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With the addition of the Space Fence (SFK) radar  to the Space Surveillance
Network  (SSN),  the  NASA Conjunction  Assessment  Risk  Analysis  (CARA)
team now has access to radar cross-section (RCS) measurements for many Earth
orbiting satellites. The CARA team has developed a process to estimate satellite
sizes and masses from the SFK RCS measurement data. This study describes the
processes used to filter the RCS data, defines the algorithms used to estimate
satellite sizes and masses, and presents comparisons of estimated values against
known satellite sizes and masses.

INTRODUCTION

The NASA  Conjunction  Assessment  Risk  Analysis  (CARA)  team provides  satellite  close
approach analysis for all non-crewed NASA Earth-orbiting satellites for collision avoidance and
space environment protection. The team computes the probability of collision (Pc) as one of the
key metrics that are assessed in analyzing the risk in order to recommend the correct mitigative
actions required. The CARA processing system first detects candidate close encounters in various
orbital regimes involving high value assets up to ten days in advance using a screening-volume
approach, based on the latest available satellite tracking data and orbit determination (OD) state
and covariance solutions.1,2

For  each  conjunction,  CARA  assesses  the  collision  risk  using  a  set  of  established  semi-
analytical,  and  Monte  Carlo  Pc approximation  methods.3,4,5,6 A  key  component  of  each  Pc

calculation is an estimate of the combined hard-body radius (HBR) of the two objects involved in
the conjunction. In CARA operations, the combined HBR is composed of the known hard-body
protection radius of the NASA satellite, often referred to as the “primary”, and a default HBR of
1.5 meters for the other object involved in the conjunction, the “secondary”.

When using such a default value for the secondary, the estimated Pc could be overestimated
or underestimated if the actual secondary HBR is significantly different from 1.5 meters. In a
CARA technical analysis from 2014, this default HBR was selected because it encompasses 98%
of the debris objects likely to be encountered in the Low-Earth Orbit (LEO) and Highly-Eccentric
Orbit (HEO) orbital regimes.7 This is a fairly conservative HBR to apply to all objects since the
analysis also indicates that ~85% of LEO/HEO debris objects have a characteristic size (e.g.,
diameter) of 20 cm or less, which translates to an HBR of 10 cm or less.7 While choosing such a
conservative secondary HBR value reduces the risk of potentially missing a high interest event, it
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also increases the computational load on automated processing systems. The introduction of large
constellations such as Starlink and OneWeb, and the proliferation of debris from antisatellite tests
increase the likelihood of close approach events occurring, which increases the computational
load even further.8,9

The conversion from a radar cross-section (RCS) measurement to an object size estimate uses
the NASA Size Estimation Model (SEM).10 The intended use for the NASA SEM is to produce
size estimates of fragmentation debris 20 cm or smaller based on an entire distribution of RCS
measurements.7 Historically, the RCS data available to the CARA team consisted of averages of
RCS values for each sensor and object pair. Using such average RCS values with the NASA SEM
model  could  potentially  introduce  inaccurate  results  since  averaged  values  would  not  be  in
alignment with the developmental principles of the model. This is a contributing factor as to why
the CARA team has not previously used RCS data to estimate object sizes.

The Space Fence (SFK) radar provides multiple RCS measurements for each observed object,
each of which are used to generate a size estimate using the NASA SEM. The analysis uses the
resulting  distribution  of  sizes  (which  is  typically  widely  scattered)  to  approximate  the  size-
estimation uncertainty probability density function (PDF) for each object. However, before the
RCS data can be used for this purpose, several filtering processes must be performed in order to
remove time periods when the SFK sensor does not meet RCS calibration expectations needed for
accurately estimating the size of the observed object. The initial filter eliminates days when SFK
RCS measurements do not meet these expectations, and the remaining RCS data for each object
are examined using analysis of variance (ANOVA) techniques. In the CARA implementation, the
ANOVA process identifies time periods when SFK is not providing RCS data consistent with
historical expectations. The process runs iteratively until it finds a consistent subset of RCS data,
or no data remains. The remaining RCS data provide a distribution used to estimate the size and
mass  of  each  object.  Calculating  mass  estimates  entails  combining  the  HBR  estimates  and
ballistic coefficient (BC) values.

