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Abstract 39 

The beginning of the 21st century is marked by a rapid growth of land surface satellite data and model 40 
sophistication. This offers new opportunities to estimate multiple components of the water cycle via 41 
satellite-based land data assimilation (DA) across multiple scales. By resolving more processes in land 42 
surface models and by coupling the land, the atmosphere, and other Earth system compartments, the 43 
observed information can be propagated to constrain additional unobserved variables. Furthermore, 44 
access to more satellite observations enables the direct constraint of more and more components of the 45 
water cycle that are of interest to end users. However, the finer level of detail in models and data is 46 
also often accompanied by an increase in dimensions, with more state variables, parameters, or 47 
boundary conditions to estimate, and more observations to assimilate. This requires advanced DA 48 
methods and efficient solutions. One solution is to target specific observations for assimilation based 49 
on a sensitivity study or coupling strength analysis, because not all observations are equally effective 50 
in improving subsequent forecasts of hydrological variables, weather, agricultural production, or 51 
hazards through DA. This paper offers a perspective on current and future land DA development, and 52 
suggestions to optimally exploit advances in observing and modeling systems. 53 

1 Introduction 54 

The distribution of water on Earth determines human livelihoods and is itself influenced by human 55 
activities. Estimating the water availability in various terrestrial compartments is essential for water 56 
resources management, agricultural monitoring, natural hazards and disaster risk assessment, 57 
biodiversity and planet health protection, numerical weather prediction (NWP), seasonal prediction, 58 
and climate change mitigation and adaptation. Currently, the most complete regional- to global-scale 59 
estimates of water-related variables are obtained by merging satellite data records into numerical 60 
models of Earth system processes through data assimilation (DA) (Asch et al., 2016). DA can combine 61 
the unprecedented amounts of satellite data with the steadily acquired process understanding of the 62 
past decades. Specifically, DA uses the satellite observations to correct errors in model simulations, 63 
including errors in unobserved variables. Thereby, DA adds value to the observations by inferring 64 
unobserved information, filling gaps and/or enhancing the spatial resolution of satellite data. In the 65 
geosciences, DA mostly refers to state estimation theory, but it more generally covers any technique 66 
that uses data to estimate the most accurate possible system state (Carrassi et al., 2018) and associated 67 
fluxes. Therefore, DA also encompasses model parameter optimization and the correction of boundary 68 
conditions, including meteorological forcings.  69 

Land DA developments have been reviewed earlier (Reichle, 2008, Lahoz and De Lannoy, 2014, De 70 
Lannoy et al., 2016, Jin et al., 2018, Huang et al., 2019, Xia et al., 2019, Girotto et al., 2020, Durand 71 
et al., 2021, Baatz et al., 2021). In parallel to our paper, Kumar et al. (2022, in review) review and 72 
identify current community-agreed gaps and priorities for the future of state estimation via land DA. 73 
In this paper, we reflect on advances in observing, modeling and DA techniques, the associated 74 
opportunities and complexities of future land DA systems, and solutions to keep land DA efficient and 75 
effective, in the presence of rapid data growth and model sophistication in the first half of the 21st 76 
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century. First, we summarize the state of the art of land DA for the estimation of water cycle variables 77 
(Section 2). Next, we offer a perspective on current observing, modeling and DA systems (Section 3) 78 
and on the future goals of land DA (Section 4). The focus will be on soil moisture, snow and vegetation 79 
estimation and how to extend the impact of satellite-based land DA to improved dynamic estimates of 80 
the atmosphere, vegetation, hydrological and biogeochemical cycles, as well as of natural hazards.  81 

2 State of the Art 82 

 83 
Figure 1. The 21st century within the history of remote sensing, which started with the understanding 84 
of electromagnetic radiation (EMR). Select satellite missions used for land DA are marked and 85 
discussed in the text.  86 

