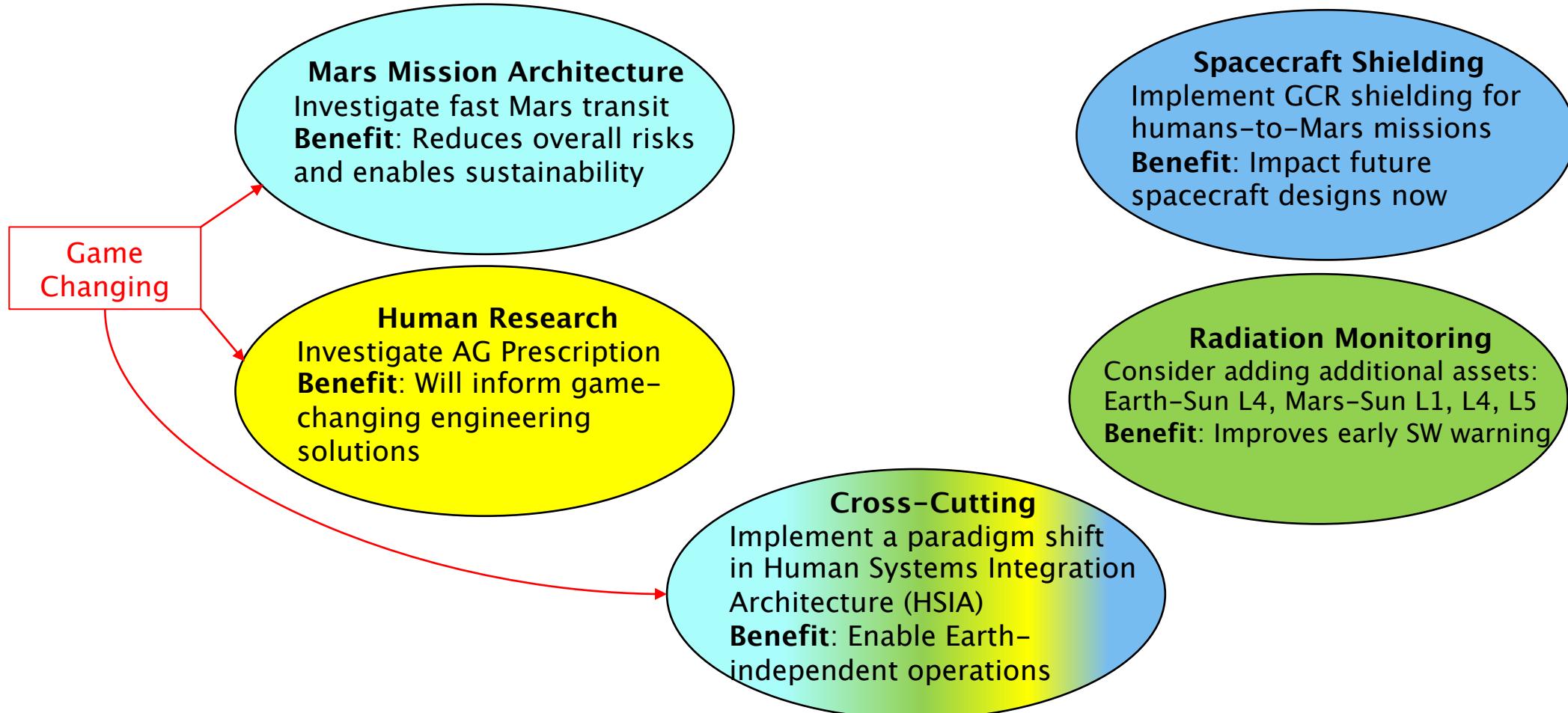




GCR Dose Variation with Solar Cycle

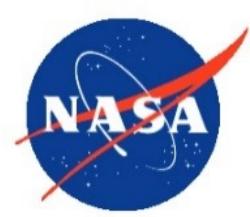
- The energetic GCR ions are so penetrating that large shielding mass is required to mitigate GCR threats to crew health; GCR is a major radiation issue for long-term exploration of deep space**
- GCR flux varies slowly over solar cycle time scales (about a decade)**
- The ability to forecast the shielding mass required to protect crew for upcoming missions as a function of phase in the solar cycle will complicate mission planning**
- Long-range Mars mission planning would benefit from efforts to improve the ability to forecast solar cycle length**
 - Mars missions during solar maximum will substantially reduce crew dose
 - Increased shielding mass is required to keep crew radiation dose within program limits during solar minimum
 - Additional shielding mass reduces payload, impacting overall mission capability

Effective Dose Equivalent (mSv/day)	
1965 Solar Minimum	0.89
1977 Solar Minimum	0.92
1987 Solar Minimum	0.88
1997 Solar Minimum	0.93
2010 Solar Minimum	0.93
2019 Approaching Minimum	1.08
1970 Solar Maximum	0.53
1982 Solar Maximum	0.45
1991 Solar Maximum	0.44
2001 Solar Maximum	0.51




GCR Shielding Standards Needed

- A standard for GCR shielding for human exploration missions beyond LEO is needed
- It is recommended that vehicles and habitat systems provide sufficient protection to reduce exposure from GCRs by 15% compared with free space such that the effective dose from GCR remains below:
 - 1.3 millisieverts per day (mSv/day) for systems in space
 - 0.8 mSv/day for systems on planetary surfaces
- This standard is based on missions during solar minimum (the worst-case scenario); it can be achieved with current aluminum spacecraft structures
- **Note:** For Mars missions *longer than 600 days*, additional GCR mitigation strategies will be required to meet the newly proposed 600 mSv crew lifetime exposure limit (except for potentially limited opportunities for missions during solar maximum when the overall GCR exposure is the lowest)



Recommendations for Future Research & Development

Full Report at URL: <https://ntrs.nasa.gov/citations/20220002905>

Safe Human Expeditions Beyond Low Earth Orbit (Valinia et. al.), February 2022

Bottom Line

- Our understanding of the **integrated Human System Risks** for Mars missions is in its early stage. We don't have strong quantitative estimates, but we can establish a lower bound and a qualitative picture of how some **engineering solutions** will affect mission risk.
- A **fundamental paradigm shift** is needed to enable **safe, sustainable, and Earth-independent** human expeditions to Mars in the near term.
 - Requires both game-changing (i.e., revolutionary) as well as incremental (i.e., evolutionary) risk-reduction strategies.
 - Engineering, human, and medical technical authorities should partner to further explore the integrated human risk trade space to prioritize game-changing technologies and investments needed to significantly reduce the risk on future human Mars missions.