The primary goal of this analysis is to provide a more realistic assessment of collision risk for
conjunctions involving objects with unknown or unpublished dimensions, by accounting for the
magnitude  and  uncertainty  of  RCS-based  satellite  size  and  mass  estimates.  Specifically,
accounting for the HBR uncertainty distribution of unknown secondary satellites provides more
accurate estimates of conjunction  Pc values   especially compared to the current method of
simply using a default HBR value of 1.5 m for all unknown objects. This allows CARA to better
identify high-risk events in Earth’s increasingly congested space environment. RCS-based mass
estimates provide the means to evaluate the consequences of potential collisions, by determining
if  they  may  be  catastrophic  (in  which  both  objects  are  completely  shattered),  and  also  by
estimating the expected number of fragments. In summary, this paper focuses on four specific
aspects of RCS-based conjunction risk assessment:

1) Data filtering techniques, which provide an RCS data set appropriate for estimating the
sizes and masses of unknown objects.

2) Estimating  the  resulting  object  size  uncertainty  distributions,  as  well  as  calibrated
estimates of statistically expected HBR values and associated variances.

3) Estimating collision probabilities  for  conjunctions involving unknown objects,  using a
method that accounts for the magnitude and uncertainty of the RCS-based HBR estimates.

4) Estimating unknown object masses by combining object BC distributions with the RCS-
based  HBR  distributions,  which  allows  the  evaluation  of  the  catastrophic  nature  and
fragment production of any potential collisions.
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RADAR CROSS SECTION MEASUREMENT DATA

The SFK radar  began trial  operations  on November  25,  2019 and became operational  on
March  28,  2020.11,12 The  Space  Fence  radar  receives  and  processes  both  the  principal  and
orthogonal  polarizations  of  the  returned energy from radar  returns.  These radar  cross-section
measurements for both polarizations are provided with each SFK observation, and this marks the
first-time observation-level RCS measurements are regularly provided by a sensor on the SSN.
Prior to this development, sensors provided weekly summaries of RCS values received for each
object. However, without full knowledge of the methods used to create the RCS summary data,
the CARA team was hesitant in using these weekly summary data for HBR estimation.

Since  the  beginning  of  the  SFK  trial  operations  period,  the  CARA  team  has  collected
observation-level SFK RCS measurement data for the purpose of HBR estimation. As of May 1st,
2022, the dataset consists of over forty-five million observations across more than 25,000 unique
objects, for an average of ~1,700 observations per object.

THE NASA RCS-BASED SIZE ESTIMATION MODEL

The NASA size estimation model (SEM) provides a semi-empirical method to convert RCS
measurements  for  an  unknown  satellite  into  a  statistical  ensemble  of  estimates  for  the
“characteristic length” of the object.13,14 The characteristic length is not equivalent to the hard-
body radius, but instead represents the average of the largest dimensions of an object measured
along three orthogonal axes, which corresponds to the diameter for spherical objects.13,14 Applying
the SEM to the nth RCS measurement available for the jth satellite yields

D j ,n={ λ j ,n√4 z / π z>5
λ j ,n

6√4 z /(9π5) z<0.03
λ j ,ngSEM (z) otherwise

(1)

with D j ,n denoting the characteristic length (m) corresponding to the RCS measurement*, λ j ,n the
radar wavelength (m), and z=Y j ,n/ λ j ,n

2 , with Y j ,n representing the measured RCS value (m2). 
Stokely et al provide an interpolation table for the function gSEM (z ).13,14

RCS UNITS AND CONVERSIONS

The CARA processing system receives RCS measurements in units of square meters (m2).
Unless explicitly specified otherwise,  the RCS comparisons and calculations used within this
document are expressed in decibels relative to one square meter (dBsm). The conversion between
m2 and dBsm is

RCSdBsm=10∗log10 (RC Sm2 ) (2)

RCS DATA FILTERING

Numerous error sources can introduce both randomness and bias into RCS measurements. 10

Major  contributing  sources  of  error  can  include  radar  calibration  uncertainties,  propagation
uncertainties, and signal processing effects, among others.10 Several data filtering techniques have

* Reference the Notation section for a full list of mathematical notations used within this paper.
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been implemented in order to remove RCS measurement data of a level of quality not appropriate
for object size estimation.

Calibration Sphere Filtering

When processing raw RCS data from the Eglin FPS-85 radar, Hejduk and DePalma noted that
occasional  calibration problems occurred despite the nominal  calibration procedures regularly
followed  by  the  site.15 In  order  to  maintain  a  well-calibrated  dataset,  Hejduk  and  DePalma
included data only for time periods when all RCS measurements for a set of calibration satellites
remained  within  1.5  dBsm  of  their  known  reference  values.15 A  similar  approach  has  been
implemented for CARA using three calibration satellites with catalog object IDs of 900, 902, and
2826. Table 1 lists the diameter for each calibration sphere used.