The beginning of the 21st century has seen a sustained increase in remotely sensed data of the Earth 87 
system. Figure 1 shows the exponential growth in satellite missions, with about 4,800 active satellite 88 
platforms orbiting our Earth in 2021 (https://www.statista.com/statistics/897719/number-of-active-89 
satellites-by-year/), but only 20-25% collect Earth observations, and fewer than 1% are regularly used 90 
for land DA. Gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) 91 
and GRACE Follow-On missions directly sense changes in total water storage but at a very coarse 92 
scale. Optical sensors (onboard the Terra, Landsat, and Sentinel-2 missions, among others) measure 93 
fine-scale water content proxies, e.g., snow cover extent, open water extent, vegetation, and soil color 94 
or temperature. Microwave sensors (onboard the Soil Moisture Ocean Salinity -SMOS-, Soil Moisture 95 
Active Passive -SMAP- and Sentinel-1 missions, the Advanced Microwave Scanning Radiometer 96 
onboard Aqua, and the Advanced SCATterometer -ASCAT- onboard Metop, among many more) are 97 
used to retrieve water amounts in the soil, vegetation and snow. The passive radiometer sensors collect 98 
brightness temperature data at a coarse resolution (~40 km), whereas active synthetic aperture radar 99 
(SAR) instruments can collect backscatter data at finer resolutions (< 1 km). Microwave sensors exploit 100 
the fact that the presence of water directly affects the dielectric properties of the soil, vegetation and 101 
snow, and it strongly influences the emission and scattering of microwave radiation (Ulaby et al., 102 
2014). Insight into how radiation interacts with water in different land compartments is summarized in 103 
radiative transfer models, which can be used in two ways: (i) to invert the observed radiance into 104 
geophysical “retrieval” products (e.g., soil moisture, vegetation or snow water content), or (ii) as so-105 
called observation operators to map simulated land surface variables to satellite-observed signals (e.g., 106 
brightness temperature or backscatter).  107 
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Many land DA systems have used microwave observations to estimate surface and deeper soil moisture 108 
(de Rosnay et al., 2014, De Lannoy et al., 2016, Reichle et al., 2019), and related variables such as 109 
discharge (Lievens et al., 2015, De Santis et al., 2021), turbulent fluxes (Lu et al., 2020), and even 110 
groundwater in peatlands (Bechtold et al., 2020). With the activation of dynamic vegetation models, 111 
the assimilation of optical vegetation indices (e.g., leaf area index) and microwave vegetation optical 112 
depth (Fairbairn et al., 2017, Kumar et al., 2020, Mucia et al., 2022) has gained interest, including to 113 
improve evapotranspiration (ET) and runoff. DA of thermal satellite data has also been popular for ET 114 
and soil moisture estimation (Crow et al., 2008), but studies on the intersection between the water and 115 
energy cycle will not be further discussed, to keep the focus on water cycle variables. At the finer scale, 116 
optical and radar satellite data have been assimilated in crop models to update canopy or soil state 117 
variables and ultimately estimate transpiration, agricultural biomass and yield (Jin et al., 2018, Lu et 118 
al., 2022). Under frozen conditions, the assimilation of optical snow cover fraction or microwave-based 119 
snow depth has been explored (Helmert et al., 2018, Girotto et al., 2021).  120 

In practice, land DA systems are developed by merging the theoretical insights in DA, which provide 121 
a portfolio of algorithms, with the operational and physical constraints of land surface observations 122 
and modeling. An overview of regional and global land DA systems is given by Xia et al. (2019). The 123 
observations consist either of satellite retrieval products (soil moisture: Dharssi et al., 2011, Liu et al., 124 
2011, Rodriguez-Fernandez et al., 2019; vegetation: Albergel et al., 2017, Kumar et al., 2020; snow: 125 
De Lannoy et al., 2010) or direct satellite signals (related to soil moisture: De Lannoy and Reichle, 126 
2016, Lievens et al., 2017, Muñoz-Sabater et al., 2019, Reichle et al., 2019; snow: Larue et al., 2018, 127 
Xue et al., 2018), and most land DA systems consider far fewer observations than state variables (this 128 
characterizes DA in the geosciences at large). For example, one surface soil moisture retrieval every 129 
few days can update soil moisture in multiple soil layers and possibly vegetation, or one weekly snow 130 
cover fraction observation can update the water amount in different snow layers, while the model state 131 
evolves at sub-hourly time steps. Furthermore, most land DA systems are one-dimensional, i.e., they 132 
update each soil-vegetation-snow column (grid cell) independently and the analysis update is strictly 133 
limited to the observed columns. This formulation does not exploit the capability of many DA 134 
approaches to propagate information across the model domain from observed to unobserved areas. If 135 
communication among different columns is made possible via the physics-based model or via spatial 136 
error correlations, thus making the DA system spatially distributed, then state variables in neighboring 137 
(observed or unobserved) columns within the influence radius of a given observation are analyzed 138 
together (Reichle and Koster, 2003, De Lannoy et al., 2010, Magnusson et al., 2014, Reichle et al., 139 
2019).  140 

The above studies all aim at state estimation via particle or Kalman filtering variants (other DA 141 
methods such as variational DA or direct insertion have also been used) to correct the land surface state 142 
for short-term and interannual errors in the meteorological forcings (in offline systems, i.e., not coupled 143 
to an atmospheric model) or other unmodeled temporary deviations in some water compartments. In 144 
this process, only a few DA systems effectively assign the DA corrections to the source of errors, such 145 
as for example snowfall or precipitation input to obtain good snow depth or total water storage 146 
estimates (Winstral et al., 2019, Girotto et al., 2021). Most DA systems do not conserve mass, unless 147 
the water budget is explicitly constrained (Pan et al., 2012). 148 

To correct land surface estimates for longer-term or systematic deviations, and to minimize water 149 
budget imbalances, satellite data can be used more effectively for parameter estimation. These 150 
parameters can be part of the prognostic model (Han et al., 2014, Kolassa et al., 2020), the diagnostic 151 
radiative transfer model (De Lannoy et al., 2013, Rains et al., 2022), or represent a bias factor for 152 
meteorological input (Wrzesien et al., 2022). Long-term model calibration could be seen as a form of 153 
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long-term DA or history matching. Alternatively, DA for sequential parameter updating (with or 154 
without simultaneous state updating) allows to account for time-varying parameters (Montzka et al., 155 
2011, Magnusson et al., 2016). 156 

