
Bingo: A Customizable Framework 
for Symbolic Regression with 

Genetic Programming
David Randall1, Tyler Townsend2, Jacob Hochhalter1, Geoffrey Bomarito3

1University of Utah, 2Microsoft (Views and opinions are personal and do not represent Microsoft), 3NASA Langley Research Center



What is Bingo?

 Bingo is an open-source framework for genetic programming for 
symbolic regression (GPSR) developed by NASA

 Made to be

 Modular

 Extendible

 Efficient

 Why use Bingo over other GPSR packages?

 High- and low-level interfaces for ease-of-use and customizability

 Modularity makes it easy to compare and develop components of GPSR

 Produces simple and accurate models

2

https://github.com/nasa/bingo


Bingo’s Structure

3



Equations/Chromosomes

 Encoded as directed acyclic graphs (AGraphs)

 Computational benefits over tree encodings [1]

 Have free-form constants/parameters that can be 
locally optimized

 Complexity

 Measured as number of utilized nodes in the graph 
encoding

4



Local Optimization of Parameters

5



Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity

6

i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1



Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity

7

i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1



Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity

8

i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1



Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity

9

i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1



Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity

10

i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1



Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity

11

i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1



Command Arrays

 Genome of equations

 Terminal nodes and operators

 Not all commands are utilized

 Size of command array ≠ complexity

12

i node parameter 1 parameter 2 expression

0 constant 0 0 C0

1 variable 0 0 X0

2 variable 1 1 X1

3 * 0 1 C0X0

4 + 1 2 X0 + X1

5 sin 2 2 sin(X1)

6 + 3 4 C0X0 + X0 + X1



Evolutionary Optimizer

 Responsible for generating an initial population (generator) and 
evolving that population (evolutionary algorithm)

 Potential generator customizations

 Initial population with all unique equations

 Seeding of initial population with parts of previously found equations

 Filtering of random equations

 Potential genetic programming workflow customizations

 Archipelago

 Coevolution

13

Generate 
population(s)

Evolve with 
Evolutionary Algorithm

Best Equation, Hall of 
Fame, etc.



Evolutionary Algorithm

 Responsible for performing evolution on a population

 Follows a traditional GPSR workflow by default

 Variation

 Evaluation

 Selection

 Can introduce other evolutionary operations

 Simplification

14

Variation

EvaluationSelection



Variation

 Takes a population and varies it to form 
new individuals

 Two main methods

 Crossover and mutation

 Crossover or mutation

 Potential customizations

 Only select variations that are more fit 
than their original counterparts

15



Evaluation

 Evaluates the fitness of individuals in a population

 Fitness functions

 Explicit regression

 Implicit regression

 Continuous local optimization

 Potential customizations

 Domain-specific constraints

 Optimization with consideration of uncertainty

16



Selection

 Selects among original population and its variants to form next 
generation’s population

 Deterministic crowding

 Age-fitness Pareto selection [2]

 Tournament

 Potential customizations

 Probabilistic crowding

17

Generation N + 1

Generation N, Offspring



Notable Customizations

 Fitness functions for mechanical engineering

 Incorporation of automatic differentiation

 Tensorial GPSR

 Sequential Monte-Carlo and uncertainty quantification

18

𝜕

𝜕𝑋0
𝑠𝑖𝑛 𝑋0

2 = 𝑐𝑜𝑠 𝑋0
2 ⋅ 2𝑋0



What if I don’t care about customization?

 “Out-of-the-box” scikit-learn1 wrapper

 Easy configuration and simple interface for training

 Can use with other scikit-learn utilities

 e.g., Cross validation classes, useful for hyperparameter tuning

19

reg = SymbolicRegressor(evolutionary_algorithm=AgeFitnessEA, ...)
reg.fit(x_train, y_train)
y_pred = reg.predict(x_test)

1 This is not an endorsement by the National Aeronautics and Space Administration (NASA)



Efficiency

 Parallelism

 Distributed memory: parallel evolution of islands

 Shared memory: parallel evaluation of individuals

 Fitness predictors [3]

 Subsets of data used to predict the true fitness of individuals

 Less computational effort required for evaluation

 Similar ideas to support vectors and batch evaluation

20



Efficiency (cont.)

 Equation simplification

 More complex equation -> more effort to evaluate

 We use simplified versions of equations for evaluation

 Doesn’t modify the original genotype

 C++ backend

 An optional backend that can be enabled so that some components are 
implemented in C++

21



SRBench

 SRBench2 and Penn Machine Learning Benchmarks (PMLB)3

 SRBench [4]

 Open-source benchmark for SR and ML methods

 Used for this workshop’s competition

 PMLB [5]

 Mix of realistic and synthetic datasets

 Black-box problems

 General regression

 Ground-truth problems

 Recovering an underlying equation

22

2,3 This is not an endorsement by the National Aeronautics and Space Administration (NASA)



Results

23



Results (cont.)

24



Results (cont.)

25



Summary

 What is Bingo?

 Flexible, modular framework for GPSR

 Made to easily compare and create GPSR components

 Sandbox

 Can still be used for typical GPSR without modifications

 SRBench

 sklearn wrapper

26



Future Work

 Faster training times

 More parts implemented in C++

 Built-in integration with other tools

 SymPy4

 PyTorch5/TensorFlow6

 Better performance on general regression problems

 Revisiting and analyzing performance on SRBench

27

4,5,6 This is not an endorsement by the National Aeronautics and Space Administration (NASA)



References

 [1] Michael Schmidt and Hod Lipson. 2007. Comparison of tree and 
graph encodings as function of problem complexity.

 [2] Michael D. Schmidt and Hod Lipson. 2010. Age-fitness pareto 
optimization.

 [3] Michael D. Schmidt and Hod Lipson. 2008. Coevolution of Fitness 
Predictors.

 [4] William La Cava, et al. 2021. Contemporary Symbolic Regression 
Methods and their Relative Performance.

 [5] Joseph D. Romano, et al. 2020. PMLB v1.0: an open source dataset 
collection for benchmarking machine learning methods.

28