Table 1. Calibration Sphere Characteristics

Object ID Diameter (m)

900 0.3556

902 0.3556

2826 0.508

For each calibration sphere, all RCS measurements are split into bins based on the day when
the measurement was collected. For each day, all RCS measurements are examined and if any
one measurement is more than 1.5 dBsm from the reference RCS, then the day is marked as a day
from which data for size estimation purposes will not be employed. The overall designation of
such days is the union of all  such designated days from the results from examining all  three
calibration satellites. All RCS measurements collected on these days that are not appropriate for
size estimation are ignored in subsequent processing.

ANOVA Filtering

Once calibration sphere filtering is complete, the RCS measurement data set has been reduced
down to a set of measurements collected when the SFK sensor’s data meet standards for size
estimation. However, in order to account for other error sources that introduce randomness and
bias, CARA needs a way to identify and remove inconsistent RCS measurements without a priori
knowledge of an object’s size or shape. In the case of irregularly shaped tumbling debris, it is
expected that a wide range of RCS measurements could be received; therefore, the ultimate goal
would not be to necessarily remove the randomness, but instead to remove relative biases.

The analysis assumes that the sizes and radar reflection properties of typical orbital objects do
not change significantly over time, so the long-term average distribution of RCS measurements
also remains unchanged. By dividing the RCS measurements into monthly bins, CARA has used
analysis of variance (ANOVA) techniques to compare the monthly means over time. ANOVA is
a generalized version of the Student’s t-test used to compare the means of three or more groups.16

In ANOVA, the alternative hypothesis assumes that a statistically significant difference exists
between the means of the groups compared, while the null hypothesis assumes no statistically
significant difference between the means.16,17 There are many different flavors of ANOVA used
for different experimental designs, including one-way ANOVA, two-way ANOVA, and nested
ANOVA.17 CARA’s implementation only uses one-way ANOVA and its derivatives. The goal of
the ANOVA testing is  to  identify statistically discrepant  data  (i.e.,  outliers),  which represent
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spurious  instrumental  or  environmental  effects  rather  than  properties  of  the  observed object.
Eliminating these outliers produces a subset of RCS measurements that are consistent over time,
and appropriate for use in object size and mass estimation.

In order to apply basic one-way ANOVA to a problem, three assumptions should be met: 1)
the observations are statistically independent, 2) the observations are normally distributed, and 3)
the data are homoscedastic (i.e. the data have the same standard deviation in different groups).17

While the first assumption is the hardest to prove conclusively, CARA has made the assumption
that the RCS measurements are independent because they are the products of different tracking
sessions and therefore should not  share  systematic errors  that  do not  manifest  themselves as
discernable biases. Nominally, if the observation data are not normally distributed the Kruskal-
Wallis test is used instead of one-way ANOVA.17 McDonald recommends the use of one-way
ANOVA regardless of the normality of the observations.17 For simplicity, CARA has chosen to
use one-way ANOVA whether or not the observation data are normally distributed. If the data are
not homoscedastic, the recommendation is to use Welch ANOVA instead of one-way ANOVA. 17

Further details on ANOVA will be provided below.

Figure 1. ANOVA Processing Workflow

Figure 1 depicts a high-level overview of the logic flow used by CARA’s ANOVA RCS filter
processing implementation. Use the figure as a reference to the processing steps outlined in the
paragraphs below.

Normality Decision Point. At the very beginning of the process a Kolmogorov-Smirnov (K-S)
test  is  performed  to  test  whether  or  not  the  RCS  data  in  each  monthly  group  is  normally
distributed.18 If all monthly groups are normally distributed, then the process flow follows the
upper path for outlier removal and homoscedastic testing in Figure 1. Otherwise, the lower path is
followed.

Outlier Removal. When all monthly groups are normally distributed, outlier identification and
removal  are  performed using the scaled median of  the  absolute  deviations  about  the  median
(MAD) method.19,20 Otherwise, outliers are removed whenever measurements are more than 1.5
interquartile ranges above the upper quartile or below the lower quartile.19,20 Regardless of the
method used, outliers are identified and removed from individual monthly groups and not from
the overall RCS distribution.

Homoscedastic  Tests. After  outlier  removal  occurs,  the  remaining  data  is  tested  for
homoscedasticity, also known as the homogeneity of variances. Two tests can be employed to test
for the homogeneity of variances; if all groups are normally distributed then Bartlett’s test can be
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used, otherwise Levene’s test is recommended.18,21,22 The results of this testing will  determine
which ANOVA and Post-Hoc tests can be used.

