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What is Bingo?

 Bingo is an open-source framework for genetic programming for 
symbolic regression (GPSR) developed by NASA

 Made to be

 Modular

 Extendible

 Efficient

 Why use Bingo over other GPSR packages?

 High- and low-level interfaces for ease-of-use and customizability

 Modularity makes it easy to compare and develop components of GPSR

 Produces simple and accurate models
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https://github.com/nasa/bingo


Bingo’s Structure
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Equations/Chromosomes

 Encoded as directed acyclic graphs (AGraphs)

 Computational benefits over tree encodings [1]

 Have free-form constants/parameters that can be 
locally optimized

 Complexity

 Measured as number of utilized nodes in the graph 
encoding
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Local Optimization of Parameters
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Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity
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i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1
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Evolutionary Optimizer

 Responsible for generating an initial population (generator) and 
evolving that population (evolutionary algorithm)

 Potential generator customizations

 Initial population with all unique equations

 Seeding of initial population with parts of previously found equations

 Filtering of random equations

 Potential genetic programming workflow customizations

 Archipelago

 Coevolution
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Generate 
population(s)

Evolve with 
Evolutionary Algorithm

Best Equation, Hall of 
Fame, etc.



Evolutionary Algorithm

 Responsible for performing evolution on a population

 Follows a traditional GPSR workflow by default

 Variation

 Evaluation

 Selection

 Can introduce other evolutionary operations

 Simplification
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Variation

EvaluationSelection



Variation

 Takes a population and varies it to form 
new individuals

 Two main methods

 Crossover and mutation

 Crossover or mutation

 Potential customizations

 Only select variations that are more fit 
than their original counterparts
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Evaluation

 Evaluates the fitness of individuals in a population

 Fitness functions

 Explicit regression

 Implicit regression

 Continuous local optimization

 Potential customizations

 Domain-specific constraints

 Optimization with consideration of uncertainty
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Selection

 Selects among original population and its variants to form next 
generation’s population

 Deterministic crowding

 Age-fitness Pareto selection [2]

 Tournament

 Potential customizations

 Probabilistic crowding
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Generation N + 1

Generation N, Offspring



Notable Customizations

 Fitness functions for mechanical engineering

 Incorporation of automatic differentiation

 Tensorial GPSR

 Sequential Monte-Carlo and uncertainty quantification
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What if I don’t care about customization?

 “Out-of-the-box” scikit-learn1 wrapper

 Easy configuration and simple interface for training

 Can use with other scikit-learn utilities

 e.g., Cross validation classes, useful for hyperparameter tuning
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reg = SymbolicRegressor(evolutionary_algorithm=AgeFitnessEA, ...)
reg.fit(x_train, y_train)
y_pred = reg.predict(x_test)

1 This is not an endorsement by the National Aeronautics and Space Administration (NASA)



Efficiency

 Parallelism

 Distributed memory: parallel evolution of islands

 Shared memory: parallel evaluation of individuals

 Fitness predictors [3]

 Subsets of data used to predict the true fitness of individuals

 Less computational effort required for evaluation

 Similar ideas to support vectors and batch evaluation
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Efficiency (cont.)

 Equation simplification

 More complex equation -> more effort to evaluate

 We use simplified versions of equations for evaluation

 Doesn’t modify the original genotype

 C++ backend

 An optional backend that can be enabled so that some components are 
implemented in C++
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SRBench

 SRBench2 and Penn Machine Learning Benchmarks (PMLB)3

 SRBench [4]

 Open-source benchmark for SR and ML methods

 Used for this workshop’s competition

 PMLB [5]

 Mix of realistic and synthetic datasets

 Black-box problems

 General regression

 Ground-truth problems

 Recovering an underlying equation
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2,3 This is not an endorsement by the National Aeronautics and Space Administration (NASA)



Results
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Results (cont.)
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Results (cont.)
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Summary

 What is Bingo?

 Flexible, modular framework for GPSR

 Made to easily compare and create GPSR components

 Sandbox

 Can still be used for typical GPSR without modifications

 SRBench

 sklearn wrapper
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Future Work

 Faster training times

 More parts implemented in C++

 Built-in integration with other tools

 SymPy4

 PyTorch5/TensorFlow6

 Better performance on general regression problems

 Revisiting and analyzing performance on SRBench
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4,5,6 This is not an endorsement by the National Aeronautics and Space Administration (NASA)
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