3 Perspective on Current Observing, Modeling and DA Systems 157 

3.1 Observations 158 

The spaceborne observations of many water cycle variables have been improving in radiometric, 159 
spatial, and temporal resolution, but dedicated missions are not yet available for all parts of the water 160 
budget. Soil moisture is now routinely measured at a coarse resolution by dedicated L-band satellite 161 
missions (SMOS, SMAP, Kerr et al., 2010, Entekhabi et al., 2014), and can also be inferred from 162 
shorter wavelength C-band sensors onboard meteorological satellite missions (ASCAT, Figa-Saldana 163 
et al., 2002). Finer-scale estimates can be obtained from current C-band SAR or optical sensors, and 164 
the upcoming NASA-ISRO L-band SAR (NISAR, Rosen and Kumar, 2021) and ESA High Priority 165 
Candidate Mission Radar Observation System for Europe in L-band (ROSE-L, Pierdicca et al., 2019) 166 
are expected to improve fine-scale soil moisture estimates. 167 

There is currently no mission devoted to SWE, but various passive microwave sensors have been 168 
combined to produce coarse-scale SWE products (Luojus et al., 2021). The complexity of snow itself 169 
and its presence in complex terrain require more insight on how different types of radiation interact 170 
with snow to support the development of a dedicated mission (e.g. Ku and X-band) for fine-scale SWE 171 
observation. Multi-frequency missions such as the planned Copernicus Imager Microwave Radiometer 172 
(CIMR) will become relevant for SWE remote sensing in the future. Meanwhile, existing sensors have 173 
been used in an opportunistic way (e.g., snow depth from Sentinel-1 radar, Lievens et al., 2022), and 174 
upcoming missions such as NISAR and ROSE-L will further help to estimate high resolution SWE.  175 

The water stored in vegetation is also not yet fully observed from space. Several optical vegetation 176 
indices (e.g., leaf area index) approximate the vegetation health and transpiration (Bannari et al., 2009). 177 
More recently, the microwave-based vegetation optical depth (VOD) products have shown promise to 178 
represent biomass, vegetation structure and water (Steele-Dunne, 2017, Wigneron et al., 2021, 179 
Chaubell et al., 2020). The upcoming BIOMASS Earth Explorer mission (Quegan et al., 2019) 180 
promises to explore long wavelength (P-band) measurements to estimate the total biomass in whole 181 
forest layers. Recent studies also aim at the estimation of plant transpiration from novel solar induced 182 
fluorescence (SIF) retrievals (Maes et al., 2020). The upcoming FLEX Earth Explorer mission (Drusch 183 
et al., 2017) will collect SIF data to serve agricultural purposes. Ultimately, advancing VOD and SIF-184 
based retrievals and gaining insights in how vegetation affects microwave radiation or fluorescence 185 
will lead to better estimates of the water, carbon and energy cycle when combined with dynamic 186 
vegetation and crop yield modeling. 187 

Spaceborne observation of water fluxes such as total ET and discharge remains a challenge. 188 
Intermittent satellite-based discharge estimates can be derived from optical and altimeter data (Abdella 189 
et al., 2021, Tarpanelli et al., 2021). The Surface Water and Ocean Topography (SWOT) mission will 190 
soon enable frequent spaceborne observations of river stage for large rivers to allow inference of 191 
discharge (Biancamaria et al., 2016; Frasson et al., 2021). Currently, no mission is specifically 192 
dedicated to ET measurements (Fisher et al., 2017), and ET is most typically inferred from satellite-193 
observed surface or skin temperature (related to sensible heat) as the residual of a simple energy 194 
balance model (Anderson et al., 2021), or indirectly obtained via soil moisture and VOD DA in a land 195 
surface model (Martens et al., 2017). Most high-resolution ET methods based on optical sensors suffer 196 
from low coverage (clear-sky conditions, low revisit times) and from large discrepancies among the 197 
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various products. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 198 
(ECOSTRESS, Fisher et al., 2020) mission helped evaluating the use of thermal infrared observations 199 
at fine spatial and temporal resolutions to define future ET mission requirements. The future Land 200 
Surface Temperature Monitoring (LSTM, or Sentinel-8) and Thermal infraRed Imaging Satellite for 201 
High-Resolution Natural resource Assessment (TRISHNA, Roujean et al., 2021) missions promise to 202 
advance ET measurements in the coming decade. The quantification of other water fluxes, such as 203 
irrigation fluxes, from satellite observations is still in its infancy (Kumar et al., 2015, Massari et al., 204 
2021, Dari et al., 2022).  205 

Most DA systems use satellite observations that are directly related to land surface state variables (e.g., 206 
soil moisture, temperature, vegetation, snow) to improve subsequent state and flux forecasts. 207 
Conversely, the assimilation of satellite-based flux observations (e.g., ET, runoff, irrigation) is 208 
relatively less explored and limited to regional applications (Hartanto et al., 2017, Gavahi et al., 2020), 209 
because only a few global flux products are available (mainly ET) and they heavily depend on model 210 
background which might be inconsistent with the assimilation model. Furthermore, the diagnostic flux 211 
DA requires a careful design to link flux observations to prognostic state or parameter updates that are 212 
memorized in the system for improved forecasts. The latter can be achieved e.g., via selecting particles 213 
with a self-consistent combination of parameter, state and flux values in particle filters or via an 214 
adequate observation operator in Kalman filter-based techniques (Pauwels et al., 2006). 215 

New sensor technologies have not only helped to observe more variables, but also increased the 216 
resolution of data. For example, SAR data can regularly monitor soil moisture and surface water at 217 
km-scale resolution, albeit with more noise, longer revisit times or smaller coverage than coarser-scale 218 
data. Even if some (mainly commercial) sensors are indeed able to measure with high levels of detail, 219 
observations with meter-scale resolution are unlikely to make it into equally fine-scale land DA 220 
systems for global applications any time soon (Section 4.2). 221 