ANOVA Tests. The purpose of ANOVA is to test if the means of the measurement variable are
the same for multiple groups.17 In one-way ANOVA there is one dependent variable (i.e.  the
measurement  variable)  and one independent  variable.17 For  CARA processing,  the  dependent
variable is the RCS value and the independent variable is time (i.e., the month when the RCS
measurement  was  collected),  thus  making  one-way  ANOVA  an  appropriate  test  for  this
experiment. The null hypothesis is that the means of the RCS measurements across all months are
the same while the alternative hypothesis is that mean RCS of at least one month is different from
the rest of the months. McDonald asserts that one-way ANOVA is not particularly sensitive to
deviations from the normality assumption and recommends the use of one-way ANOVA over the
Kruskal-Wallis test when the normality assumption is violated.17 On the other hand, one-way
ANOVA  is  sensitive  to  the  heterogeneity  of  variances,  especially  when  the  number  of
observations in each group are dissimilar.17 In these situations, McDonald recommends the use of
Welch’s ANOVA.17 Both ANOVA tests generate a  p-value to indicate if the null hypothesis is
rejected. This  p-value is used to determine if the RCS values are considered consistent or if a
monthly group of measurements should be rejected as inconsistent measurements.

Post-Hoc  Tests. The  p-value generated  by  the  ANOVA  techniques  simply  provides  an
indicator that at least one group of data has a mean that is different from the rest of the groups. It
does  not  identify  which  group is  considered  the  most  different  from the  rest  of  the  groups.
Tukey’s Honestly Significant Different (HSD) test compares differences among sample means
for significance.23 Tukey’s HSD test performs a pairwise comparison between all of the groups
included  in  the  ANOVA  test.  A  separate  p-value is  provided  for  each  possible  pairwise
combination of the groups, indicating how alike the means are to each other. In order to identify
the group which is most unalike from the others, CARA sums the  p-values for each individual
group  against  all  the  other  groups.  The  group  with  the  lowest  summed  set  of  p-values is
considered the most different from the other groups and is flagged as the group which will be
eliminated.

For example, assume that five groups labeled A through E are examined using Tukey’s HSD
test that generates the p-values listed in Table 2. The summed p-values for each group would be:
A = 2.0399, B = 1.9119, C = 0.8131, D = 2.0784, and E = 1.0721. In this example, group C
would be identified as the most discrepant, and flagged for elimination.

Table 2. Sample p-values for a Hypothetical Tukey’s HSD Test

A B C D E

A N/A 0.8935 0.0057 0.9960 0.1447

B 0.8935 N/A 0.0009 0.9858 0.0317

C 0.0057 0.0009 N/A 0.0037 0.8028

D 0.9960 0.9858 0.0037 N/A 0.0929

E 0.1447 0.0317 0.8028 0.0929 N/A

Much  like  the  ANOVA  testing,  a  separate  post-hoc  test  is  used  when  the  variances  are
heterogeneous. Ruxton and Beauchamp recommend the use of the Games-Howell post-hoc test in
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this situation.24,25 Other than accounting for the heterogeneity of variances, CARA’s use of the
Games-Howell test to identify the most unalike group is exactly the same as Tukey’s HSD test.

Consistency Decision Point. The final portion of the ANOVA filtering process determines
whether or not the RCS data that has been examined is evaluated to be self-consistent. Recall that
the null hypothesis from the ANOVA test is that the means of the monthly RCS data are the
same. When the null hypothesis is rejected, the RCS data are deemed inconsistent, the month
flagged as the most discrepant in the post-hoc testing is eliminated, and the filtering process loops
back  to  the  homoscedastic  testing  step  using  the  remaining  RCS  data.  The  overall  filtering
process continues until the entire remaining RCS data set is evaluated to be consistent (i.e. the
null hypothesis from the ANOVA test is accepted), only two months of data remain, or less than
twenty  RCS  measurements  remain.  In  the  latter  two cases,  the  ANOVA filtering  process  is
considered inconclusive and all of the RCS data is flagged as inconsistent.

Testing  indicates  that  the  filtering  process  can  be  too  aggressive  when  the  ANOVA test
threshold is  set  to  the  typical  p-value of  0.05.  As  a  result,  the  analysis  reduces  the  p-value
threshold to 0.01 in order to retain a larger fraction of RCS measurements.

