Packing and flow particle simulations

Seminar to the Engineering Faculty Pontificia Universidad Javeriana, Bogota, Colombia July 29th, 2022

A P Santos Analytical Mechanics Associates, Inc. NASA Ames Research Center, Moffett Field, California USA

Rolling and Twisting friction matter for hopper flow

Rover performance depends on regolith properties

NASA

In-space manufacturing

Microparticle modelling for Enabling Sustained Presence Using Recyclables (**ESPUR**)

Design desirables:

- Printed part strength
- Reversibility

Reversible Click Chemistry

- How long does it take the Furan (A) and Maleimide (B) to find each other?
 - molecular weight ٠
 - grafting density
 - entanglement length
- How can we improve strength by tuning:
 - Particle sizes •
 - Particle shape ٠
 - Interactions (friction, cohesion, elasto-٠ plasticity)

Maleimide-furan reaction

Prog. Polym. Sci. 2013, 38, 1-29.

Modeling the polymer-grafted microparticles

Polymer physics modeling Molecular dynamics (MD) with atomistic and coarse-grained models Measure dynamics, structure and interactions

Microparticle modeling

Discrete element modeling (DEM) with particle models Contact mechanics define particle-particle interactions Measure microstructure and mechanical properties

Connections with experiments

Brush/coating synthesis

Goal: Maximize number of A-B contacts $(N^{\text{contacts}} \approx \text{Mechanical strength})$

Atomic force microscopy

Processing

Microparticle methodology

Microparticle modeling

Discrete element modeling (DEM) with particle models Hertzian and JKR contacts

- Packing protocol: specify pressure tensor and bring system to final state from a very low pressure. Dilute initial configuration (25% volume
- At least 1000 particles each of type A and B (up to 10 million total particles)

Plimpton S. (1995). J. Comput. Phys., 117, 1-19. Mindlin, R. D. (1949). J. Appl. Mech., ASME 16, 259-268. Luding, S. (2008). Granular matter, 10(4), 235.

•

fraction)

Particle design space

Contact mechanics model

Discrete element, particle-based modeling (DEM) (implemented within LAMMPS).

$$egin{aligned} \mathbf{F}_{ne,Hertz} &= k_n R_{eff}^{1/2} \delta_{ij}^{3/2} \mathbf{n} \ \mathbf{F}_{n,damp} &= -\eta_n \mathbf{v}_{n,rel} \ \eta_n &= \eta_{n0} \ am_{eff} \end{aligned}$$

Property	parameter	model
Young's modulus	<i>k</i> _n	4.808 GPa
Poisson's ratio	k _s	
Coefficient of restitution	V n	0.009404 µm ⁻¹ ns ⁻¹
density	mass	1.1 pg/µm³
diameter		10 <i>µ</i> m

Mono- and gaussian-dispersed simulations

Monodisperse simulations

Polydisperse simulations

A-B coordination number increases with A-B fraction

Bidisperse simulations dispersity range

Volume fraction increases with dispersity

Ιa

Furnas, C. C. *Ind. Eng. Chem.* **1931**, 23 (9), 1052–1058. Srivastava, I. *et al. Phys. Rev. Research* **2021**, 3 (3), L032042.

 $\alpha =$

 $f_{a} =$

 $\phi =$

•

Small-large coordination number decreases with α

Dodds, J. A. Journal of Colloid and Interface Science **1980**, 77 (2), 317–327.

Peak density, peak contacts and other conclusions

- NASA
- Monodisperse to weakly polydisperse causes increased density but decreased A-B contacts
- 50% vol A is the optimal mixture for mono and polydisperse particle sizes
- The peak volume fraction corresponds with a peak in A-B contacts for bidisperse packings.
- Increasing size ratio causes the volume fraction to increase and A-B contacts to decrease.

Acknowledgments

Lauren Abbot¹, Samantha I. Applin^{2,4}, Miranda L. Beaudry², Alexander J. Blanchard³, Bryce L. Horvath², Hannes Schniepp⁴, Christopher J. Wohl²

*Analytical Mechanics Associates, Inc. ¹NASA Ames Research Center ²NASA Langley Research Center ³NASA Marshall Space Flight Center ⁴William and Mary University

Tang and Behringer (2011). Chaos, 21, 041107

Rolling and Twisting friction

Rolling and twisting torque resistance sources

- Load asymmetry built up by:
 - microslip and creep
 - inelastic deformation at contact area •
 - roughness

Rotational motion and friction in hopper

Twisting

Constraint counting

Microstructure and rattlers

Simulations vs theory - coordination

- Constraint counting under-predicts, but is affirmed by simulations
- min(Z^{nr}) ~ 2.45