The level of satellite observation processing desirable for land DA is the subject of a debate that should 222 
strengthen the collaboration between geophysical retrieval and DA communities in the future. Land 223 
DA uses satellite observations either in the form of gridded radiances collected by the sensor or as the 224 
associated geophysical retrievals. Just like retrieval DA, radiance DA has been used to update the land 225 
surface state (examples below) and parameters in the land surface or radiative transfer model (Han et 226 
al., 2014). Radiance DA requires a forward model to relate the land surface state (soil moisture, 227 
temperature, snow, vegetation water content) and parameters (clay fraction, vegetation scattering 228 
albedo) to the satellite radiance signals as part of the observation operator (Reichle et al., 2014). The 229 
observation operator can also deal with the difference in spatial support of the observations and 230 
simulations in a multiscale DA system, e.g., to downscale coarse-scale observations to a finer 231 
resolution. Some studies report little DA skill difference between radiance and geophysical retrieval 232 
assimilation (De Lannoy and Reichle, 2016, Aires et al., 2021), and other studies show that radiance 233 
DA can circumvent biases associated with retrievals. For example, for deep mountain snow, SWE 234 
retrievals can be significantly biased (e.g. Wrzesien et al., 2017), but microwave radiance DA allowed 235 
both Li et al. (2017) and Kim et al. (2019) to achieve unbiased SWE estimates. Furthermore, DA of 236 
radiances facilitates the simultaneous updating of multiple state variables (e.g., soil moisture, 237 
temperature and vegetation) more elegantly than DA of the various associated individual retrieval 238 
products with cross-correlated errors. Radiance DA is also physically more self-consistent than 239 
retrieval DA, because retrievals are constrained by background information that may deviate from that 240 
of the model. E.g., soil moisture retrieval may use temperature information, and soil or vegetation 241 
parameters from data sources that are different from those of the model. The physical consistency 242 
makes radiance DA particularly attractive for coupled land-atmosphere DA (de Rosnay et al., 2022). 243 
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Finally, the observation error characterization is more traceable for radiance DA. In the realm of DA 244 
algorithms, the use of (nonlinear) observation operators enables solving DA as a nonlinear optimization 245 
problem, without (or with limited) relying on linearity assumptions. In short, satellite observations 246 
should be provided along with good observation operators that can support land DA. 247 

The spatio-temporal characterization of the observation error (that is, retrieval or instrument error, plus 248 
representativeness error) is a key element to successful DA systems. New sensor developments would 249 
thus ideally be preceded by a synthetic observing system simulation experiment (Crow et al., 2005) to 250 
quantify the tolerable levels of uncertainty for efficient DA. Furthermore, observations and model 251 
estimates typically have distinct biases, which are ideally resolved, explained, or removed prior to state 252 
updating (see Section 3.3 and 4.1). This requires that satellite missions span enough years to quantify 253 
climatological biases in observation space, and this has so far limited the use of short-lived exploratory 254 
missions onboard new platforms (e.g., drones, cubesats) in DA systems.  255 

3.2 Models 256 

 257 
Figure 2. Land surface model sophistication increased in the 21st century towards (a) higher 258 
resolutions, by resolving multi-scale hydrological processes and improving model parameterizations, 259 
and (b) coupling of more processes, by replacing simplistic parameterizations and including more 260 
interactions between variables in multiple compartments. 261 

The beauty of nature is that it is intelligible and can be captured in general physical laws, despite its 262 
complexity in the details. This knowledge is indispensable to add value to observations, and to inter- 263 
and extrapolate them to unobserved variables. In the last decades, a slow but steady increase in 264 
sophistication of large-scale land surface modeling and DA systems has been achieved (Fisher and 265 
Koven, 2020) by (i) improving model parameterizations (Balsamo et al., 2009) and resolving 266 
multiscale processes (Figure 2a), (ii) improving prognostic representations of hydrological processes, 267 
such as e.g., lateral subsurface flows in aquifers (Shrestha et al., 2014), snow processes (Bartelt and 268 
Lehning, 2002, Deschamps-Berger et al., 2022), peatland-specific processes (Bechtold et al., 2020), 269 
(iii) improving prognostic representations of vegetation (Clark et al., 2011), biogeochemical cycles 270 
including the nitrogen cycle (Oleson et al., 2013) and phosphorus cycle (Goll et al., 2017), (iv) 271 
activating anthropogenic processes, such as irrigation (Lawston et al., 2017), or by (v) land-atmosphere 272 
coupling (Figure 2b).  273 

By shifting from parameterized to physically resolved modeling (e.g., static parameterized to 274 
prognostic dynamic vegetation) and by coupling more processes, the DA impact of a single observation 275 