Sample Filtering Results

Figure 2 and Figure 3 show a set of RCS measurements before and after ANOVA filtering for
a  piece of  COSMOS 2251 debris  generated by  the  collision with the  Iridium 33 satellite  in
February 2009.  The top subplot  in each graph shows the raw RCS measurements.  The color
coding indicates if the measurement was accepted (blue) or eliminated for any one of various
reasons:  calibration  sphere  bad  date  (red),  inconsistent  from  ANOVA  processing  (orange),
rejected as an outlier (purple), or rejected as a duplicate (pink). Duplicates are measurements that
have  the  same  time  stamp  and  RCS  value,  which  occasionally  occur.  The  middle  subplot
indicates  the  number  of  samples  included in each monthly group.  The colors  within the  bar
graphs indicate the relative number of samples between the groups. The bottom subplot provides
a boxplot of the distribution of the “accepted values” for each monthly group. The color of each
boxplot indicates how alike that group is when compared to the other groups.
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Figure 2.  Consistency analysis for a piece of COSMOS 2251 debris after calibration sphere filtering
and before ANOVA filtering

Figure 3.  Consistency analysis for a piece of COSMOS 2251 debris after calibration sphere and
ANOVA filtering

In this example, three iterations of ANOVA filtering were required in order to converge onto a
statistically  significant  self-consistent  set  of  RCS  data.  In  the  first  iteration  May  2020  was
eliminated and then October  2020 in the  second iteration.  Finally,  on the third iteration,  the
ANOVA p-value of ~0.013 exceeded the threshold of significance and the remaining groups of
RCS values were considered consistent. Note that the middle and bottom subplots do not include
monthly groups that have been eliminated as inconsistent in previous iterations. The remaining
set  of  RCS measurements  colored  in  blue  in  the  top  subplot  of  Figure 3 are  considered  the
consistent set of RCS measurements which are then used for HBR and mass estimation.

HBR AND MASS ESTIMATION FROM RCS MEASUREMENTS

Once data filtering is complete, what remains is a well-conditioned set of RCS data which can
be used for other applications, such as the estimation of unknown hard-body radii and masses.
This section summarizes the methods CARA uses to estimate HBRs and masses for unknown
objects using filtered RCS data as an input. A parallel study by Hall and Baars presents a full
development of the equations and methods used below.14 For brevity, this analysis includes only
the  most  critical  equations  needed for  obtaining  HBR and mass  estimates.  Additionally,  the
results presented in this section use a subset of the SFK RCS data collected within a period two
years prior from the study date of 2022-01-15.

Estimating the Statistically Expected Hard Body Radius of an Unknown Satellite

As a first  step toward estimating unknown HBR values and uncertainty distributions,  this
analysis  uses  the  NASA  size  estimation  model  to  estimate  RCS-based  characteristic  sizes.
Applying  Eq.  (1) to  the  jth object  produces  a  set  of  characteristic  length  estimates
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{D j ,n , n=1… N j
RCS },  which  typically  has  considerable  point-to-point  variability  or  scatter.

Sources  of  this  scatter  include  the  object’s  aspect-dependent  radar  reflection  properties  and
projected area (which vary in time due to rotation and changing observational geometry), as well
as RCS measurement noise. The mean characteristic length for the jth object is given by14 

D j=
1

N j
RCS ∑

n=1

N j
RCS

D j ,n (3)

The corresponding variance is

σ D j

2 =
1

N j
RCS ∑

n=1

N j
RCS

(D j ,n−D j )
2 (4)

The derivation of these estimates assumes that the observed set {D j ,n , n=1… N j
RCS } provides an

empirical representation of the uncertainty PDF of the object’s characteristic length. Since the
variable radar reflection properties of the object causes some of the variation of the D j ,n values,
this  empirical  PDF  approximation  tends  to  overestimate  the  variance  of  the  object’s  actual
characteristic size distribution.

If the SEM were free of any estimation inaccuracies and the RCS measurements were free of
any  measurement  noise,  then  the  relationship  between  the  circumscribing  HBR  and  the
characteristic length for idealized spherical  objects would be relatively simple:  R j=D j /2.  In
order to quantify the bias and uncertainty for noisy measurements of non-spherical objects, Hall
and  Baars  introduce  an  HBR  estimation  calibration  factor,  ϕ j,  into  this  relationship:
R j=eϕ j(D j /2).14 Utilizing  the  Database  and  Information  System  Characterizing  Objects  in
Space (DISCOS), the calibration factor is estimated by comparing known and RCS-based HBR
estimates for a large set of “box” shaped objects with circumscribing HBRs less than or equal to
0.35  meters.14,26,27 For  the  calibration  data  set  examined,  Hall  and  Baars  determined a  mean
calibration factor of ϕ=¿ 0.306 and calibration standard deviation of σ ϕ=¿ 0.526.14

Putting all of these pieces together, the statistically expected HBR of the jth unknown satellite
which  accounts  for  uncertainties  in  both  the  characteristic  size  estimation  and  the  HBR
calibration process, is expressed analytically as

R j=
D j I1 (ϕ ,σϕ )

2
(5)

with the exponential expected value integral function given by

I q (ϕ ,σϕ )=eqϕ+q2σ ϕ
2 /2 (6)

The associated variance also has an analytical solution

σ R j

2 =[ ( D j
2+σ D j

2 ) I2 (ϕ ,σϕ )
4 ]−R j

2 (7)
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As mentioned earlier, using the empirical PDF approximation of Eq.  (3) tends to result in  σ D j

2

being overestimated, which in turn leads to an overestimated HBR variance σ R j

2 .

