

Flow Field Reconstruction for Inhomogeneous Turbulence Using Data and Physics Driven Models

Aditya S. Ghate

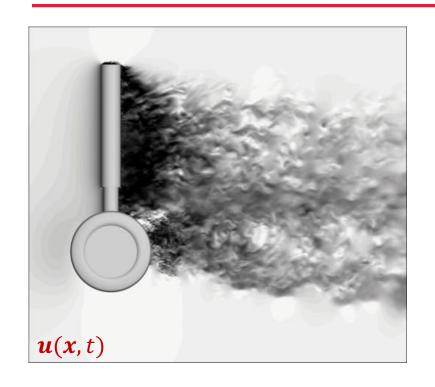
Computational Aerosciences Branch NASA Ames Research Center

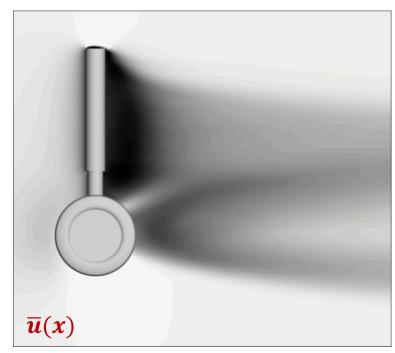
Sanjiva K. Lele

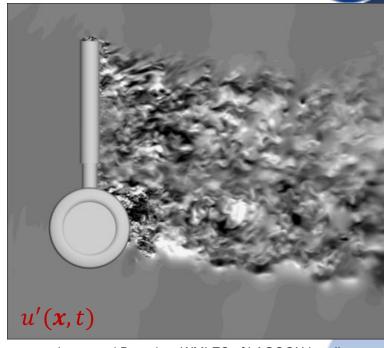
Department of Aeronautics & Astronautics
Department of Mechanical Engineering
Stanford University

ICCFD 11 Maui, Hawaii, July 14th, 2022

What is flow field reconstruction?







Immersed Boundary WMLES of LAGOON Landing Gear. Figure generated by Man-Long Wong. See Wong et al., AIAA 2022-2850 for further details.

Consider a flow field decomposition:

$$u(x,t) = \overline{u}(x,t) + u'(x,t)$$
TOTAL MEAN FLUCTUATION (focus of present work)

What is flow field reconstruction?

Problem Description: Given a field, u'(x,t) generate a field, $\tilde{u}'(x,t)$ such that

1. Is purely vortical (discretely divergence free):

$$\nabla \cdot \widetilde{\boldsymbol{u}}' = 0; \qquad \widetilde{\boldsymbol{u}}'(\boldsymbol{x}, t) = \nabla \times \boldsymbol{A}_{\omega}$$

2. Estimates the second order, two-point statistics accurately

$$\langle u'_i(\mathbf{x} + \mathbf{y}, t + \tau)u'_j(\mathbf{y}, \tau) \rangle = \langle \tilde{u}'_i(\mathbf{x} + \mathbf{y}, t + \tau)\tilde{u}'_j(\mathbf{y}, \tau) \rangle$$

Important Note: Equivalence between original and reconstructed fields is required to be purely statistical and not pointwise (LES accuracy must be described statistically)

$$u'(x,t) \neq \widetilde{u}'(x,t)$$

Why is it relevant?

Reduced order model (sparse representation) for flows with a vast range of dynamically active scales (high Reynolds numbers) needed in many applications

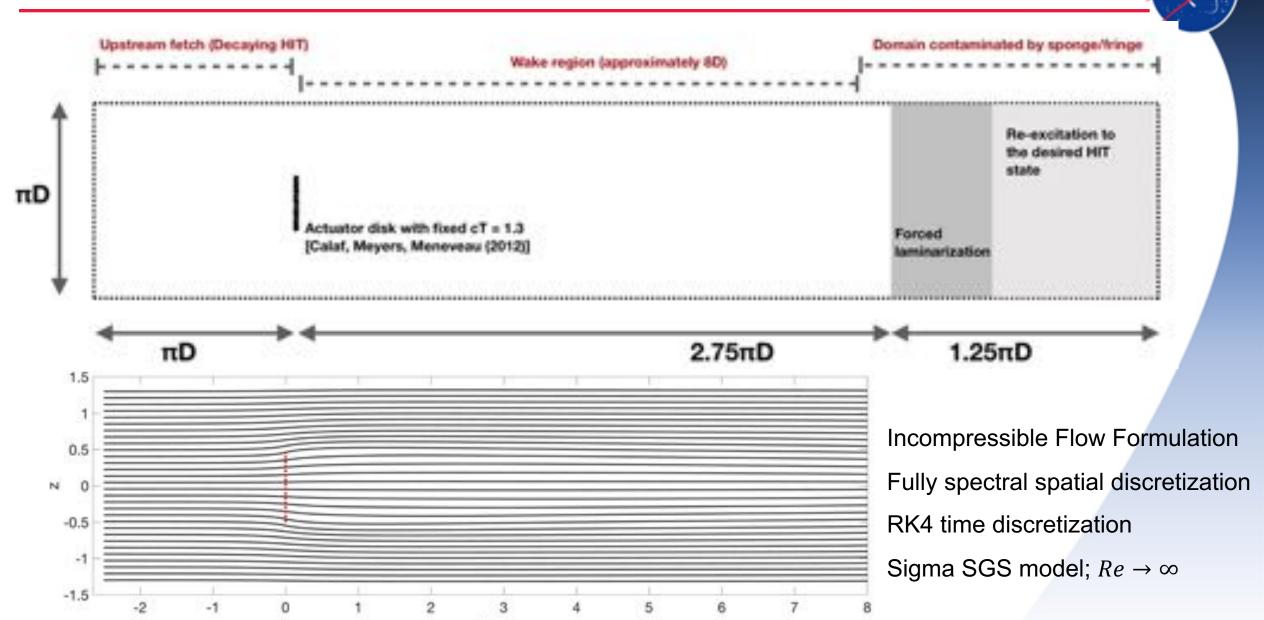
- Atmospheric Science: Synoptic (Days) + Meso (Hours) + Microscale (Seconds/Minutes)
 fluctuations Scalar transport, Wind Energy, etc.
- 2. Aeroacoustics: Air-frame noise, fan noise, jet noise
- 3. <u>Aero-structural loading</u>: Unsteady pressure loading and vibrations
- 4. <u>Hybrid RANS-LES</u>: fluctuation generation at interfaces

Bottom Line: Vast array of applications where fluctuations (as opposed to steady state) make up for nearly the entire figure of merit.

