Bingo: A Customizable Framework for Symbolic Regression with Genetic Programming

David Randall¹, Tyler Townsend², Jacob Hochhalter¹, Geoffrey Bomarito³

¹University of Utah, ²Microsoft (Views and opinions are personal and do not represent Microsoft), ³NASA Langley Research Center

What is Bingo?

- <u>Bingo</u> is an open-source framework for genetic programming for symbolic regression (GPSR) developed by NASA
- Made to be
 - Modular
 - Extendible
 - Efficient
- Why use Bingo over other GPSR packages?
 - High- and low-level interfaces for ease-of-use and customizability
 - Modularity makes it easy to compare and develop components of GPSR
 - Produces simple and accurate models

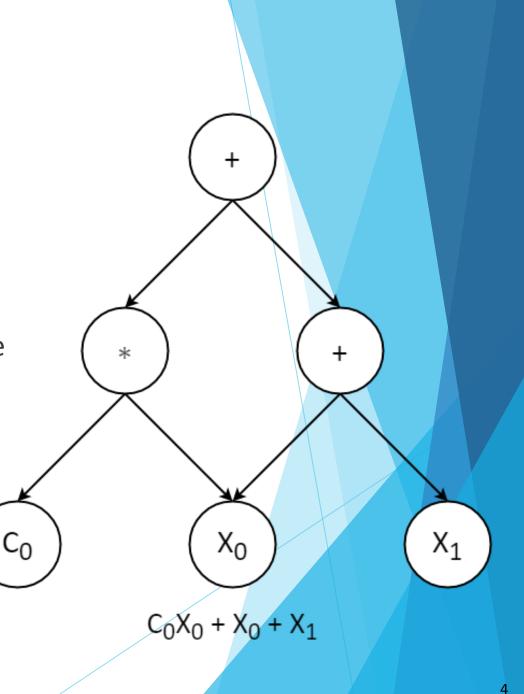
BI

Bingo's Structure

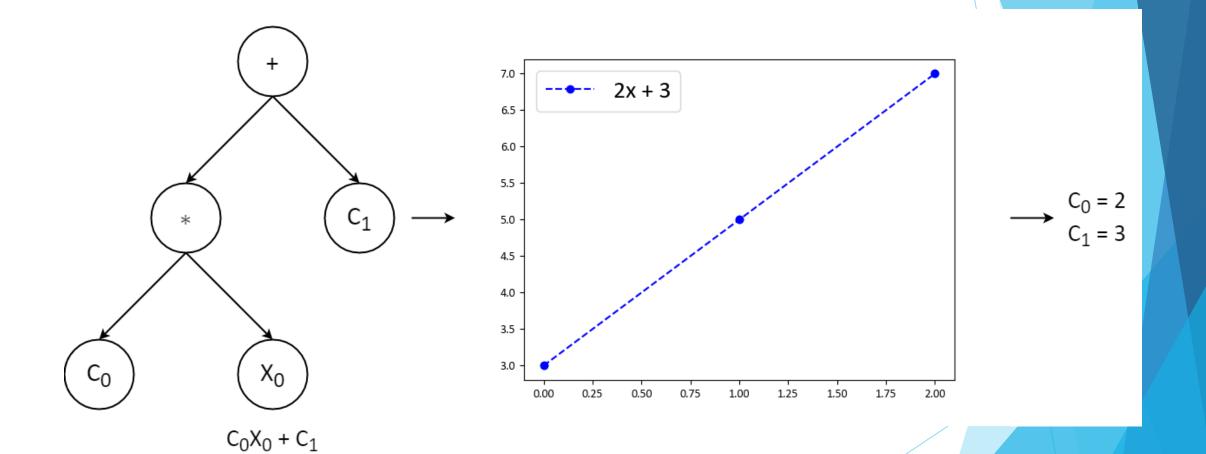
Evolutionary Optimizer				
	Evolutionary Algorithm			
Generator	Variation		Evaluation	Selection
	Crossover	Mutation	Fitness Function	
Chromosome				

