

Investigation of Liquid Fuel Refill Dynamics in a Rotating Detonation Combustor using Megahertz Planar Laser-Induced Fluorescence

Matthew W. Hoeper^{*a*}, Austin M. Webb^{*a*}, Venkat Athmanathan^{*a*}, Robert B. Wang^{*a*}, H. Douglas Perkins^{*c*}, Sukesh Roy^{*d*}, Terrence R. Meyer^{*a*,*b*}, Christopher A. Fugger^{*d*}

^a School of Mechanical Engineering, Purdue University, IN, 47907, USA ^b School of Aeronautics and Astronautics (by courtesy), Purdue University, IN, 47907, USA ^cNASA Glenn Research Center, Cleveland, OH 44135, USA ^d Spectral Energies LLC, Beavercreek, OH, 45430, USA

Motivation

- Potential performance benefits of RDEs highly desired
- Many real-world propulsion systems operate with liquid propellants
- Liquid spray breakup in an RDE had never been directly measured

Test Platform Overview

- 120 mm nominal chamber diameter with optical access
- Operates with Hydrogen/Air
- The RDE platform is well studied and characterized for a plethora of operating conditions
- For this work, RDE acts as a detonation driver to investigate liquid fuel spray breakup
- Other capabilities include use of various fuels, heated air, modular geometry

Experimental Setup

Energies, Ac

- Fuel injector was modified to have one H2 orifice replaced with a liquid fuel orifice
- Liquid fuel orifice diameter of 0.3 mm (0.012 in.)
 - Diesel flow rates between 0.2-1.5 gram/s
 - Momentum flux ratios between 0.01-0.1

Test Condition	Flow Rates				Momontum		Liquid	Nom.	Nom.
	Air [kg/s]	Hydrogen [kg/s]	Liquid Fuel [gr/s]	Equiv. Ratio [-]	Flux Ratio [-]		Fuel Inj. Pressure [bar]	Wave Speed [m/s]	Cycle Freq. [kHz]
1	0.46	0.012	0.92		0.0	6	15.2		
2			0.62		0.0	3	8.5		
3			0.45		0.01	5	4.3		
4	0.23	0.006	0.65		0.0	6	7.5		
5			0.44		0.0	3	4.3		
6			0.31		0.01	5	2.6		

Varied chamber mass flux

Varied momentum flux ratio

Liquid Spray - Detonation Interaction at a Glance

•

٠

۲

Energies

7 of 14

Liquid Spray - Detonation Interaction at a Glance

Intensity [a.u.]

UNI

VERSITY

- There is a significant period where diesel is not being issued into the channel
- Diesel injector element does not appear to turn off
- Diesel injector recovers within one detonation period

NA

- Previous data necessitated a test case that can monitor near-field jet response
- Key take-aways:
 - Significant out of plane motion
 - Leading edge jet response lags behind spray breakup

Orange curves represent spray boundary

Liquid Spray - Detonation Interaction at a Glance

48 µs

- Liquid fuel is completely consumed or displaced from the channel within a few microseconds
- There is a significant dwell period where liquid fuel is not being issued

Spray Refill Analysis

- Sampled PLIF signal immediately downstream of the BFS to monitor refill dynamics
- Averaging 30-40 cycles per test to produce Refill Signal
- Characteristic refill time defined as point where intensity achieves 10%

Spray Refill Analysis

- Refill time of the liquid fuel strongly depends on the mass flux of the incoming air stream
- No apparent dependence on mass flux of liquid fuel

NASA

- Despite the extreme unsteadiness, the fuel sprays resemble canonical jet in crossflows
- Time series averaged jet trajectories (dashed) resemble an empirical correlation (solid) for some conditions
- Backwards facing step influences spray trajectory for low momentum flux ratios

- Liquid fuel PLIF has been directly measured in an RDE for the first time
- Within one detonation period, the liquid fuel spray has sufficient time to recover and nearly refill the channel
- Liquid fuel refill time strongly coupled to incoming mass flux
- Experimental jet trajectories resemble canonical correlations for some conditions
- Additional detail in publication