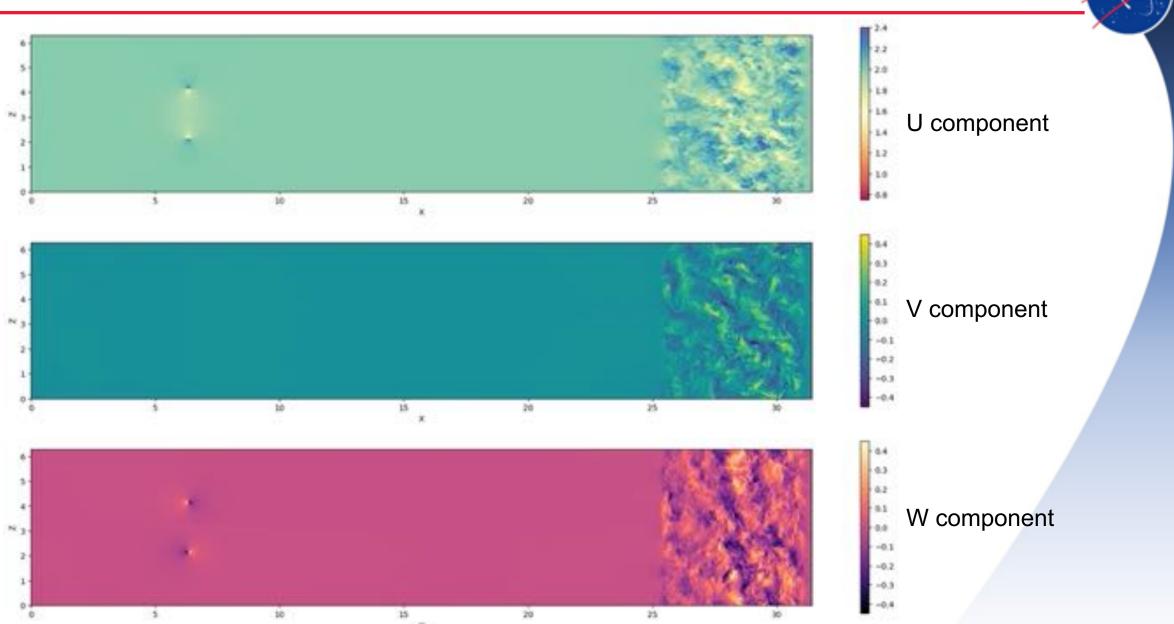
Outline

- Simple Test problem: Turbulent wake with turbulent co-flow
- Is a sparse representation possible?
- Model for Large-Scales: Truncated modal expansion
- A physics driven model for small scales
- Evaluation of the the combined model
- Conclusions and Outlook

Turbulent Wake of a Dragging Disk

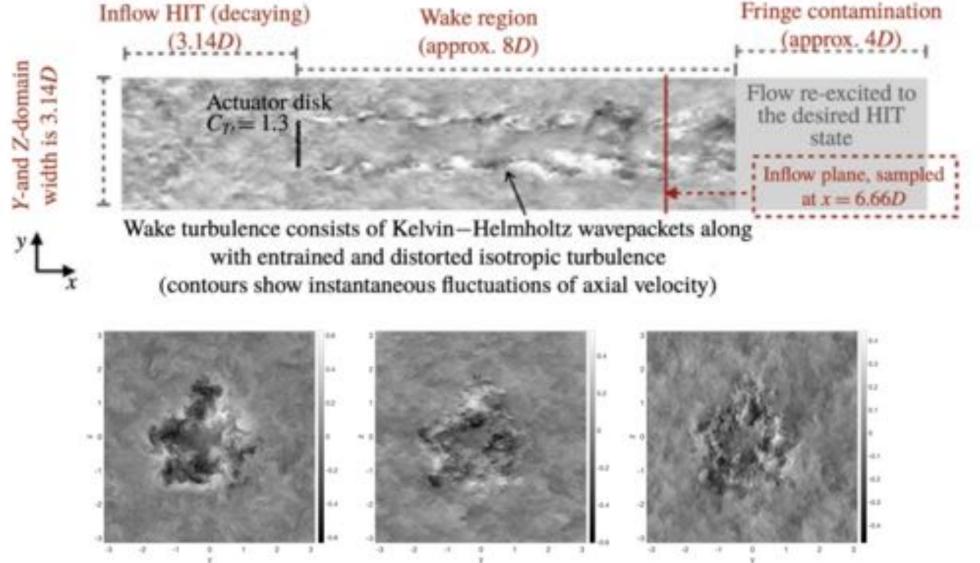


Turbulent Wake of a Dragging Disk



Turbulent Wake of a Dragging Disk

(d) u (fluct



(e) v (fluct

(f) w (fluc

See Ghate, Towne & Lele, J. Fluid Mech., 2019

Seeking a modal expansion

Since the flow is temporally stationary, we need to find the **principal components** of the 2-pt cross-spectral density tensor defined as:

$$S(m{x},m{x}',f) = \int_{\infty}^{\infty} m{C}(m{x},m{x}', au) e^{-i2\pi f au} d au = \sum_{j=1}^{\infty} \lambda_j(f) \psi_j(m{x},f) \psi_j^{\star}(m{x}',f)$$
 $au = t - t' ext{ (due to stationarity)}$ $m{C}(m{x},m{x}', au) = \overline{m{q}(m{x},t)m{q}(m{x}',t- au)}$

Further leveraging azimuthal homogeneity – simplifies the SVD substantially (POD modes are Fourier modes in azimuthal direction following Lumley (1970)