Performance of RCS-based Hard-Body Radius Estimation

As a part of the Hall and Baars study, a set of 67,135 CARA conjunctions were analyzed to
test  the  accuracy of  the  RCS-based HBR estimates.14 These conjunctions  comprised a set  of
known CARA primaries and known relatively small  DISCOS secondaries (i.e.  R2

K ≤ 0.35 m)
which  had  sufficient  RCS  data  to  allow  HBR  estimation.  This  set  of  “small-secondary”
conjunctions provide a means of testing how well the RCS-based estimation method performs for
secondary objects that are small enough to represent reasonable surrogates for the truly unknown
secondary population.

Figure 4. Combined hard-body radii for conjunctions involving small secondary objects

Analysis  of  secondary  object  sizes  alone  shows  that  the  RCS-based  estimation  process
generates HBR values that  are  accurate to  within a  rough factor  of  three in either  direction.
Figure 4 compares  combined  primary  and  secondary  HBR  values  for  small-secondary
conjunctions by plotting R1

K+R2 vs R1
K+R2

K. Despite the considerable uncertainties in estimating
secondary object sizes, estimates for the combined HBR values for most  known-on-unknown
CARA conjunctions are not nearly as uncertain because CARA primary satellites typically have
much larger HBR values than the selected secondary satellites.

An analysis 226,659 known-on-unknown CARA conjunctions that have sufficient auxiliary
RCS data to allow secondary object size estimation has a lower 97.5% range of  R2≤ 0.36 m.
Notably, only 0.6% of the conjunctions have R2>¿ 1.5 m, the default HBR value currently used
by the CARA system for unknown secondary objects.

Effective Hard-body Radius Collision Probability Approximation

Many methods exist to estimate the collision probability between tracked satellites, formulated
using both semi-analytical approximations and MC techniques.3-6 Most of these methods express
the collision probability as a function of the combined HBR, i.e., Pc=Pc (R), with the combined
primary and secondary HBR,R=R1+R2, treated as a known and constant value. For conjunctions
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that  involve  unknown  objects  with  uncertain  RCS-based  HBR  estimates,  the  probability  of
collision can be approximated as Pc=Pc (R e), with the “effective” HBR given by14

Re=√(R1+R2 )2+σR1
2 +σR 2

2 (8)

where  R1 and  R2 are given by Eq.  (5) for the primary and secondary satellites,  respectively.
Likewise, σ R1

2  and σ R2
2  are calculated from Eq. (7). When the primary object in the conjunction has

known dimensions, the effective HBR reduces to

Re=√(R1+R2 )2+σR2
2 (9)

where  R1 is  the  known  HBR  of  the  primary  satellite.  The  probability  of  collision,  Pc,
approximation for this type of conjunction is

Pc ≈P c (√(R1+R2 )2+σ R2
2 ) (10)

which accounts in an approximate manner for the magnitude and uncertainty of the RCS-based
secondary HBR estimate.

Estimating the RCS- and OD-based Mass for LEO Objects Experiencing Atmospheric Drag

This  analysis  approximates  the  characteristic  mass  of  a  LEO  satellite  that  experiences
measurable levels of atmospheric drag using the expression28

M j=A j B j C j≈ (π D j
2/4 ) B j C j (11)

In this expression, M j indicates the mass that characterizes the atmospheric drag experienced by
the jth satellite, which is proportional to the projected area, A j, the inverse ballistic coefficient, B j,
and the drag coefficient, C j. Notably, this expression uses the RCS-based characteristic length to
estimate the  cross-sectional  area  of  the satellite projected onto the plane normal  to the  local
atmospheric  flow,  A j≈ (π D j

2/ 4),  which  is  a  rough  approximation,  especially  for  highly
elongated or flattened objects.  Accounting for  the uncertainty in  the characteristic  length the
mean projected area is

A j=
π (D j

2+σ D j

2 )
4

(12)

The corresponding variance is

σ A j

2 =( π2

16N j
RCS ∑

n=1

N j
RCS

D j , n
4 )−A j

2 (13)

The  mean  and  variance  of  the  inverse  ballistic  coefficient,  B j and  σ B j