Equations/Chromosomes

- Encoded as directed acyclic graphs (AGraphs)
 - Computational benefits over tree encodings [1]
- Have free-form constants/parameters that can be locally optimized
- Complexity
 - Measured as number of utilized nodes in the graph encoding



Local Optimization of Parameters



- Genome of equations
- Terminal nodes and operators
- Not all commands are utilized
 - ► Size of command array ≠ complexity

i	node	parameter 1	parameter 2	expression
0	constant	0	0	C ₀
1	variable	0	0	X ₀
2	variable	1	1	X ₁
3	*	0	1	C ₀ X ₀
4	+	1	2	$X_0 + X_1$
5	sin	2	2	sin(X ₁)
6	+	3	4	$C_0 X_0 + X_0 + X_1$

- Genome of equations
- Terminal nodes and operators
- Not all commands are utilized
 - ► Size of command array ≠ complexity

i	node	parameter 1	parameter 2	expression
0	constant	0	0	C ₀
1	variable	0	0	Xo
2	variable	1	1	X ₁
3	*	0	1	C ₀ X ₀
4	+	1	2	$X_0 + X_1$
5	sin	2	2	sin(X ₁)
6	+	3	4	$C_0 X_0 + X_0 + X_1$

- Genome of equations
- Terminal nodes and operators
- Not all commands are utilized
 - ► Size of command array ≠ complexity

i	node	parameter 1	parameter 2	expression
0	constant	0	0	C ₀
1	variable	0	0	X ₀
2	variable	1	1	X ₁
3	*	0	1	C ₀ X ₀
4	+	1	2	$X_0 + X_1$
5	sin	2	2	sin(X ₁)
6	+	3	4	$C_0 X_0 + X_0 + X_1$

- Genome of equations
- Terminal nodes and operators
- Not all commands are utilized
 - ► Size of command array ≠ complexity

i	node	parameter 1	parameter 2	expression
0	constant	0	0	C ₀
1	variable	0	0	X ₀
2	variable	1	1	X ₁
3	*	0	1	C ₀ X ₀
4	+	1	2	$X_0 + X_1$
5	sin	2	2	sin(X ₁)
6	+	3	4	$C_0 X_0 + X_0 + X_1$

- Genome of equations
- Terminal nodes and operators
- Not all commands are utilized
 - ► Size of command array ≠ complexity

i	node	parameter 1	parameter 2	expression
0	constant	0	0	C ₀
1	variable	0	0	X ₀
2	variable	1	1	X ₁
3	*	0	1	C ₀ X ₀
4	+	1	2	$X_0 + X_1$
5	sin	2	2	sin(X ₁)
6	+	3	4	$C_0 X_0 + X_0 + X_1$

- Genome of equations
- Terminal nodes and operators
- Not all commands are utilized
 - ► Size of command array ≠ complexity

i	node	parameter 1	parameter 2	expression
0	constant	0	0	C ₀
1	variable	0	0	X ₀
2	variable	1	1	X ₁
3	*	0	1	C ₀ X ₀
4	+	1	2	$X_0 + X_1$
5	sin	2	2	sin(X ₁)
6	+	3	4	$C_0 X_0 + X_0 + X_1$

- Genome of equations
- Terminal nodes and operators
- Not all commands are utilized
 - ► Size of command array ≠ complexity

i	node	parameter 1	parameter 2	expression
0	constant	0	0	C ₀
1	variable	0	0	X ₀
2	variable	1	1	X ₁
3	*	0	1	C ₀ X ₀
4	+	1	2	$X_0 + X_1$
5	sin	2	2	sin(X ₁)
6	+	3	4	$C_0 X_0 + X_0 + X_1$