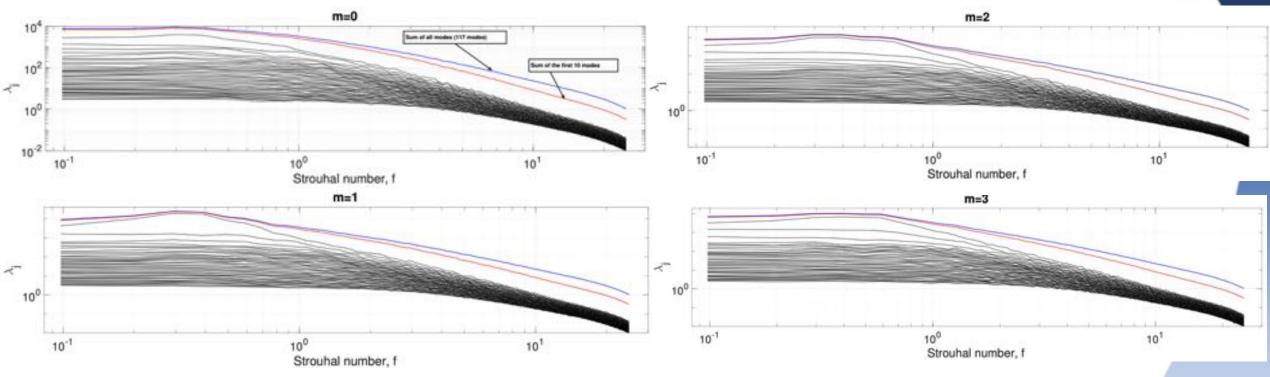
$$\hat{\boldsymbol{u}}(r,m,f) = \int_{t=0}^{T} \int_{\theta=0}^{2\pi} \boldsymbol{u}(r,\theta,t) e^{i(m\theta+ft)} d\theta dt = \sum_{j=1}^{J} a_j(m,f) \boldsymbol{\Psi}_j(r,m,f)$$

where, $a_j(m, f) = \langle \hat{u}(r, m, f), \hat{\psi}_j(r, m, f) \rangle_r$ is the modal energy with the property $|a_j a_m^{\star}| = \delta_{jm} \lambda_j$

Once $\lambda_i(m, f)$ and $\Psi_i(r, m, f)$ are "learned" using data, stochastic fields can be trivially generated

$$\widetilde{\boldsymbol{u}}(x,t) = IFFT_{m,f} \left\{ \sum_{j=1}^{J} \widetilde{a}(m,f) \Psi_{j}(r,m,f) \right\}$$
 where $\widetilde{a}_{j} = a_{j} e^{i\xi}$ and $\xi \in N(0,2\pi)$

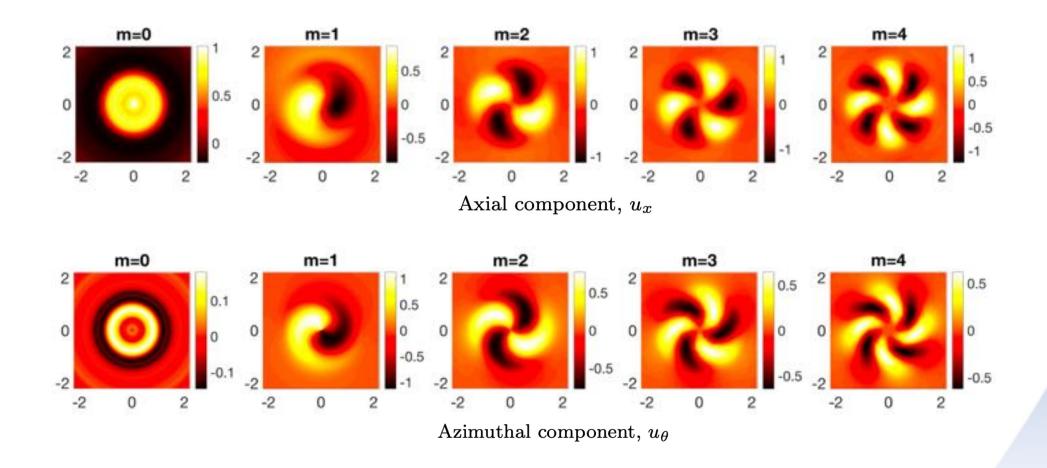
Is the flow low-rank?



Low-rank expansions likely to work only for low Strouhal numbers, significant loss of energy would occur at high Strouhal numbers

What have we "learned" from data?

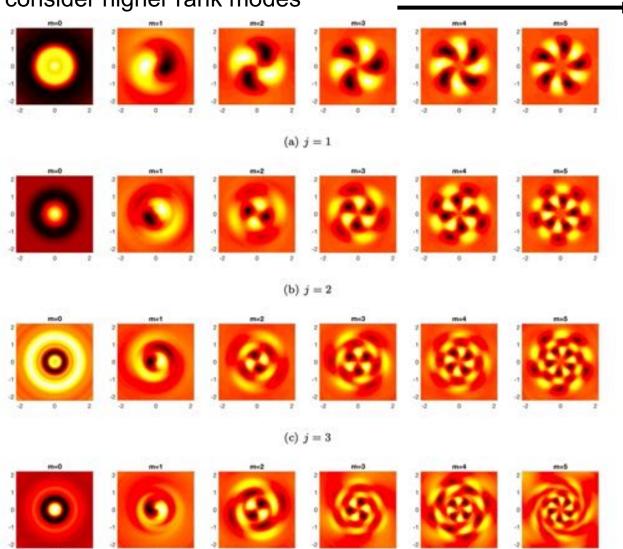
Consider the most energetic (j=1) mode at St = 0.4



Most energetic modes appear to pick up on shear-layer instabilities (linear-processes such as K-H)

What have we "learned" from data?