2 ,  respectively,  are
estimated empirically by combining a series of OD solutions accumulated over the six months
prior to the calibration epoch date. Specifically, the analysis uses a series of Vector Covariance
Messages (VCMs) separated by one week or more in time that each represent an OD solution for
the jth satellite. The corresponding ballistic coefficients, ¿, typically number N j

VCM   25 for most
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satellites. The ballistic coefficients,  β j , m,  and associated 1-sigma OD estimation uncertainties,
Δ β j ,m, are then combined using a weighted averaging scheme. The first step in the process is to
calculate the inverse ballistic coefficient and uncertainty for the  mth VCM available for the  jth

satellite

B j , m=1/ β j , m∧ΔB j ,m=Δ β j , m/ β j ,m
2 (14)

The next step calculates the weighted average

B j=
1

W j
∑
m=1

N j
VCM

W j ,m B j ,m (15)

with W j ,m=(ΔB j ,m)
−2 and  W j=∑

m
W j ,m The analysis estimates the associated variance using a

hybrid scheme as follows

σ B j

2 =max (W j
−1 ,V j )withV j=W j

−1 [ N j
VCM

N j
VCM−1

∑
m=1

N j
VCM

W j , m (B j ,m−B j )
2 ]
1 /2

(16)

which conservatively uses  the  larger  of  the  variances  estimated using two methods:  the  first
assumes statistical independence of the B j , m values, yielding a variance equal to W j

−1; the second
accounts for the observed scatter of the B j , m values, yielding the empirical estimate of variance
V j.29

This study bounds the drag coefficient to Cmin=¿ 2.1 and Cmax=¿ 2.9, based on the range of
drag coefficients presented in previous analyses.28,30 The uniform PDF approximation yields a
mean  of  C j=(C¿¿max+Cmin)/2=¿¿ 2.5,  and  variance  σ C j

2 =(C ¿¿max−Cmin)
2/12=¿¿

0.053.

Much  like  before,  utilizing  comparisons  against  the  DISCOS  database,  Hall  and  Baars
introduced a mean calibration factor of ψ=¿ -0.173 and calibration standard deviation of σ ψ=¿
0.971.14 The estimate for σ ψ indicates significant satellite-to-satellite variation.

The statistically expected mass of the jth unknown satellite must account for uncertainties both
in  the  mass  estimation  process  and  the  mass  calibration  process,  which  results  in  a  4-D
expectation value integral that has an analytical solution

M j ≈ I1 (ψ ,σψ ) [ A j B jC j ] (17)

This expected value averages over a set of four random variables {D j ,ψ j , B j ,C j}, and accounts
in an approximate way for the combined uncertainties of these quantities. The associated variance
also has an analytical solution

σ M j

2 =I 2 (ψ ,σψ ) [(A j
2+σ A j

2 )(B j
2+σB j

2 )(C j
2+σC j

2 )]−M j
2 (18)
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Performance of RCS- and OD-based Mass Estimation

The mass calibration process used a set of 541 box-shaped objects from the DISCOS database
for which there was sufficient RCS data and VCM inputs to perform a mass estimation. Figure 5
depicts the plots the calibrated mass estimates on the vertical axis vs the known masses on the
horizontal axis. This figure illustrates the significant level of uncertainty associated with the mass
calibration process. The calibration uncertainties limit the accuracy of mass estimation process to
within  a  factor  of  four  (for  potential  mass  overestimations)  to  ten  (for  potential  mass
underestimations).

Figure 5. Comparison of calibrated vs known satellite mass values

Estimating LEO satellite masses requires several assumptions and approximations:

1. The mass estimation method assumes that correlations known to exist between A j, B j,
and C j can be neglected.

2. The method roughly approximates atmospheric drag projected areas as A j≈ (π D j
2 / 4)

.
3. The method assumes a  log-normal  distribution for  the  inverse  ballistic  coefficient

uncertainty PDF, based on empirically-determined means and variances.
4. The method assumes a uniform distribution for the drag coefficient PDF.

The combined effects of these assumptions and approximations significantly limits the accuracy
of the mass calibration and estimation process.

CONCLUSION

The  methods  formulated  in  this  study  to  filter  Space  Fence  RCS  data  provide  a  well-
conditioned set of RCS measurements appropriate for HBR and mass estimation, among other
applications. A critical first step involves the elimination of RCS measurements from days where
the Space Fence sensor has provided measurements which exceed a 1.5 dBsm departure from
calibration sphere reference values. Using multiple radar calibration spheres to identify such days
helps ensure that the filtering process can perform even when the Space Fence reports limited
tracking on one or more calibration spheres.