  Perspective on Land Data Assimilation 

 
8 

can reach more unobserved, but model-resolved, compartments. For example, snow depth DA can 276 
improve discharge and low-level atmospheric estimates (Griessinger et al., 2019, Lahmers et al., 2022, 277 
Rudisill et al., 2021), and backscatter DA can update dynamic vegetation and soil moisture, to 278 
eventually update irrigation (Modanesi et al., 2022). Efforts are ongoing to advance land DA in coupled 279 
land-atmosphere models (de Rosnay et al., 2014, Boussetta et al., 2015, Carrera et al., 2019, Reichle et 280 
al., 2021b) to make good on the promise to improve NWP and subseasonal to seasonal predictions 281 
(Kumar et al., 2022). As a matter of fact, the use of physics-based models has also been pivotal to the 282 
success of atmospheric DA in NWP to propagate information to unobserved areas (Kalnay, 2002). At 283 
the same time, several studies with current state-of-the-art land surface models also reported limited 284 
success (Crow et al., 2020, Hung et al., 2022) in propagating information from one compartment to 285 
another, which suggests that the modeling (parameterization) of the coupling and fluxes between land 286 
compartments as well as DA strategies need further research. 287 

Surprisingly few new prognostic physics-based models (or model components) have been developed 288 
in response to the growing number of satellite data. This might be because we have reached the 289 
maximal desired structural complexity for large-scale applications, or because the coarse resolution of 290 
many satellite data integrates too much spatial variability, complicating a clean local physical 291 
interpretation of processes. As both model simulations and satellite observations become available at 292 
higher resolutions and for longer time spans, more spatial and temporal scales get resolved (Figure 293 
2a). This might possibly deepen our process understanding, limit parameterizations and ultimately help 294 
hyper-resolution modeling (Wood et al., 2011) and DA. 295 

Alternative ways of model development are emerging, which in fact have the potential to use the 296 
growing amount of (possibly coarse-scale) data and artificial intelligence rather than our human 297 
intelligence to build a model. Specifically, machine learning (ML) holds promise (Nearing et al., 2020) 298 
to develop models for multiple variables directly from multiple types of observations. E.g., ML can be 299 
used to diagnose how satellite-observed signals can be related to a set of land surface variables via 300 
complex interactions. Especially for microwave-based observation operators (Xue et al., 2018, Shan et 301 
al., 2022), ML might currently be more efficient than trying to fully understand and parameterize all 302 
radiation interactions. It is however unclear if ML is capable of entirely replacing prognostic land 303 
surface models in Earth system models, given that ML is not well-suited for nonstationary systems 304 
(e.g., under climate change), or to support the inference of unobserved land variables, because ML 305 
typically employs supervised learning that requires the existence of observations prior to training. More 306 
pragmatically and potentially more successfully, ML might complement physically based descriptions 307 
in a hybrid fashion (Reichstein et al., 2019). Note that in this subsection, ML is presented as a tool for 308 
model development. Section 3.3 discusses how ML can be used for DA. 309 

Ideally, models offer a framework to propagate observations to unobserved variables, but models are 310 
imperfect, and their uncertainties originate from errors in the numerical schemes, unresolved scales, 311 
parameters, initial conditions, meteorological input (in offline systems) or missing processes. Via DA, 312 
the model state, parameters or forcing inputs will be updated to correct the model trajectory. If 313 
parameterizations are replaced with physically resolved process descriptions and the associated 314 
parameters would become physically measurable, then the need to update parameters should reduce in 315 
favor of more state updating. Similarly, when offline forcing inputs are replaced with coupled land-316 
atmosphere modeling and constrained by atmospheric observations, then the need to update 317 
meteorological input in land surface models should reduce in favor of more state updating. 318 

3.3 DA Methods 319 
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The choice of DA method for a given application is arguably often driven by the research group’s 320 
repository of source code, and it is rarely optimal in a mathematical sense (Carrassi et al., 2018). 321 
However, the discontinuity (e.g., via activation thresholds) and non-differentiability of land surface 322 
processes (including prognostic soil-water-vegetation-snow and diagnostic radiation interactions) is a 323 
valid reason to favor ensemble Kalman or particle-based techniques (Evensen et al., 2022), instead of 324 
variational methods that require model adjoints, which are difficult to obtain and maintain. 325 
Furthermore, ensemble- and particle-based DA can diagnose flow-dependent forecast error estimates 326 
for nonlinear land surface models. Like in other areas of climate science, filters dominate operational 327 
land DA systems because they naturally support the sequential inclusion of satellite observations, 328 
provided they are available to describe an optimal current state for subsequent forecasts. For longer-329 
term re-analysis solutions, or for slowly varying variables, smoothers (Dunne and Entekhabi, 2006, 330 
Margulis et al., 2015) gather observations over a sliding retrospective time window to obtain the best 331 
historical solution. 332 

The key to any DA method is in the treatment of the forecast and observation errors. State estimation 333 
assumes random errors. In the ensemble Kalman filter (EnKF) or particle filter (PF), the distribution 334 
of the random forecast error accumulated between assimilation time steps is diagnosed from an 335 
ensemble of realizations, and ensemble generation is an art by itself (choice of perturbations, variable 336 
transformations to obtain Gaussianity, covariance inflation, localization; Carrassi et al., 2018). The 337 
observation errors are typically set to a constant standard deviation parameter that reflects the 338 
instrument or retrieval error, increased by the representativeness error that also includes observation 339 
operator error (Tijana et al., 2018). The forecast and observation error estimates are typically 340 
hyperparameters optimized by manual tuning of DA diagnostics (Reichle et al., 2017), because 341 
automated adaptive filtering (Crow and Reichle, 2008, De Lannoy et al., 2009) remains too inefficient. 342 
Most DA methods rely on the assumption of unbiased sources of information, and thus biases are 343 
typically removed prior to DA via, e.g., cumulative distribution function matching between the 344 
assimilated observations and the model simulations (Reichle and Koster, 2004, Kumar et al., 2012); 345 
consequently, DA analyses are consistent with the (potentially erroneous) model climatology. Ideally, 346 
biases are disentangled to estimate (De Lannoy et al., 2007, Pauwels et al., 2013) and possibly remove 347 
forecast or observation bias, or perhaps to identify the impact of water management or other human 348 
activity (e.g., unmodeled groundwater pumping and irrigation; Kumar et al., 2015, Girotto et al., 2017).  349 