Now consider higher rank modes



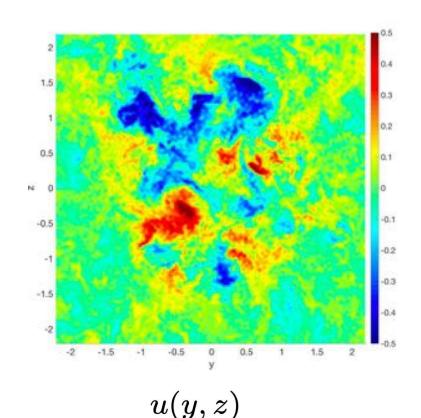
- Increasing "uncertainty" with increasing mode order and azimuthal wavenumber
- Ambient co-flow and non-linear interactions responsible for lack of lowrank
- Would require a tremendous amount of data to "learn" small-scale content (higher values of j, m and f) statistical convergence is very slow √N_{sample} (Welch, 1967)

(d) j = 4

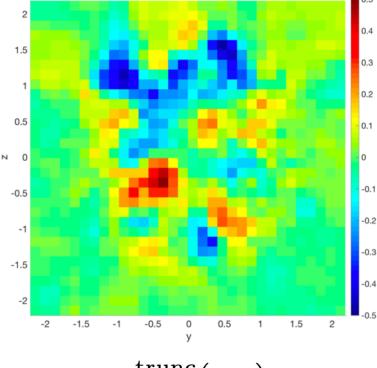
Truncated modal expansion: ROM for "Large Scales"

$$\boldsymbol{u}^{\text{trunc}}(y,z,t) = \boldsymbol{\mathcal{I}}_{(r,\theta) \to (y,z)} \left\{ \sum_{|f| < F_{co}} \left(\sum_{|m| < M_{co}} \left(\sum_{j < j_{max}} a_j(m,f) \boldsymbol{\Psi}_j(m,f,r) e^{-i(m\theta + ft)} \right) \right) \right\}$$

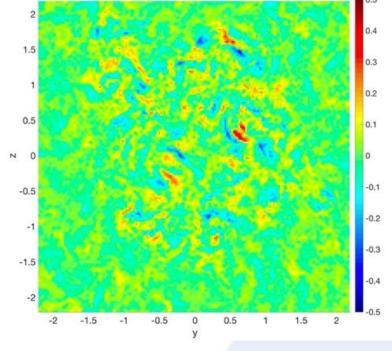
$$\boldsymbol{u}^{\mathrm{res}}(y,z,t) = \boldsymbol{u}(y,z,t) - \boldsymbol{u}^{\mathrm{trunc}}(y,z,t)$$



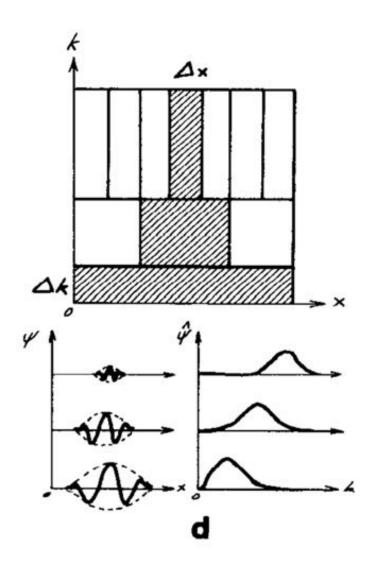
DATA - DRIVEN ROM FEASIBLE



 $u^{
m trunc}(y,z)$ $u^{
m res}(y,z)$



Wavelets – A potential solution to representation problem?



Uncertainty Principle (Fourier Duality) requires: $\Delta_X \Delta_k \geq 2\pi$

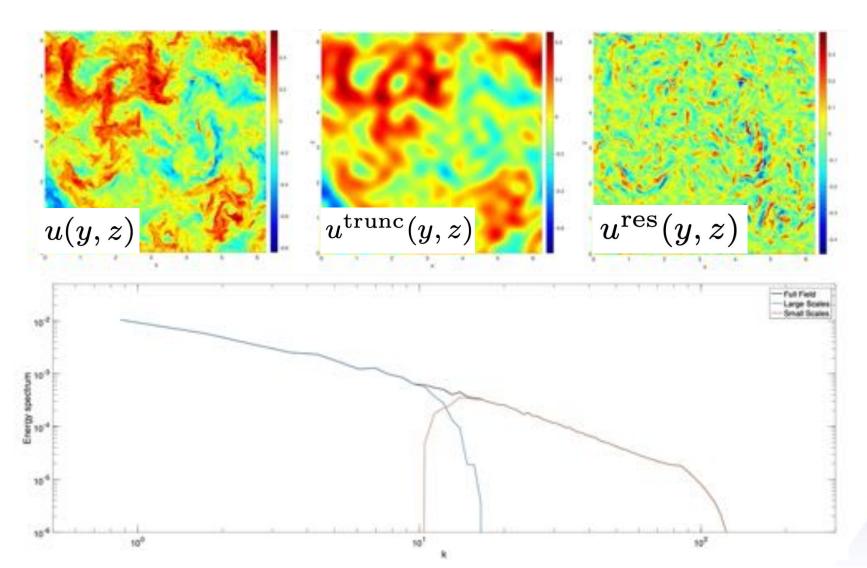
Wavelets can in principle provide optimal spatio-spectral localization

Could solve the representation issue – but most wavelet NS algorithms are **not much cheaper** than traditional CFD algorithms (See Farge, Annual Rev. Fluid Mech., 1992)