Experimental comparison

Menon N. et al. (2010). Soft Matter, 6(13), 2925-2930

- Simulations agree with experiments with moderate rolling and twisting friction
- Rolling and twisting friction have little effect for low $\mu_{\rm s}$

Bidisperse packings

 α : size ratio f^s : smalls fraction

- Tractable simulations of huge size ratios (40:1) possible due to LAMMPS
- Limiting behavior is attained for ratios around 20:1

Conclusions

- <Z> goes from 6 to 2.5
- Agreement with experimental ϕ when $\mu_r \neq \mu_t \neq 0$
- Rolling and twisting friction cause large changes in microstructure
- Role of rolling and twisting friction on bidisperse packing is predicted by monodisperse packing

Predicting granular flow behavior

NASA

- Realistic modeling is necessary to match experimental systems because:
 - Rolling and twisting friction change microstructure and yield-stress
 - Size distributions is not monodisperse
- DEM simulations:
 - Can predicting flow behavior
 - Support constitutive law development
 - Experimental measurement interpretation

Thompson, A. P., ... Plimpton, S. J. (2022). LAMMPS Comp. Phys. Comm., 271, 108171.

Srivastava, I., et al. (2021). Physical Review Research, 3(3), L032042.

Contact

area

Methods and model

Discrete element, particle-based modeling (DEM) (implemented within LAMMPS).

 $P = 10^{-4}$

Monodisperese, frictional spheres

N=300 to 100,000 particles Pressure $P = 10^{-2}$ to 10^{-6}

 $N = 10^{\circ}$

 $N = 10^{5}$

Plimpton S. (1995). J. Comput. Phys., 117, 1-19.

Simulation protocol: specify stress tensor and bring dilute system to steady flowing state.

G. J. Martyna, D. J. Tobias, and M. L. Klein (1994). J. Chem. Phys., 4177. M. Parrinello and A. Rahman (1981). J. Appl. Phys., 7182.

Dilation due to friction and flow

• High sliding, rolling and twisting friction decrease the volume fraction

Srivastava, I., *et al.* (2019). *Phys. Rev. Lett.*, *122*(4), 48003. Srivastava, I., *et al.* (2021). *J. Fluid Mech.*, 907, A18.

Santos et. al. in preparation

More shear stress is need to flow frictional particles

- High sliding, rolling and twisting friction increases the critical stress ratio
- A flowing frictionless system would arrest if the particles were frictional

Srivastava, I., *et al.* (2019). *Phys. Rev. Lett.*, *122*(4), 48003. Srivastava, I., *et al.* (2021). *J. Fluid Mech.*, 907, A18.

Santos et. al. in preparation

- Rolling and twisting friction increase the critical flow shear stress ratio μ_c from 0.12 to 0.65
- A change in particle design can result in arrested flow

Acknowledgments

Ishan Srivastava, Dan S. Bolintineanu, Jeremy B. Lechman, Gary S. Grest, Steven J. Plimpton, Leonardo E. Silbert

Thermal Protection Materials Branch

Develop ... thermal protection materials ... to protect space vehicles from aerodynamic heating during entry to planet atmosphere and re-entry to earth atmosphere.

Current projects

Fiber modeling Molecular crystals Grafted microparticles • Breakable • Particle size • Plastic bonds • Contacts crystals • Friction Cohesion Barcaloric Processing • Friction effects Mechanical Mechanical Cooling and thermal properties properties

Thank you!

NASA

- Increasing size dispersity (for f_a =0.27):
 - Increases the volume fraction
 - Decreases the A-B contact number
- Rolling and twisting friction:
 - Is required to match experimental volume fractions
 - change the packing microstructure
 - increase the critical flow shear stress ratio μ_c from 0.12 to 0.65
- Recommendations:
 - If $D_a = D_b$ use a 50:50 A:B mixture
 - If $D_a < D_b$ use a 73:27 A:B mixture
 - If the packing process is gentle: less friction is better (more contacts)
 - Low-friction particles improve flowability

Extra slides

Packings and flow of granular particles

Natural processes

- Landslides and avalanches
- Shale
- Log jams
- Dunes

Manufacturing

- Battery anodes
- Concrete
- Candy
- Additive manufacturing

Past projects

¹PhD work at Princeton University in the Chemical and Biological Engineering Dept. ²Postdoc work at Sandia National Labs.

Volume fraction

- Experiments are matched when moderate rolling and twisting friction are included
- Rolling and twisting friction have little effect for low μ_s
- ϕ minima at high $\mu_{s,r,t}$ may be due to large fraction of sliding contacts

Fraction of rattlers

Volume fraction increases with dispersity

Srivastava, I. et al. Phys. Rev. Research 2021, 3 (3), L032042.