The nature of the errors associated with different land variables is very different. Figure 3 illustrates 350 
how soil moisture has a more bounded error growth than snow or vegetation, and that a single DA 351 
update reduces the forecast error for a longer time in variables with longer error autocorrelation lengths. 352 
More research is needed on how to best address these various types of errors for different variables 353 
via different DA methods and different bias treatments. For example, state-only updating without 354 
observation bias correction was advantageous to correct the accumulated snow and the associated river 355 
discharge in Smyth et al. (2019) and Lahmers et al. (2022), but in other studies, snow observation bias 356 
correction (De Lannoy et al., 2012, Liu et al., 2013) or bias correction to snowfall (Magnusson et al., 357 
2016) was preferred. Similarly, Albergel et al. (2017) and Kumar et al. (2020) used a bias-blind filter 358 
for vegetation updating, but omitting bias correction for vegetation observations can possibly cause 359 
undesirable sawtooth timeseries and inferior ET and runoff estimates when assimilating intermittent 360 
observations, when the model is pushed out of its statistical equilibrium. The need for observation bias 361 
correction might depend on the boundedness of variables and the coupling between variables in 362 
different models, i.e., whether there is strong circular coupling equilibrium (vegetation-transpiration-363 
soil moisture-vegetation) or rather a dominant one-way coupling (snowpack-discharge). 364 
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 365 
Figure 3. Different error characteristics of (a) surface soil moisture, (b) deeper soil moisture, and (c) 366 
vegetation or snow depth, for (gray) model-only and (blue) DA simulations. The semi-transparent 367 
plumes represent ensemble uncertainties.  368 

Finally, most of the above considerations hold for DA in the traditional sense of merging physics-based 369 
model variables with satellite observations. New, data-driven methods such as ML offer an alternative 370 
to DA and can in some ways be similar to four-dimensional variational DA (by including the time 371 
dimension as in smoothers). Like DA (Geer et al., 2021), ML can be used to obtain better state 372 
estimates, bias estimates (Pan et al., 2021) or parameter estimates (Mudunuru et al., 2022). Novel 373 
hybrid DA-ML methods (Bonavita et al., 2020) are showing success in discovering and emulating 374 
unresolved-scale processes, whenever a chronic lack of data makes the task extremely difficult for pure 375 
ML. In the context of coupled atmosphere-ocean modeling, DA-ML has shown promising results 376 
(Brajard et al., 2021) and its future use in a land-atmosphere context could be attractive. 377 

4 Perspective on Future DA Development 378 

4.1 Land DA Goals of the Future: Priorities 379 

From its origin in atmospheric and ocean sciences, DA for state updating provides the best-possible 380 
initial conditions for subsequent forecasts. Properly estimating the initial state is critically important in 381 
chaotic systems (Carrassi et al, 2022), where small errors can grow exponentially in time and where 382 
the characteristics of such growth are themselves unpredictable. By contrast, land systems are usually 383 
asymptotically stable. Therefore, initial errors are typically internalized in the state (memory) until the 384 
system reaches an equilibrium after some time. Nevertheless, in a coupled land-atmosphere system, a 385 
small land initialization error could result in exponential error growth in the atmosphere. Seemingly 386 
small improvements obtained via land DA are therefore critical for NWP and seasonal predictions, 387 
provided the coupling mechanisms for long-term predictability are well represented. In land-only 388 
applications, state updating is essential to reset cumulative vegetation or snow variables for seasonal-389 
scale yield or discharge forecasts, or to adjust soil moisture or input forcings for more accurate short-390 
term hazard predictions of landslides (Felsberg et al., 2021), fires (Jensen et al., 2018), floods (Massari 391 
et al., 2018), and droughts (Li et al., 2019).  392 

However, DA is not equally effective in all circumstances. For example, soil moisture updating can 393 
generally improve streamflow predictions (Mahanama et al., 2012, Reichle et al., 2021a), but might 394 
not be effective to reduce errors in the fast runoff component which are dominated by rainfall errors 395 
(Mao et al., 2020). Similarly, the influence of soil moisture on ET depends on the seasons, the coupling 396 
strength between soil moisture and ET in different climate regimes (Dong et al., 2020) and the ability 397 
of the assimilation model to accurately capture that coupling (Crow et al., 2020). To use data and 398 
resources most efficiently in a century when ever more data are becoming available (Section 4.2), one 399 
should wonder which specific type of observations at what time and location has the largest impact on 400 
land DA analyses and beyond. A suggestion for future research is thus to explore targeted land DA. 401 
This requires that we first determine which type of observations are most useful to improve the forecast 402 
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skill of particular land or atmosphere variables under the given circumstances, via sensitivity studies, 403 
forecast sensitivity-based observation impact studies, or coupling strength analyses. The land DA 404 
community can learn from the NWP community, which already has a strong grasp on how much 405 
various observations contribute to forecast skill (Eyre et al., 2021). Thereafter, we can efficiently 406 
assimilate those observations that likely have the most impact. The limitation is that satellite 407 
observations are collected in fixed orbits and not necessarily at the strategically most optimal location 408 
or time, so the main goal of targeting observations is a careful selection of the available observations.  409 