Requirements: Model for residual scales

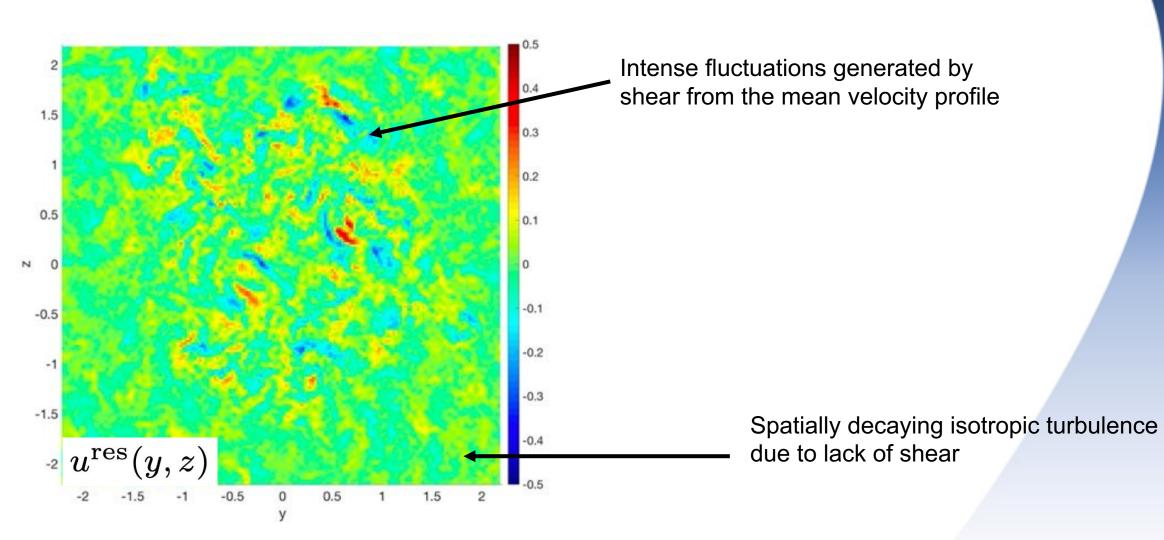
NASA

Requirement 1: Spectral extrapolation – superresolution (obvious requirement)



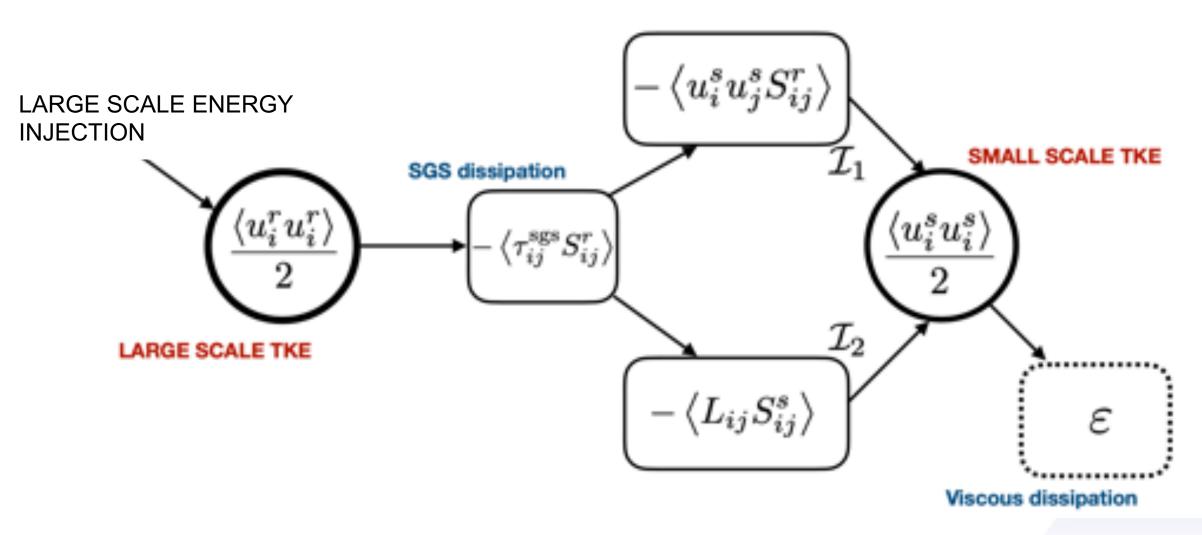
Requirements: Model for residual scales

Requirement 2: Allow inhomogeneity (spatial or temporal)



Requirements: Model for residual scales

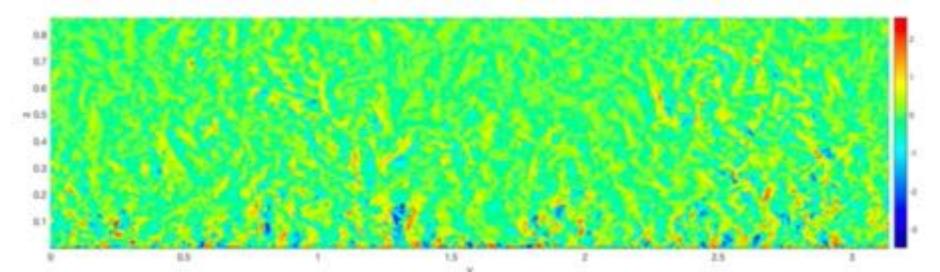
Requirement 3: Capture correct energy transfers (even in lack of mean shear)

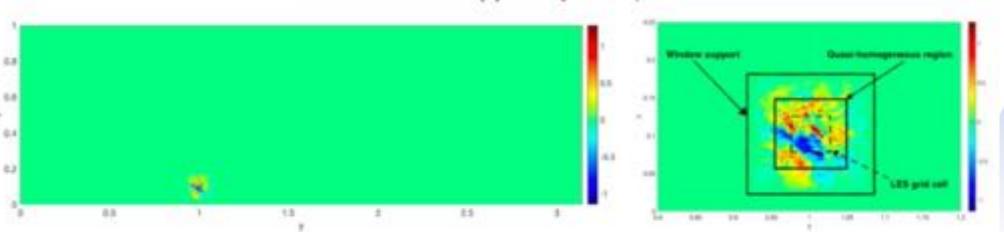


Seeking a model for small scales: Quasi-Homogeneity

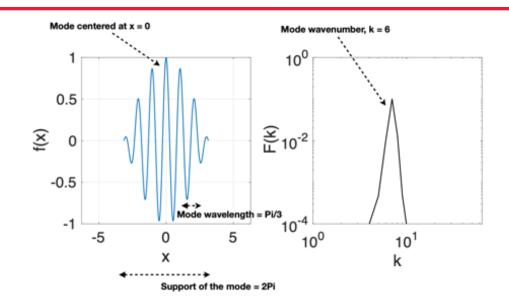
NASA

Consider u_{res} for a generic boundary layer (spanwise periodic) on the cross-plane





Model for Small-Scales: Gabor modes

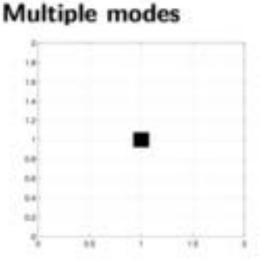


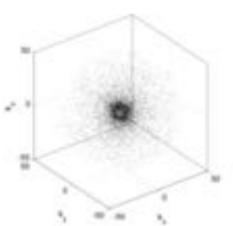
Typical compression in **Degrees of Freedom** > 95%

