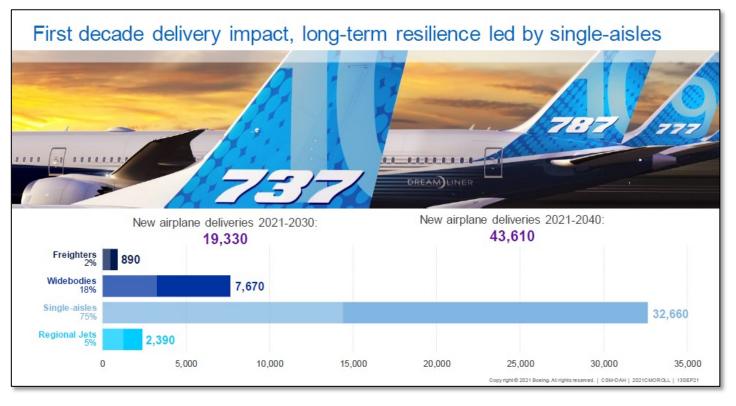


Hi-Rate Composite Aircraft Manufacturing (HiCAM) Project Overview

Dr. Rick Young, Project Manager

Transport Market Demand & Opportunity



Boeing & Airbus market outlook are similar

- By 2040, > 43,000 deliveries
 - replace 80% current & double fleet size
 - Single-aisle, 2nd decade demand ~150 per month
 - ➔ Industry desires 80 per month as the production rate for HiCAM studies
- Historic aircraft production rates per month
 - Metals (B737, A320) : 60 1.3x = 80
 - Composites (B787, A220) : 10-14 6x = 80

Sept 2021 Boeing Commercial Market Outlook

Increased Emphasis on Sustainability:

- Reduced emissions (reduced weight, drag)
- Reduced operating cost (fuel, acquisition, maintenance)

Market driving: earlier deliveries (high production rate), cost reductions, & performance improvements

Metals versus Composites (currently)

	Production Rate	Acquisition Cost	Weight	Thin wing for reduced drag	Maintenance Cost	Other: higher cabin pressure, bigger windows, modern
Metals	Better	Better	Worse	Worse	Worse	Worse
Composites	Worse	Worse	Better	Better	Better	Better

- Metals approach (production, design) mature and previously optimized for single-aisle aircraft
- Best opportunity to capture the market: composites, improve rate and cost without sacrificing other attributes

Composites Production Rate and Cost Drivers:

- Long cycle times, labor intensive methods, high cost and lead time for large specialized equipment and tooling
- Not plausible to scale current composites production system 6x
 - Supply chain: limited skilled labor and specialized equipment; Difficult to ramp and adjust with demand
 - Scaling current composites production doesn't reduce acquisition cost
 - Technology needed to improve production efficiency (increasing rate, while reducing cost)

Industry states significant cost reduction needed to enable composites at 80 aircraft per month

Hi-Rate Composite Aircraft Manufacturing (HiCAM)

Goal: Demonstrate manufacturing approaches and associated technologies for large composite primary airframe structures that enable <u>high-rate production (up to 80 aircraft per month</u>) with <u>reduced cost and no weight penalty versus 2020 technology for</u> composite structures for early 2030s single-aisle aircraft production

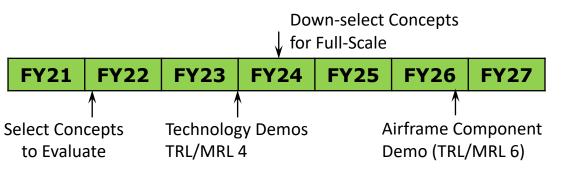
Objectives:

- Mature affordable, high-rate composite manufacturing technologies, with reduced labor, equipment, and tooling costs
- Develop model-based engineering tools for high-rate concepts

Approach:

- Set production rate target = 80 aircraft per month
- Baseline: scaled B787/777x composite aircraft production system
- Compete thermosets, thermoplastics, resin transfer molding
 - System-level assessments of production cost and component weight
- Demonstrate capability for full-scale airframe component(s)
- Transition to industry by participation