Apart from state updating, satellite DA should be further explored for parameter estimation to (i) 410 
improve inherited static global soil and vegetation parameter databases that served older model 411 
generations, and to (ii) assign values to newly resolved parameters that will emerge from the 412 
sophistication of land surface models, e.g. to parameterize dynamic vegetation growth or water table 413 
dynamics. Parameter estimation is in principle possible using the same DA framework used for state 414 
estimation. Nevertheless, the success of parameter updating depends on the model sensitivity to that 415 
specific parameter and to its correlation with the observed quantities. The latter could be automatically 416 
estimated via the ensemble (for the EnKF) or the particles (for the PF), thus further promoting the use 417 
of this family of methods. Recently, hybrid EnKF-PF methods have been developed precisely to use 418 
the EnKF for the “more linear” state update and the PF for the “more nonlinear” parameter updates 419 
(van Leeuwen et al., 2019). Those methods could prove effective in land DA as well. Finally, parameter 420 
updating is particularly relevant for long-term applications, because DA frameworks for state-only 421 
updating rely on the assumption of the system being autonomous and stationary and are thus not 422 
theoretically suitable if a system is subject to climate change or human activities that cause changes in 423 
the system’s equilibrium. This is a broader issue for DA and goes well beyond the realm of land DA. 424 
Usually, the assumption is that by sequentially updating the system state and parameters we drive the 425 
conditional posterior probability toward the new equilibrium, yet rigorous mathematical results along 426 
these lines are still missing. 427 

DA can be used to correct the state, parameters or forcings for unmodeled or poorly modeled processes, 428 
such as e.g. human activities. For example, Saharan dust deposited on snow should result in a sudden 429 
update of the parameterized or simulated albedo to ensure correct snow melt estimates. A forest fire, 430 
deforestation, land use change, or crop rotation within or across years (Boas et al., 2021) all require 431 
updates of vegetation model parameters or states. Such events will be followed by a gradual adjustment 432 
to a new soil moisture equilibrium both in the model and reality, but the transition time might differ, 433 
because some (unobserved) model parameters that determine the transition time are not in line with 434 
reality. The same is true for land systems in the presence of climate change, which might necessitate 435 
gradually changing model parameters. How to combine long-term updates for poorly modeled 436 
processes via parameter updating with short-term state updating should be explored in the future.  437 

DA diagnostics of observation-minus-forecast and analysis-minus-forecast residuals allow an 438 
evaluation of the optimality of the DA system (Desroziers, 2005, Reichle et al., 2017). These 439 
diagnostics could in the future also help to identify (and improve) times and locations of poorly 440 
modeled processes, or system transitions from steady state to a new equilibrium. 441 

DA aims at blending multiple sources of information seamlessly. However, in one-dimensional DA 442 
systems, no horizontal information propagation is achieved, which can result in artificial spatial 443 
patterns (e.g., swath edges or cloud screening imprinted in the DA analysis). When the land DA is 444 
coupled to an atmospheric model, such spatial discontinuities could lead to undesirable triggering of 445 
turbulence (Alapaty et al., 1997). Furthermore, only a part of the model variables might be included in 446 
the DA state vector. E.g., only a few soil moisture layers might be updated out of all soil-vegetation 447 
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variables, or only the land variables and no atmospheric variables might be updated in a coupled DA 448 
system. To avoid unphysical discontinuities at the border between domains (e.g., land vs. atmosphere, 449 
or observed vs. non-observed land) or at the interface between variables, spatially distributed and 450 
multivariate DA methods are recommended, where multiple state variables of the land surface and 451 
coupled processes are updated.  452 

As an extension of multivariate DA, the use of coupled DA is seen as another key area of desired DA 453 
development (de Rosnay et al., 2022). Strongly-coupled DA intends to inform one component of the 454 
climate system (e.g., the land) by using observations of the other (e.g., the atmosphere) and vice-versa 455 
(Penny and Hamill, 2017). This contrasts with the so called “weakly-coupled DA” in which the analysis 456 
update only affects the model compartment where data are collected, but then a coupled model is used 457 
in the forecast step. The model usually acts as a dynamical way of propagating information from the 458 
observed to the unobserved component, and weakly-coupled DA is usually developed first towards the 459 
ultimate goal of strongly-coupled DA. The spatio-temporal difference between processes in the 460 
coupled media (e.g., land-atmosphere) make it extremely difficult to construct a suitable error 461 
covariance across them (Tondeur et al., 2020). The sophistication of DA techniques will need to grow 462 
with a stronger coupling of the simulated water, energy and biogeochemical cycles (Baatz et al., 2021) 463 
in land surface, terrestrial ecosystem and atmospheric modeling and with the use of multivariate 464 
constraints across the various compartments of these coupled systems. 465 