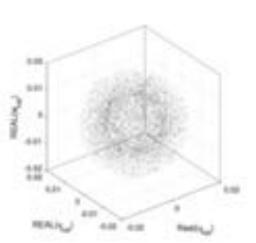
Physical space rendering can be performed using an O(Nlog(N)) algorithm (See Ghate & Lele, J. Fluid Mech., 2017)

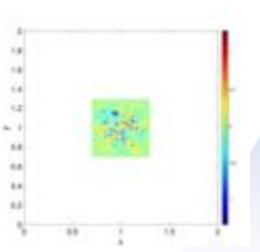
Can be further improved to a O(N) algorithm using wavelet properties

The scale separation parameter is defined as: $\varepsilon = \frac{\lambda}{\Delta}$









Gabor Modes: Temporal Evolution

Governing equations for Gabor modes

1. Motion described in a sweeping frame:

$$\partial_t x_j = U_j^0$$

2. An Eikonal equation for evolution of a wavenumber:

$$\partial_t k_j = -k_m \partial_j U_m^0$$

3. A WKB-RDT approximation for evolution of complex amplitude

$$\partial_t \hat{u}_i = \left(\frac{2k_i k_m}{k^2} - \delta_{im}\right) \hat{u}_j \partial_j U_m^0 + \left(\frac{k_i k_j}{k^2} - \delta_{ij}\right) g_j \beta \hat{\theta} - (\nu + \nu_t) k^2 \hat{a}_i + \hat{f}_i^{\perp} - 2\epsilon_{ijk} \Omega_j \hat{u}_k$$

$$\partial_t \hat{\theta} = -\hat{u}_j \partial_j \Theta^0 - (\kappa + \kappa_t) k^2 \hat{\theta} + \hat{f}_{\theta}$$

where, \hat{f}_{i} and \hat{f}_{θ} are Gabor projections of the Leonard stress terms $\partial_{j}L_{ij}$ and $\partial_{j}q_{j}$ respectively.

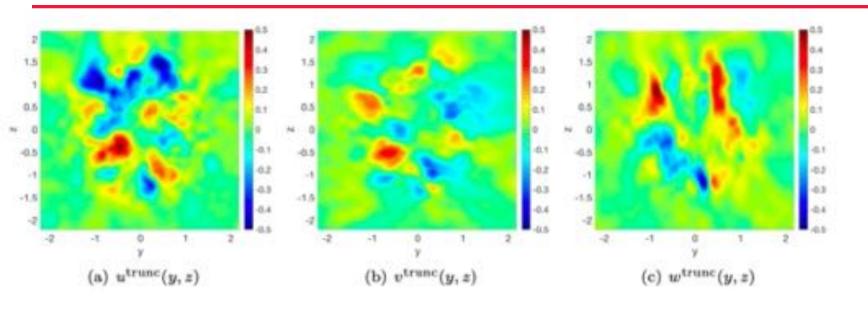
Important consideration: The ODEs governing evolution of the Gabor modes are only accurate up to leading order in ε ; the proposed model is not a numerical method.

Model for the local (in scale space) convective non-linearity

The action of the convective non-linearity due to local triadic interactions will be modeled using a spectral viscosity based on Renormalization Group Theory (RNG) (see Canuto & Dubovikov, PoF, 1996)

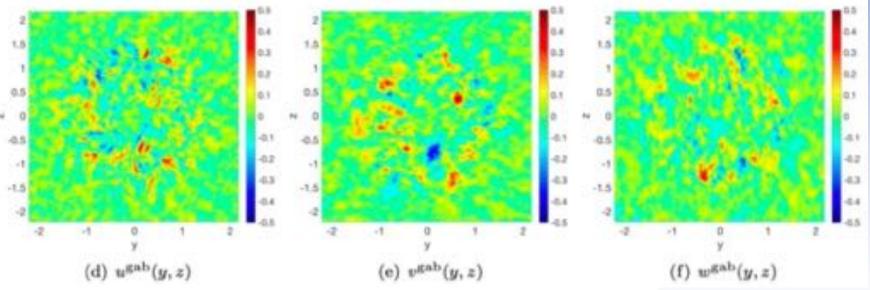
$$\widehat{\partial_j h_{ij}}^{\perp} = -\nu_t(k) k^2 \hat{u}_i \quad , \quad \nu_t(k) = \left(\nu^2 + c_{\nu} \int_k^{\infty} q^{-2} E(q) dq\right)^{1/2} - \nu$$

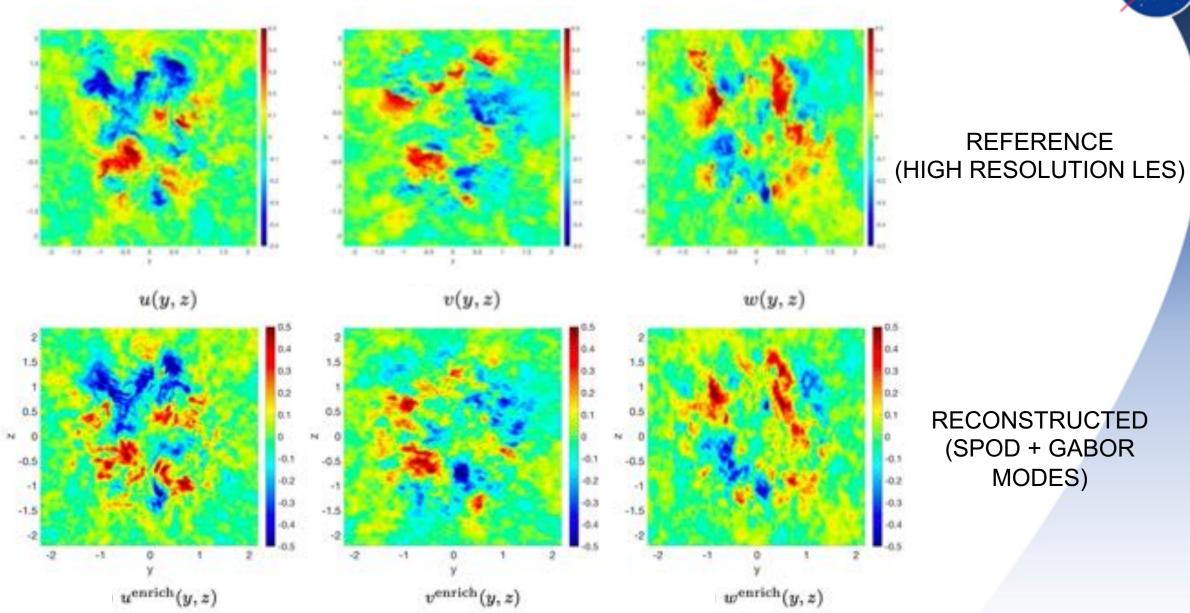
See derivation in Ghate & Lele (J. Fluid Mech, 2020)

