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What is flow field reconstruction? 

!(#, %) '!(#) (!(#, %)

Consider a flow field decomposition: 

! ", $ = &! ", $ + !)(", $)

TOTAL MEAN
FLUCTUATION 

(focus of present work)

Immersed Boundary WMLES of LAGOON Landing 
Gear. Figure generated by Man-Long Wong. See 
Wong et al., AIAA 2022-2850 for further details.
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What is flow field reconstruction? 

Problem Description: Given a field, !)(", $) generate a field, *!)(", $) such that

1. Is purely vortical (discretely divergence free): 

∇ ⋅ *!) = 0; *!) ", $ = ∇×0*
2. Estimates the second order, two-point statistics accurately 

1+) " + 2, $ + 3 1,) 2, 3 = 41+) " + 2, $ + 3 41,)(2, 3)

Important Note: Equivalence between original and reconstructed fields is required to be 

purely statistical and not pointwise (LES accuracy must be described statistically) 

!) ", $ ≠ *!)(", $)
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Why is it relevant? 

Reduced order model (sparse representation) for flows with a vast range of dynamically 
active scales (high Reynolds numbers) needed in many applications

1. Atmospheric Science: Synoptic (Days) + Meso (Hours) + Microscale (Seconds/Minutes) 

fluctuations - Scalar transport, Wind Energy, etc. 

2. Aeroacoustics: Air-frame noise, fan noise, jet noise 

3. Aero-structural loading: Unsteady pressure loading and vibrations

4. Hybrid RANS-LES: fluctuation generation at interfaces

Bottom Line: Vast array of applications where fluctuations (as opposed to steady state) make 

up for nearly the entire figure of merit. 
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Outline 

• Simple Test problem: Turbulent wake with turbulent co-flow 

• Is a sparse representation possible? 

• Model for Large-Scales: Truncated modal expansion

• A physics driven model for small scales 

• Evaluation of the the combined model 

• Conclusions and Outlook 
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Turbulent Wake of a Dragging Disk 

Incompressible Flow Formulation

Fully spectral spatial discretization 

RK4 time discretization

Sigma SGS model; -. → ∞
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Turbulent Wake of a Dragging Disk 

U component

V component

W component
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Turbulent Wake of a Dragging Disk 

See Ghate, Towne & Lele, J. 
Fluid Mech., 2019
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Seeking a modal expansion 

Since the flow is temporally stationary, we need to find the principal components of the 2-pt cross-
spectral density tensor defined as: 

Further leveraging azimuthal homogeneity – simplifies the SVD substantially (POD modes are Fourier 
modes in azimuthal direction following Lumley (1970)

where, !! ", $ = &' (,", $ , )*! (,", $ " is the modal energy with the property |!!!#⋆ | = ,!#-!

Once -!(", $) and Ψ%((,", $) are “learned” using data, stochastic fields can be trivially generated

12 3, 4 = 5667#,' ∑!()* 9! ", $ :%(r,m, f) where 9!! = !!>+, and ? ∈ A(0,2D)
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Is the flow low-rank? 

Low-rank expansions likely to work only for low Strouhal numbers, significant loss of energy would 
occur at high Strouhal numbers
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What have we “learned” from data? 

Consider the most energetic (j=1) mode at St = 0.4

Most energetic modes appear to pick up on shear-layer instabilities (linear-processes such as K-H)
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What have we “learned” from data? 
Now consider higher rank modes 

• Increasing “uncertainty” with increasing 
mode order and azimuthal 
wavenumber 

• Ambient co-flow and non-linear 
interactions responsible for lack of low-
rank

• Would require a tremendous amount of 
data to ”learn” small-scale content 
(higher values of j, m and f) – statistical 
convergence is very slow 1"#$%&'
(Welch, 1967)
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Truncated modal expansion: ROM for “Large Scales”

DATA – DRIVEN ROM FEASIBLE

DATA-DRIVEN ROM DIFFICULT
(UNFORTUNATELY ALSO THE 

RESPONSIBLE OF HIGH CFD COST)
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Wavelets – A potential solution to representation problem?  

Wavelets can in principle provide optimal spatio-spectral 
localization

Could solve the representation issue – but most wavelet NS 
algorithms are not much cheaper than traditional CFD 
algorithms (See Farge, Annual Rev. Fluid Mech., 1992)

Uncertainty Principle 
(Fourier Duality) 

requires: Δ(Δ) ≥ 25
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Requirements: Model for residual scales

Requirement 1: Spectral extrapolation – superresolution (obvious requirement) 
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Requirements: Model for residual scales

Requirement 2: Allow inhomogeneity (spatial or temporal) 

Intense fluctuations generated by 
shear from the mean velocity profile

Spatially decaying isotropic turbulence 
due to lack of shear 
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Requirements: Model for residual scales

Requirement 3: Capture correct energy transfers (even in lack of mean shear) 

LARGE SCALE ENERGY 
INJECTION
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Seeking a model for small scales: Quasi-Homogeneity

Consider '"-. for a generic boundary layer (spanwise periodic) on the cross-plane
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Model for Small-Scales: Gabor modes

Physical space rendering 
can be performed using an 
6 1789 1 algorithm
(See Ghate & Lele, J. Fluid 
Mech., 2017) Can be further improved 

to a 6(1) algorithm using 
wavelet properties 

Typical compression in 
Degrees of Freedom > 95%
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Gabor Modes: Temporal Evolution

See derivation in 
Ghate & Lele (J. 
Fluid Mech, 2020)
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Evaluation of the combined model 

DATA DRIVEN 
(Truncated SPOD) 

PHYSICS DRIVEN 
(Gabor Modes) 
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Evaluation of the combined model 

REFERENCE 
(HIGH RESOLUTION LES)

RECONSTRUCTED 
(SPOD + GABOR 

MODES)
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Evaluation of the combined model 
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Evaluation of the combined model 
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Evaluation of the combined model 
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Evaluation of the combined model 
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Evaluation of the combined model 
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Conclusions  

• Data-driven modeling may not always be the only and complete solution!

• Room for physics driven-modeling still exists; models naturally inherit 

fundamental properties such as Galilean and Rotational invariance 

• Combined model enables full-scale generation of stochastic solenoidal turbulent 

fluctuations with accurate second order 2-pt correlations

• POD type representations are highly limiting – lots of potential for NNs for more 

generalized representation

• Further development of the method for more complex flow configurations 

continues … (Ryan Hass, PhD student at Stanford University)
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