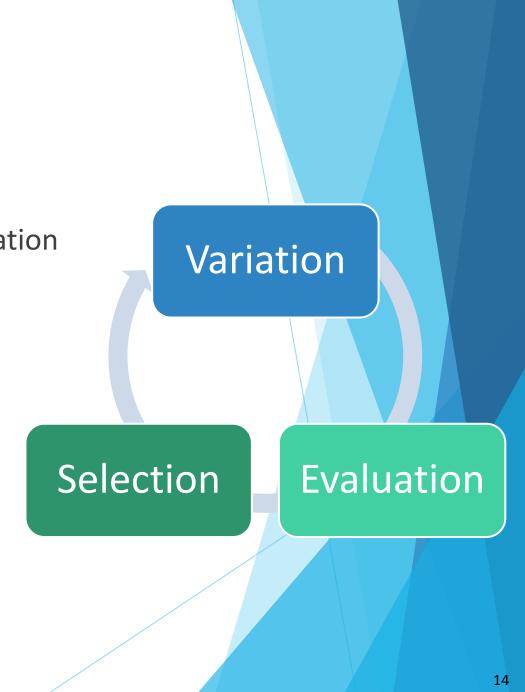
Evolutionary Optimizer

- Responsible for generating an initial population (generator) and evolving that population (evolutionary algorithm)
- Potential generator customizations
 - Initial population with all unique equations
 - Seeding of initial population with parts of previously found equations
 - Filtering of random equations
- Potential genetic programming workflow customizations
 - Archipelago
 - Coevolution

Generate population(s) **Evolve with Evolutionary Algorithm** Best Equation, Hall of Fame, etc.

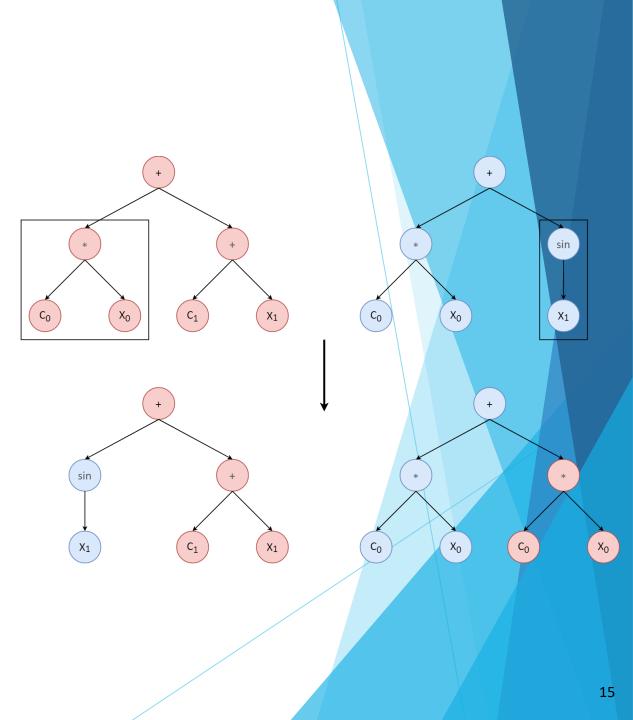
Evolutionary Algorithm

- Responsible for performing evolution on a population
- Follows a traditional GPSR workflow by default
 - Variation
 - Evaluation
 - Selection
- Can introduce other evolutionary operations
 - Simplification



Variation

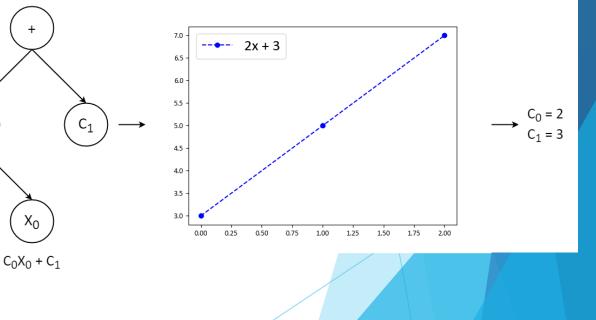
- Takes a population and varies it to form new individuals
- Two main methods
 - Crossover and mutation
 - Crossover or mutation
- Potential customizations
 - Only select variations that are more fit than their original counterparts



