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What is Bingo?

 Bingo is an open-source framework for genetic programming for 
symbolic regression (GPSR) developed by NASA

 Made to be

 Modular

 Extendible

 Efficient

 Why use Bingo over other GPSR packages?

 High- and low-level interfaces for ease-of-use and customizability

 Modularity makes it easy to compare and develop components of GPSR

 Produces simple and accurate models
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https://github.com/nasa/bingo


Bingo’s Structure
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Equations/Chromosomes

 Encoded as directed acyclic graphs (AGraphs)

 Computational benefits over tree encodings [1]

 Have free-form constants/parameters that can be 
locally optimized

 Complexity

 Measured as number of utilized nodes in the graph 
encoding
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Local Optimization of Parameters
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Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity
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i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1
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Evolutionary Optimizer

 Responsible for generating an initial population (generator) and 
evolving that population (evolutionary algorithm)

 Potential generator customizations

 Initial population with all unique equations

 Seeding of initial population with parts of previously found equations

 Filtering of random equations

 Potential genetic programming workflow customizations

 Archipelago

 Coevolution
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Generate 
population(s)

Evolve with 
Evolutionary Algorithm

Best Equation, Hall of 
Fame, etc.



Evolutionary Algorithm

 Responsible for performing evolution on a population

 Follows a traditional GPSR workflow by default

 Variation

 Evaluation

 Selection

 Can introduce other evolutionary operations

 Simplification
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Variation

EvaluationSelection



Variation

 Takes a population and varies it to form 
new individuals

 Two main methods

 Crossover and mutation

 Crossover or mutation

 Potential customizations

 Only select variations that are more fit 
than their original counterparts
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Evaluation

 Evaluates the fitness of individuals in a population

 Fitness functions

 Explicit regression

 Implicit regression

 Continuous local optimization

 Potential customizations

 Domain-specific constraints

 Optimization with consideration of uncertainty
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Selection

 Selects among original population and its variants to form next 
generation’s population

 Deterministic crowding

 Age-fitness Pareto selection [2]

 Tournament

 Potential customizations

 Probabilistic crowding
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Generation N + 1

Generation N, Offspring



Notable Customizations

 Fitness functions for mechanical engineering

 Incorporation of automatic differentiation

 Tensorial GPSR

 Sequential Monte-Carlo and uncertainty quantification
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What if I don’t care about customization?

 “Out-of-the-box” scikit-learn1 wrapper

 Easy configuration and simple interface for training

 Can use with other scikit-learn utilities

 e.g., Cross validation classes, useful for hyperparameter tuning
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reg = SymbolicRegressor(evolutionary_algorithm=AgeFitnessEA, ...)
reg.fit(x_train, y_train)
y_pred = reg.predict(x_test)

1 This is not an endorsement by the National Aeronautics and Space Administration (NASA)



Efficiency

 Parallelism

 Distributed memory: parallel evolution of islands

 Shared memory: parallel evaluation of individuals

 Fitness predictors [3]

 Subsets of data used to predict the true fitness of individuals

 Less computational effort required for evaluation

 Similar ideas to support vectors and batch evaluation
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Efficiency (cont.)

 Equation simplification

 More complex equation -> more effort to evaluate

 We use simplified versions of equations for evaluation

 Doesn’t modify the original genotype

 C++ backend

 An optional backend that can be enabled so that some components are 
implemented in C++
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SRBench

 SRBench2 and Penn Machine Learning Benchmarks (PMLB)3

 SRBench [4]

 Open-source benchmark for SR and ML methods

 Used for this workshop’s competition

 PMLB [5]

 Mix of realistic and synthetic datasets

 Black-box problems

 General regression

 Ground-truth problems

 Recovering an underlying equation
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2,3 This is not an endorsement by the National Aeronautics and Space Administration (NASA)



Results
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Results (cont.)
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Results (cont.)
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Summary

 What is Bingo?

 Flexible, modular framework for GPSR

 Made to easily compare and create GPSR components

 Sandbox

 Can still be used for typical GPSR without modifications

 SRBench

 sklearn wrapper
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Future Work

 Faster training times

 More parts implemented in C++

 Built-in integration with other tools

 SymPy4

 PyTorch5/TensorFlow6

 Better performance on general regression problems

 Revisiting and analyzing performance on SRBench
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4,5,6 This is not an endorsement by the National Aeronautics and Space Administration (NASA)



References

 [1] Michael Schmidt and Hod Lipson. 2007. Comparison of tree and 
graph encodings as function of problem complexity.

 [2] Michael D. Schmidt and Hod Lipson. 2010. Age-fitness pareto 
optimization.

 [3] Michael D. Schmidt and Hod Lipson. 2008. Coevolution of Fitness 
Predictors.

 [4] William La Cava, et al. 2021. Contemporary Symbolic Regression 
Methods and their Relative Performance.

 [5] Joseph D. Romano, et al. 2020. PMLB v1.0: an open source dataset 
collection for benchmarking machine learning methods.

28


