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What is flow field reconstruction?

u(x, t) u(x)

Immersed Boundary WMLES of LAGOON Landing
Gear. Figure generated by Man-Long Wong. See
Wong et al., AIAA 2022-2850 for further details.

Consider a flow field decomposition:

u(x,t) =u(x,t) +u'(x,t)

/T AN

FLUCTUATION
TOTAL MEAN (focus of present work)



What is flow field reconstruction?

Problem Description: Given a field, u'(x, t) generate a field, 1’ (x, t) such that

1. Is purely vortical (discretely divergence free):
V-u' =0; u'(x,t) = VXA,
2. Estimates the second order, two-point statistics accurately

(uj(x +y,t + Tu;(y, 7)) = (#j(x+y,t+ 7)1 (y, 7))

Important Note: Equivalence between original and reconstructed fields is required to be

purely statistical and not pointwise (LES accuracy must be described statistically)

u'(x,t) = u'(x,t)



Why is it relevant?

Reduced order model (sparse representation) for flows with a vast range of dynamically
active scales (high Reynolds numbers) needed in many applications

1. Atmospheric Science: Synoptic (Days) + Meso (Hours) + Microscale (Seconds/Minutes)

fluctuations - Scalar transport, Wind Energy, etc.

2. Aeroacoustics: Air-frame noise, fan noise, jet noise

3. Aero-structural loading: Unsteady pressure loading and vibrations
4. Hybrid RANS-LES: fluctuation generation at interfaces

Bottom Line: Vast array of applications where fluctuations (as opposed to steady state) make

up for nearly the entire figure of merit.



Outline @

Simple Test problem: Turbulent wake with turbulent co-flow

|s a sparse representation possible?

Model for Large-Scales: Truncated modal expansion
A physics driven model for small scales

Evaluation of the the combined model

Conclusions and Outlook



Turbulent Wake of a Dragging Disk
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Turbulent Wake of a Dragging Disk

U component

V component

W component




Turbulent Wake of a Dragging Disk

Inflow HIT (decaying) Wake region Fringe contamination
s (3:14D) 4 (approx. 8D) be- approx. 4D)
N Flow re-excited to
the desired HIT
state

Y-and Z-domain
width is 3.14D

poreesnnnned

a -In!lowplue.mplulf
i at x = 6.66D -

Wakc n"bulm consists of KCMD HC'l'ﬂhO'II wamkcls C'Oﬂs """"""""""
with entrained and distorted isotropic turbulence

(contours show instantaneous fluctuations of axial velocity)
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See Ghate, Towne & Lele, J.
Fluid Mech., 2019 5
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Seeking a modal expansion

Since the flow is temporally stationary, we need to find the principal components of the 2-pt CI’OSS-
spectral density tensor defined as:

S(z,’, f) = / Clz, ', 7)™ 2™ Tdr = " N;(N)w; (2, N} (', f)

7 =t —t' (due to stationarity) C(z,x',7) = q(z,t)q(z',t — 7)

Further leveraging azimuthal homogeneity — simplifies the SVD substantially (POD modes are Fourier |
modes in azimuthal direction following Lumley (1970)

T 27 ' J
rmf) = [ [, w00 0t =3y 100 )
where, a;(m, f) = (4(r,m, ), P;(r, m, f))r is the modal energy with the property |a;ay,| = 8imA;
Once 4;(m, f) and ¥j(r,m, f) are “learned” using data, stochastic fields can be trivially generated

Uu(x, t) = IFFTmf{Zf=1 a(m, f)W¥;(r, m, f)} where d; = ajeiSt and £ € N(0,2m)



Is the flow low-rank?

m=3

Strouhal number, { Strouhal number, f

Low-rank expansions likely to work only for low Strouhal numbers, significant loss of energy would
occur at high Strouhal numbers
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What have we “learned” from data”

Consider the most energetic (j=1) mode at St = 0.4

m=0
2 1
0 u Io'5
0
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Azimuthal component, ug

m=2 =3 m=4

2 1 2
0.5
0 0 0 0
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Axial component, u,

Most energetic modes appear to pick up on shear-layer instabilities (linear-processes such as K-H)
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What have we “learned” from data”

Now conS|der hlgher rank modes

(a) 1 =1

.0 et -l "l "ot "
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' ' ' ' ) \

(b) j=2
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r ‘ ' ﬂ '@
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()j=3

CEEETET

(d) j=4

Increasing “uncertainty” with increasing
mode order and azimuthal
wavenumber

Ambient co-flow and non-linear
interactions responsible for lack of low- |
rank

Would require a tremendous amount of
data to "learn” small-scale content
(higher values of j, m and f) — statistical

convergence is very slow ,/Nggmpe
(Welch, 1967)
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Truncated modal expansion: ROM for “Large Scales”

ytrne (y, Zy t) = I(r,e)—)(y,z) Z Z Z a; (m’ f)\I’J (ma f’ ,r)e—i(m0+ft)

|f|<Fco |m|<Mco J<Jmaz

u's(y, z,t) = u(y, z,t) — utruﬂc(y, 2z, ) DATA-DRIVEN ROM DIFFICULT
(UNFORTUNATELY ALSO THE
DATA — DRIVEN ROM FEASIBLE RESPONSIBLE OF HIGH CFD COST)
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Wavelets — A potential solution to representation problem??