٠

Multi-scale problems require multi-scale tools

Time (s)

Coordination number

- Average Z is Pdependent, but *fluctuations* of Z is not
- Z(I) is *P*-dependent, but $\mu(I)$ and $\phi(I)$ are
- Inertial number scales with $P^{-0.5}$ for $\Delta Z(I)$
- Remove the hardcomponent for full collapse

$$Z = \frac{N_{\text{contacts}}}{N_p} \qquad 4$$

Shear stress ratio

$$\mu = \tau / P$$

shear-topressure ratio

• A power law fits the $\mu(I)$ data we

Power-law fits

$$\mu = \tau/P = \mu_c + A_\mu I^{\alpha_\mu}$$

- Fit properties converge for large $N \ge 3000$
- The fit and arrest critical stress are distinct and size/pressure-dependent

Pierre Emmanuel Peyneau *et al.* Phys. Rev. E 78, 011307 (2008). Ishan Srivastava, *et al.* Phys. Rev. Lett. 122, 048003 (2019). Santos, A. P. *et al. in review* (2022)

Normal stress differences

$$N_{0} = \frac{2\sigma_{zz} - \sigma_{yy} - \sigma_{xx}}{\frac{2P}{\sigma_{yy} - \sigma_{xx}}}$$
$$N_{1} = \frac{\sigma_{yy} - \sigma_{xx}}{P}$$

- N_0 is system size independent for $P \le 10^{-4}$
- $N_0 \neq 0$ in the quasi-static limit
- N_1 has a minimum in I^2 , only detectable for large systems $N \le 10^4$

Srivastava, I. et al., J. Fluid Mech. 907, A18 (2021).

Santos, A. P. *et al.* "Fluctuations and power-law scaling of dry, frictionless granular rheology near the hard-particle limit" *in review* (2022)

Fluctuations

Santos, A. P. *et al. in review* (2022)

$$\Delta \tau \equiv \frac{1}{N_{\text{samp}}} \sum_{i=1}^{N_{\text{samp}}} (\tau(t) - \bar{\tau}) \stackrel{\diamond}{\longrightarrow} N$$

■
$$N = 10^{3}, P = 10^{-6}$$

◆ $N = 10^{3}, P = 10^{-5}$
× $N = 10^{3}, P = 10^{-4}$

• $N = 10^4$, $P = 10^{-6}$ • $N = 10^4$, $P = 10^{-5}$

$$N = 10^4, P = 10^4$$

•
$$N = 10^5, P = 10^{-6}$$

• $N = 10^5, P = 10^{-5}$

- $N = 10^{-3}, P = 10^{-3}$
- * $N = 10^5, P = 10^{-4}$

- Variance decreases with system size
- There is a kink in fluctuations for shear stress, fabric anisotropy and normal stress differences
- Structure fluctuations show no P dependence

Fluctuations, normalized

Conclusions

- Fluctuations across
- The observed kink in variance could define the transition from inertial to quasi-static flow

Future work

- System size effects on the flow-arrest transition
- Further investigation into the connection between Z and variance

More realistic interactions – cohesion and friction

More constraints (friction, cohesion) -> lower volume fraction ullet

Current projects

Fiber modeling

Bonded-particle models

• Forces calculated at contact

Stretch

Shear

Twist

Bend

- Requires memory of interaction
- Dissipative, out-ofequilibrium
- LAMMPS

Molecular crystals

Molecular Dynamics (MD)

- NPT ensemble
- Gromacs

Model

- Atomistic
- Classical potentials

Grafted microparticles

Discrete element modeling (DEM)

- Forces calculated at contact
- Requires memory of interaction
- Dissipative, out-ofequilibrium
- LAMMPS

Past projects

Surfactants

Molecular Dynamics (MD)

- *NVT* ensemble
- Gromacs, Hoomd, LAMMPS

Monte Carlo (MC)

- Cassandra, Legacy code (Fortran)
- Develop MC moves and potentials
- *μVT, NVT* ensembles
- Histogram reweighting

Law-of-mass-action modelling

Nanocomposites

Molecular dynamics Theoretically-informed Langevin dynamics (TILD)

- MD evolves simulation of particles
- Force on particle is calculated from a field-based interaction
- Fast for dense systems
- Thermal fluctuations
- Implemented into LAMMPS

Granular

Discrete element modeling (DEM)

- Forces calculated at contact
- Requires memory of interaction
- Dissipative, out-ofequilibrium
- LAMMPS