Evaluation

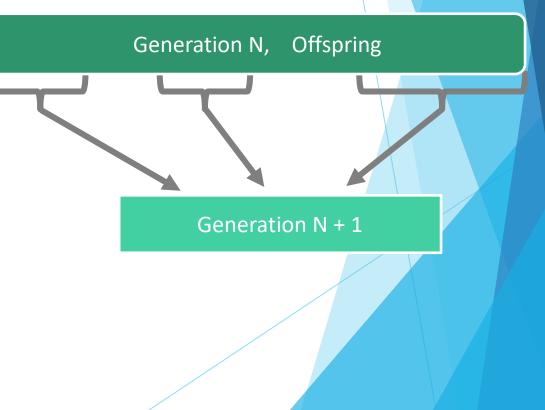
- Evaluates the fitness of individuals in a population
- Fitness functions
 - Explicit regression
 - Implicit regression
 - Continuous local optimization
- Potential customizations
 - Domain-specific constraints
 - Optimization with consideration of uncertainty

 C_0



Selection

- Selects among original population and its variants to form next generation's population
 - Deterministic crowding
 - Age-fitness Pareto selection [2]
 - Tournament
- Potential customizations
 - Probabilistic crowding



Notable Customizations

- Fitness functions for mechanical engineering
 - Incorporation of automatic differentiation
- Tensorial GPSR
- Sequential Monte-Carlo and uncertainty quantification

$$\frac{\partial}{\partial X_0} \sin(X_0^2) = \cos(X_0^2) \cdot 2X_0$$

What if I don't care about customization?

- "Out-of-the-box" scikit-learn¹ wrapper
- Easy configuration and simple interface for training
- Can use with other scikit-learn utilities
 - e.g., Cross validation classes, useful for hyperparameter tuning

```
reg = SymbolicRegressor(evolutionary_algorithm=AgeFitnessEA, ...)
reg.fit(x_train, y_train)
y_pred = reg.predict(x_test)
```

¹This is not an endorsement by the National Aeronautics and Space Administration (NASA)

Efficiency

Parallelism

- Distributed memory: parallel evolution of islands
- Shared memory: parallel evaluation of individuals
- Fitness predictors [3]
 - Subsets of data used to predict the true fitness of individuals
 - Less computational effort required for evaluation
 - Similar ideas to support vectors and batch evaluation

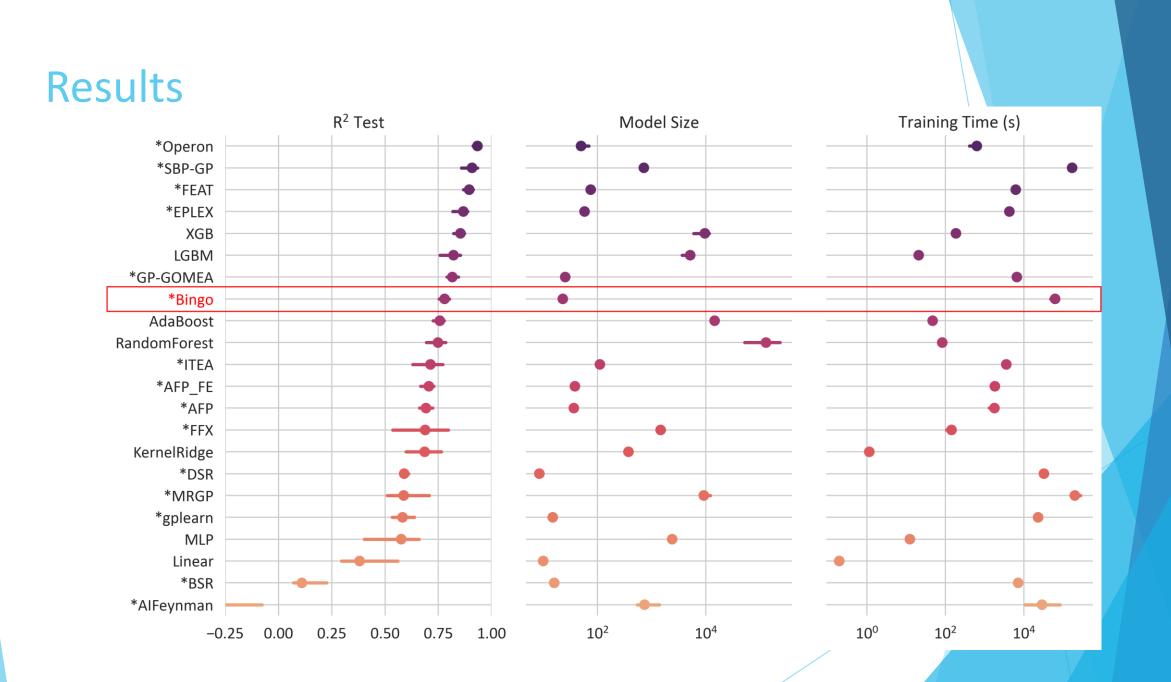
Efficiency (cont.)