=

Ax

Dk

\\\:

_

%

Uncertainty Principle
(Fourier Duality)
requires: AyA, = 2n

Wavelets can in principle provide optimal spatio-spectral
localization

Could solve the representation issue — but most wavelet NS
algorithms are not much cheaper than traditional CFD
algorithms (See Farge, Annual Rev. Fluid Mech., 1992)
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Requirements: Model for residual scales @

Requirement 1: Spectral extrapolation — superresolution (obvious requirement)

Erergy spectum
|
|
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Requirements: Model for residual scales

Requirement 2: Allow inhomogeneity (spatial or temporal)

Intense fluctuations generated by
shear from the mean velocity profile

Spatially decaying isotropic turbulence
due to lack of shear
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Requirements: Model for residual scales @

Requirement 3: Capture correct energy transfers (even in lack of mean shear)

S .8 T
LARGE SCALE ENERGY (“i U; S ij >
INJECTION
SGS dissipation SMALL SCALE TRE
—(r®ST,
LARGE SCALE TKE oooooooooooooo
‘
— (Li;S; g

-
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Viscous dissipation

17



Seeking a model for small scales: Quasi-Homogeneity

Consider u,..; for a generic boundary layer (spanwise periodic) on the cross-plane
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Model for Small-Scales: Gabor modes

Modeoenbmq.atx-o Modowwom:mb«.kﬂ
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Support of the mode = 2Pi

A
The scale separation parameter is defined as: € = A

Multiple modes

Typical compression in
Degrees of Freedom > 95%

Physical space rendering
can be performed using an
0(Nlog(N)) algorithm
(See Ghate & Lele, J. Fluid
Mech., 2017)

Can be further improved |
to a O(N) algorithm using
wavelet properties
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Gabor Modes: Temporal Evolution

Governing equations for Gabor modes

1. Motion described in a sweeping frame:
OQXI = l}jo
2. An Eikonal equation for evolution of a wavenumber
8(*) = -kmi)jtf;,
3. A WKB-RDT appraximation for evolution of complex amplitude

2k Kk
Dy = ( - - 6.’,.) b,'a,-u,‘;, - (—’ - 6,—1) xjﬂé - (v + v,)k’),' + i - 2e 0 N2 iy

k? ke
§ = —0,0,0" 2+ 4
o0 = —010,6 — (K + Kg)k +
where, #; and ?g are Gabor projections of the Leonard stress terms 9, L and 0;q; respectively.

Important consideration: The ODEs governing evolution of the Gabor modes are only accurate up to leading order in ¢; the
proposed maodel is not a numerical method.

Model for the local (in scale space) convective non-linearity

The action of the convective non-linearity due to local triadic interactions will be modeled using a spectral viscosity based on
Renormalization Group Theory (RNG) (see Canuto & Dubovikov, PoF, 1996)

oo 1/2
— | = —
Bihy— = —wve(KK b, ve(k) = (V2+Cu/ q 25(‘7)‘-"0) - v
k

See derivation in
Ghate & Lele (J.
Fluid Mech, 2020)
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Evaluation of the combined model

es

(n) w*™(y, 2)

PHYSICS DRIVEN
(Gabor Modes)

(d) w*"(y, 2)

(e) v**"(y, z)

DATA DRIVEN
(Truncated SPOD)

(f) w*"(y, z)
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Evaluation of the combined model

' REFERENCE
_ (HIGH RESOLUTION LES)

RECONSTRUCTED
(SPOD + GABOR
MODES)

uenrieh(y,2)
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Evaluation of the combined model
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Evaluation of the combined model
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Evaluation of the combined model
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Evaluation of the combined model

Elw)

E(w)

Axial component, u,
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Evaluation of the combined model

E(m)

E(m)

Axial component, u,
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Conclusions

Data-driven modeling may not always be the only and complete solution!
Room for physics driven-modeling still exists; models naturally inherit
fundamental properties such as Galilean and Rotational invariance
Combined model enables full-scale generation of stochastic solenoidal turbulent
fluctuations with accurate second order 2-pt correlations

POD type representations are highly limiting — lots of potential for NNs for more
generalized representation

Further development of the method for more complex flow configurations

continues ... (Ryan Hass, PhD student at Stanford University)
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