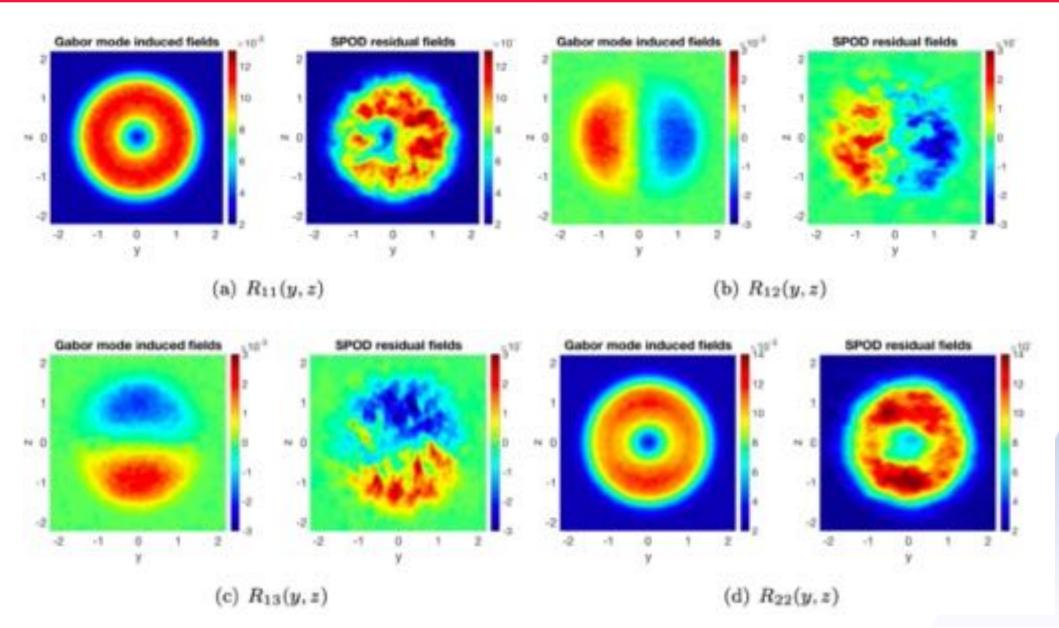


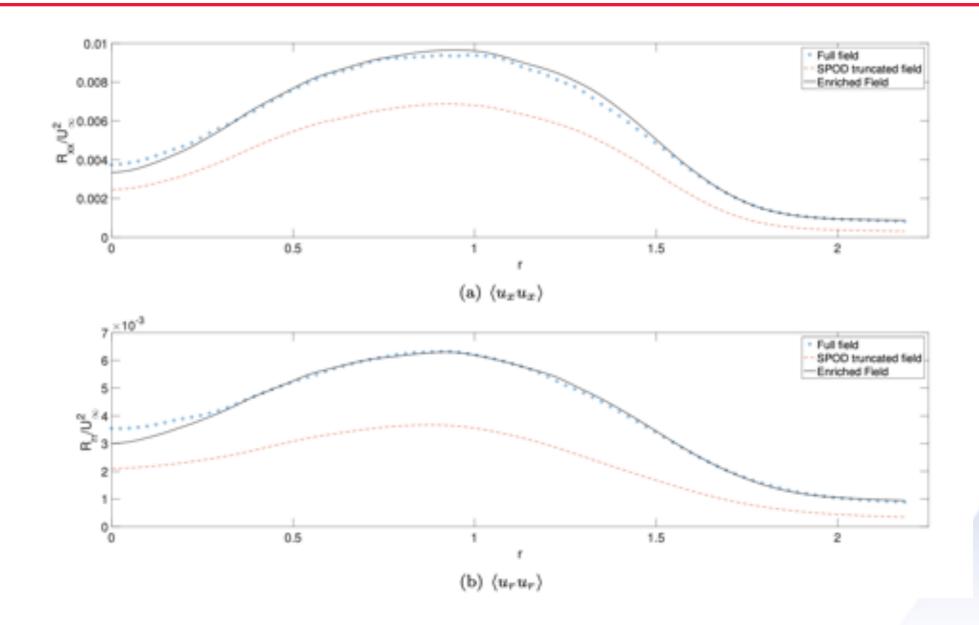
DATA DRIVEN (Truncated SPOD)

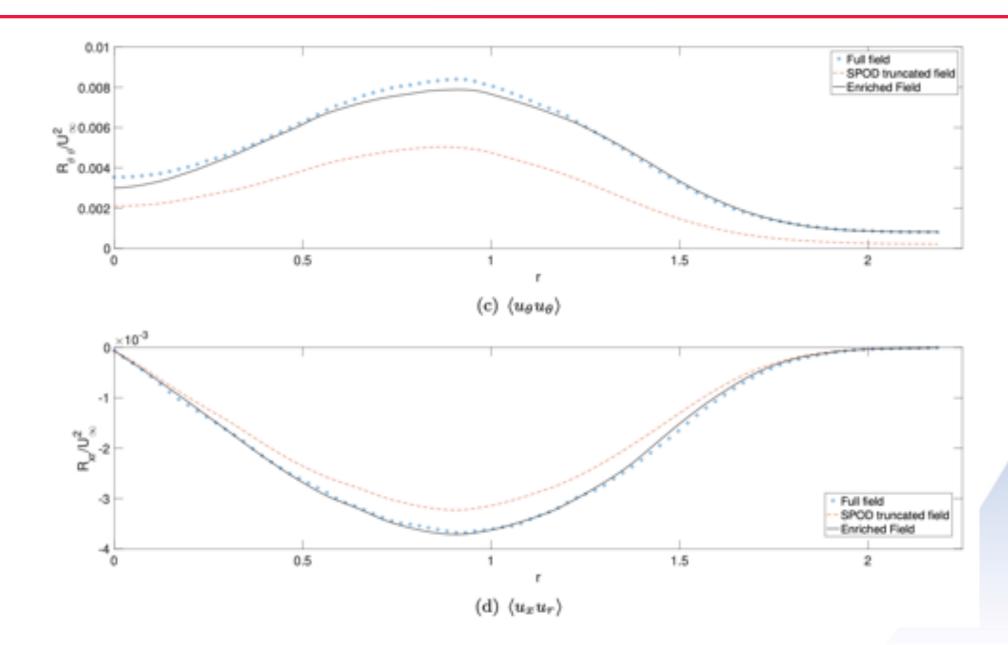
PHYSICS DRIVEN (Gabor Modes)