4.2 Increased Dimensions of Future Land DA: Challenges and Opportunities 466 

Most visions for future land DA include multisensor DA (Durand et al., 2021), multivariate DA (Kumar 467 
et al., 2022), and multi-scale DA with a push towards finer resolutions. Our priorities above should be 468 
viewed against the backdrop of these foreseen developments, and here we highlight some associated 469 
opportunities. A multisensor approach is recommended to constrain more water cycle variables 470 
(Girotto et al., 2019) and obtain finer spatial and temporal resolutions, e.g., to benefit from the higher 471 
accuracy of coarse-scale observations and from the spatial detail in fine-scale observations (De Lannoy 472 
et al., 2012, Lievens et al., 2017). The use of multiple independent observations also has the potential 473 
to mitigate equifinality problems, i.e., to identify the state variable, input or parameter correction, or 474 
combination thereof, that results in the most effective constraint (e.g., particle selection). As discussed 475 
above, multivariate DA is needed for physical consistency and to reach more unobserved variables in 476 
more sophisticated systems. Higher-resolution (km-scale) DA systems promise to better resolve local 477 
land details for improved NWP and land-atmosphere reanalysis products. Higher resolutions for 478 
coupled land surface-subsurface models also better represent runoff processes at the hillslope scale, 479 
and narrow valleys with underlying groundwater bodies, which affect the simulation of ET (Shrestha 480 
et al., 2018). Furthermore, high-resolution estimates are needed for agricultural applications and hazard 481 
estimation. 482 

From the viewpoint of system theory, these desires for high-resolution multivariate and multisensor 483 
DA translate into larger dimensions of state and observation error covariances, which necessitates 484 
practical and computationally affordable solutions. Larger updated state vectors require larger 485 
ensemble sizes to mitigate the sampling error in the ensemble-based error covariances, or beg for 486 
alternative solutions to partition the state into less-dependent groups of correlated variables that can be 487 
updated sequentially (thus making the ensemble covariance essentially block-diagonal). Indeed, the 488 
latter grouping of state variables conceptually mimics the idea of localization to filter out spurious error 489 
correlations in spatially distributed DA systems, and is also the essence of weakly-coupled DA systems. 490 
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Assimilating more observations from multiple sensors, multiple products, or high-resolution datasets 491 
increases the dimensions of the observation error covariance matrix. Spatially neighboring 492 
observations, or joint soil moisture and vegetation retrievals from the same microwave sensor, cannot 493 
be assimilated independently due to associated error correlations. Solutions can be found in directly 494 
assimilating radiances rather than multiple derived retrieval products, targeting only those 495 
observations that have most impact on the forecast (Section 4.1), and thinning the observations (Waller 496 
et al., 2018). A second problem with assimilating multiple observations is that they each might have 497 
their own bias, represent something different than the model variables, and/or might cause 498 
contradicting updates (Girotto et al., 2019). Appropriate uncertainty estimates and bias removal partly 499 
solve this problem, and allow DA to update the temporal variability, while preserving the model’s 500 
climatological water distribution as a strong constraint (Pan et al., 2012). Ideally, when observation 501 
biases get resolved and we find adequate ways to relate modeled and observed land estimates in 502 
absolute terms, then the multitude of observations should be used to also correct the modeled terrestrial 503 
water partitioning, and thereby create the correct climatological land conditions to support the correct 504 
coupling regimes. 505 

Finally, using models, observations and DA at ever finer resolutions inevitably requires advanced 506 
computational infrastructure, more background information, e.g., on land surface processes, soil and 507 
land use parameters, high-resolution meteorological information (for off-line land simulations), and a 508 
DA method that can address the problem complexity (Carrassi et al., 2018). Furthermore, fine-scale 509 
estimates are by their nature more uncertain than the aggregated counterparts. In the future, we will 510 
have to balance the advantages of resolving more detail against the curse of dimensionality. 511 

5 Conclusion 512 

Satellite-based land DA is an interdisciplinary field of research that yields the most complete and 513 
consistent estimates of terrestrial water cycle variables. The growing amount of satellite data and the 514 
sophistication of modeling systems in the 21st century require efficient land DA systems to fuse 515 
observations and models into meaningful information for end users. Land DA can convert the 516 
intermittent swaths of satellite signals into temporally and spatially complete, gridded fields of soil 517 
moisture, snow or vegetation estimates and related variables, including land surface fluxes such as ET 518 
and runoff. By coupling the land with atmosphere or groundwater processes, and by resolving 519 
vegetation or snow parameterization schemes with physics-based processes, observations have the 520 
potential to update more unobserved variables, and to have an impact beyond the land surface. This is 521 
especially the case for NWP, crop monitoring, hazard (landslides, fires, floods, droughts) assessment, 522 
and carbon management.  523 

Large, dynamical modeling systems that include more resolved or coupled processes, require 524 
sophisticated DA techniques (perhaps supplemented with ML) to optimally distribute the observed 525 
information into improved estimates of the multivariate state, parameters, or boundary conditions. The 526 
exponential growth of satellite data will support improved constraints of the advanced modeling 527 
frameworks, but the growing dimensions in land DA will also necessitate the development of efficient 528 
DA algorithms. It will thus become increasingly important to select the most suitable levels of 529 
observation processing and the most impactful observations for assimilation, because not all 530 
observations are equally efficient all the time in DA systems. We can curb the growth of state and 531 
observation dimensions in the DA problem by considering targeted DA, rather than a mass integration 532 
of all data. 533 

 534 
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