Addresses industry needs for rate, cost, and weight


Production Rate per Month

- Metals SOA: 60
- Composites SOA: 10-14
- Requirements: 80

High-Level Requirements, Performance Metrics & Success Criteria

Requirements

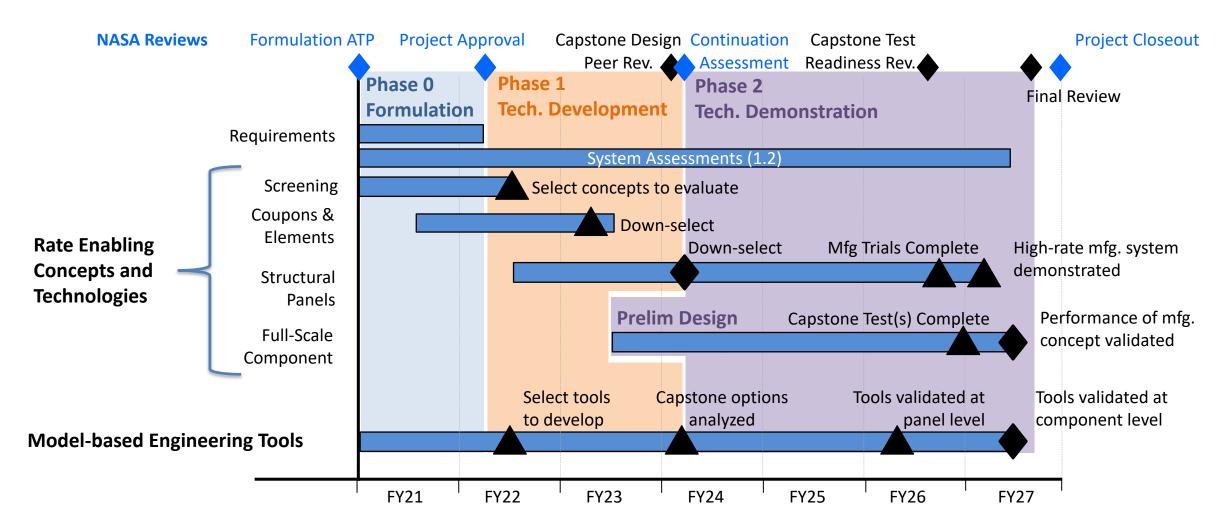
- 1. Airframe components shall comply with Airworthiness Standards required for aircraft certification
- 2. Maturity: TRL* and MRL**
 - a) Manufacturing technologies matured to TRL 6, MRL 6 by Project Closeout
 - b) Related MBE tools matured to TRL 6 by Project Closeout

Performance Metrics

КРР	HiCAM Full Success	HiCAM Min Success	
Composite Production Rate	80 shipsets per month	60 shipsets per month	
Component Net Cost per Shipset	Cost reduction > 50% of baseline	Cost reduction > 30% of baseline	
Component Weight	>2% lighter than baseline	<2% heavier than baseline	
MBE Tool Accuracy	Predicts experimental values within stakeholder-defined tolerance	Simulates experimental trends	

Capstone demonstration will anchor and validate technology models that show ~80 aircraft a month is achievable with cost and weight reductions

- * Technology Readiness Level (TRL), NPR 7123.1C
- ** Manufacturing Readiness Level (MRL) Deskbook, Version 2020 <u>https://www.dodmrl.com/MRL%20Deskbook%20V2020.pdf</u>, with emphasis on the following threads: Manufacturing Technology Development, Producibility Program, Cost Analysis, Manufacturing Process Maturity, Process Yields and Rates


HiCAM focus: large composite primary airframe structures

Primary stakeholders	Current Partners	
U.S. transport aircraft OEMs, and Tier 1 suppliers	Boeing, Spirit Aerosystems, Northrop Grumman, ATC	
Other composites aerostructures for defense and engine applications	Collins Aerospace, GE Aviation, Lockheed Martin, Aurora Flight Sciences	
Composite material suppliers	Hexcel, Toray, Solvay	
Manufacturing and inspection equipment	Electroimpact	
Engineering software developers	Collier Research Corp, CGTech, Convergent MT-U.S.	
Universities – aero R&D, future workforce	Wichita State Univ., Univ. of South Carolina	
FAA, preview emerging technology	FAA / Aviation Safety (AVS), WJH Technical Center	

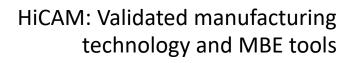
- Secondary stakeholders: AAM, space, energy, automotive, environmental protection
 - Common interest in high-rate, low-cost manufacturing technology for more unitized, lighter weight structures
 - Leverage recent advances, coordinate with current programs

Schedule & Proposed Budget

Key Partners: Advanced Composites Consortium (ACC)

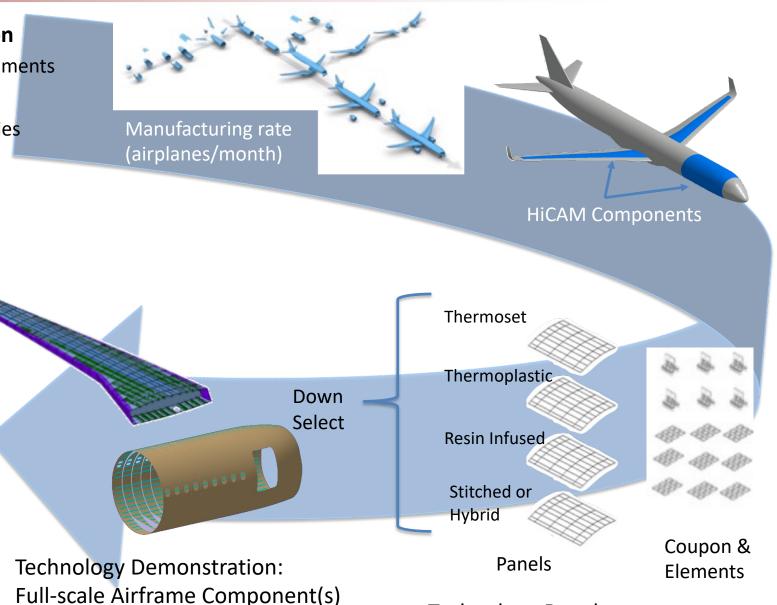
• May add members in future

Technical Content and Approach



System Requirements and Baseline Definition

- Baseline components: configuration and requirements
- Factory production models
- Metrics to assess, trade, down-select technologies


Preliminary screening of content for HiCAM

- Potential impact of manufacturing technologies
- MBE tool capability
- Technology development roadmaps

Contributes to Sustainable Flight National Partnership

- Enables composite applications, advanced concepts
- Introduces design for manufacturing