The ANOVA filtering process adds a secondary set of filters in order to ensure that RCS
measurements  are  consistent  over  time.  This  filter  removes spurious measurement  biases  yet
maintains  the  noise  inherent  in  RCS measurements.  It  is  expected that  an irregularly shaped
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tumbling object such as a piece of debris could produce a wide range of RCS values, therefore it
is not necessarily desirable to remove measurement noise from these data. Caution should be
employed when setting the p-value threshold to stop the ANOVA filtering process since the filter
can be aggressive in eliminating inconsistent data when the threshold is set too high.

Using the filtered RCS data and the NASA SEM model, a distribution of characteristic lengths
can be generated for each object. A mean expected HBR and variance can then be estimated
which  accounts  for  uncertainties  in  the  RCS  data.  Analysis  of  the  size  calibration  process
indicates that RCS-based HBR estimates are accurate to within a rough factor of three. Taken as
an ensemble, an estimated 97.5% of unknown secondary objects involved in CARA conjunctions
have statistically expected HBRs estimated below 36 cm, and less than 0.6% exceed 1.5 m.

For  conjunctions  that  involve  unknown  objects  with  RCS-based  HBR  estimates,  the
statistically  expected  probability  of  collision  can  be  approximated  using  the  expression
Pc ≈P c (Re ).  The  “effective”  combined  HBR,  Re,  given  by  Eqs.  (8) or  (9),  accounts  in  an
approximate manner for both the magnitude and uncertainty of the RCS-based size estimates.

The mass calibration analysis indicates that RCS- and OD-based mean mass estimates are
accurate to within a factor four to ten, roughly. This relatively large mass estimation uncertainty
is due in part to the fact that the analysis uses several rough approximations, such as neglecting
correlations known to exist between ballistic coefficients and projected areas, as well as assuming
approximate forms for the PDFs of the ballistic and drag coefficients.
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NOTATION

A j the cross-sectional area projected by the jth satellite

A j the mean cross-sectional area projected by the jth satellite

B j , m the inverse ballistic coefficient for the mth VCM available for the jth satellite

B j the weighted average inverse ballistic coefficient of the jth satellite

C j the mean aerodynamic drag coefficient of the jth satellite

Cmin the minimum drag coefficient used in the study

Cmax the maximum drag coefficient used in the study

D j the characteristic length estimated for the jth satellite

D j the mean characteristic length estimated for the jth satellite

D j ,n
the characteristic object size indicated by the nth RCS measurement available for the jth 
satellite

gSEM (z ) the interpolation function for the RCS-based characteristic size estimate
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I q(x ,σx ) the exponential expected value integral function

M j the mass that characterizes the atmospheric drag experienced by the jth satellite

M j the statistically expected mass for the jth satellite

N j
RCS the number of RCS measurements available for the jth satellite

N j
VCM the number of VCMs available for the jth satellite

Pc the collision probability for a conjunction between two satellites

Pc the statistically expected collision probability

Pc (R) the collision probability expressed as a function of the combined HBR

Re the effective HBR of a conjunction

R j the circumscribing hard-body radius for the jth satellite 

R j the statistically expected HBR for the jth satellite

RCSdBsm the radar cross-section measured in decibels relative to one square meter

RC Sm2 the radar cross-section measured in units of square meters

U ( x ) the unit step function for the jth satellite

V j the empirical estimate of variance 

W j the combined inverse ballistic coefficient weights for the jth satellite

W j ,m the inverse ballistic coefficient weight for the mth VCM available for the jth satellite

Y j ,n
the radar cross section in units of m2 for the nth RCS measurement available for the jth 
satellite

z the dimensionless RCS value

β j , m the ballistic coefficient of the mth VCM available for the jth satellite

ΔB j ,m the inverse uncertainty of the mth VCM available for the jth satellite

Δ β j ,m the 1-sigma OD estimation uncertainty of the mth VCM available for the jth satellite

λ j ,n the radar wavelength for the nth RCS measurement available for the jth satellite

ϕ j the logarithmic HBR calibration factor for the jth satellite

ϕ the mean logarithmic HBR calibration factor estimated from a set of calibration satellites

ψ the mean logarithmic mass calibration factor estimated from a set of calibration satellites
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σ A j

2 the variance of the cross-sectional area projected by the jth satellite

σ D j

2 the variance of the characteristic length of the jth satellite

σ C j

2 the variance of the drag coefficient for the jth satellite

σM j

2 the variance of the statistically expected mass for the jth satellite

σ R j

2 the variance of the statistically expected HBR for the jth satellite

σ ϕ the logarithmic HBR calibration standard deviation from a set of calibration satellites

σ ψ the logarithmic mass calibration standard deviation from a set of calibration satellites
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