Equation simplification

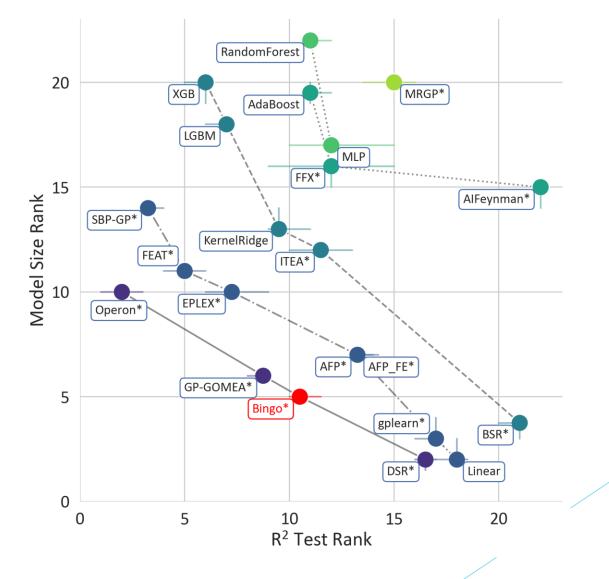
- More complex equation -> more effort to evaluate
- ▶ We use simplified versions of equations for evaluation
 - Doesn't modify the original genotype
- C++ backend
 - An optional backend that can be enabled so that some components are implemented in C++

SRBench

- SRBench² and Penn Machine Learning Benchmarks (PMLB)³
 - SRBench [4]
 - Open-source benchmark for SR and ML methods
 - Used for this workshop's competition
 - PMLB [5]
 - Mix of realistic and synthetic datasets
- Black-box problems
 - General regression
- Ground-truth problems
 - Recovering an underlying equation



Results (cont.)



Results (cont.)

Summary

What is Bingo?

- Flexible, modular framework for GPSR
- Made to easily compare and create GPSR components

Sandbox

Can still be used for typical GPSR without modifications

SRBench

sklearn wrapper

Future Work

- Faster training times
 - More parts implemented in C++
- Built-in integration with other tools
 - ► SymPy⁴
 - ▶ PyTorch⁵/TensorFlow⁶
- Better performance on general regression problems
 - Revisiting and analyzing performance on SRBench

^{4,5,6} This is not an endorsement by the National Aeronautics and Space Administration (NASA)

References

- [1] Michael Schmidt and Hod Lipson. 2007. Comparison of tree and graph encodings as function of problem complexity.
- [2] Michael D. Schmidt and Hod Lipson. 2010. Age-fitness pareto optimization.
- [3] Michael D. Schmidt and Hod Lipson. 2008. Coevolution of Fitness Predictors.
- [4] William La Cava, et al. 2021. Contemporary Symbolic Regression Methods and their Relative Performance.
- [5] Joseph D. Romano, et al. 2020. PMLB v1.0: an open source dataset collection for benchmarking machine learning methods.