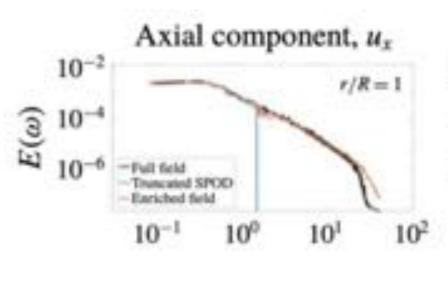


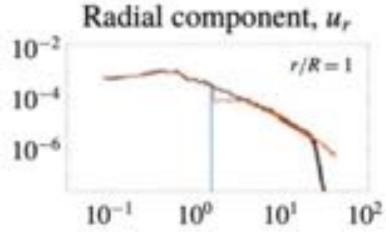


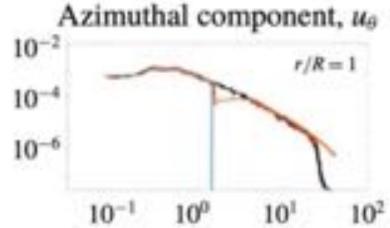


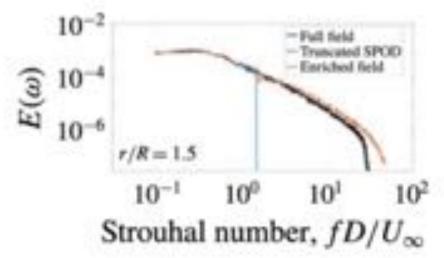


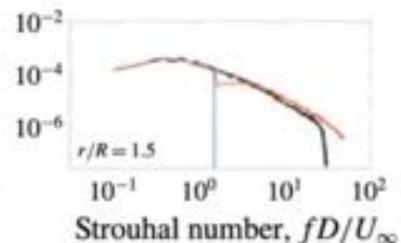


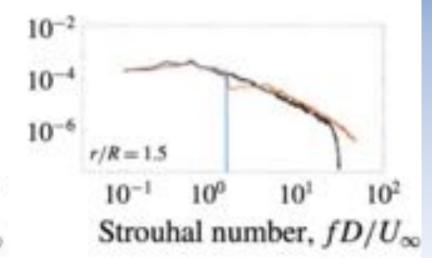


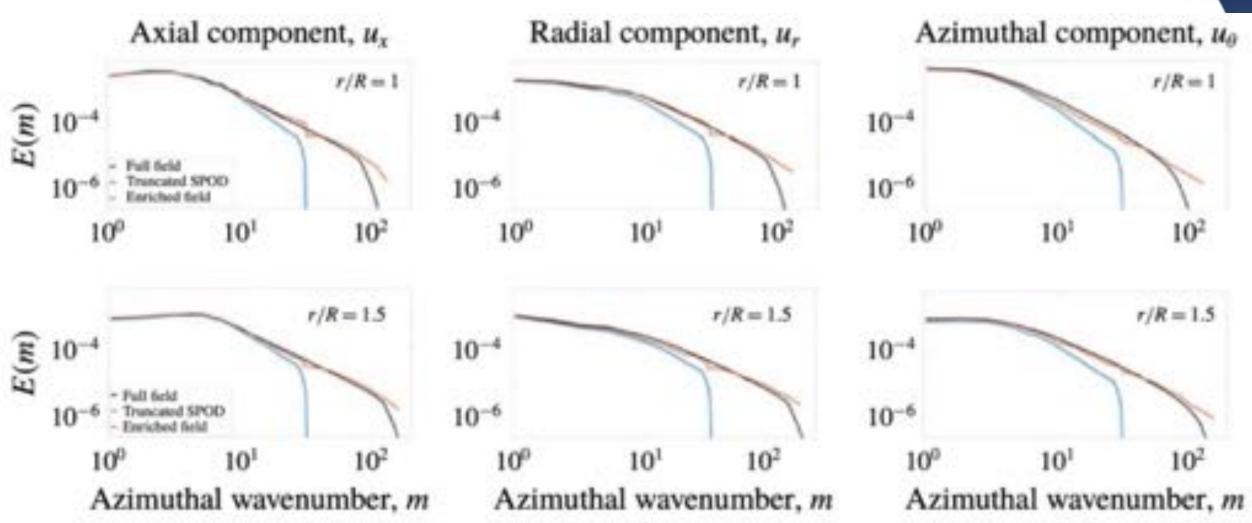












Conclusions

- Data-driven modeling may not always be the only and complete solution!
- Room for physics driven-modeling still exists; models naturally inherit fundamental properties such as Galilean and Rotational invariance
- Combined model enables full-scale generation of stochastic solenoidal turbulent fluctuations with accurate second order 2-pt correlations
- POD type representations are highly limiting lots of potential for NNs for more generalized representation
- Further development of the method for more complex flow configurations continues ... (Ryan Hass, PhD student at Stanford University)

Acknowledgements

- ASG support by NASA T³ program within the LAVA group at NASA ARC
- SKL received partial support from NSF (NSF-CBET-1803378)
- All simulations used computational resources from the NSF XSEDE program (ATM170028)