Algorithmic Improvements to a High-Order Space Marching Method for Sonic Boom Propagation

Jeffrey Housman, James Jensen, Gaetan Kenway, and Cetin Kiris
Computational Aerosciences Branch
NASA Ames Research Center

Outline

- Introduction
- Computational Methodology
 - Mach-cone Aligned Space Marching Grid
 - Numerical Discretization
- Results
 - CFD Domain Reduction
 - Unstructured Solver Coupling
 - CFD Accuracy Enhancement
 - Local Error Analysis
- Summary

Introduction

NASA's Low-Boom Flight Demonstration (LBFD) project

- Primary goal is to demonstrate feasibility of supersonic over-land flight at reduced loudness levels
- X-59 Quiet Supersonic Technology (QueSST) airplane
- Mission planning requires large database consisting of O(1000) O(10,000) solutions
 - Fine mesh away from body to track shocks
 - High computational resources
 - Must be accurate
 - Must be automated

Iso-parametric view of early concept design of LBFD

Previous 2-Step Ground Level Noise Prediction

Special Features of Supersonic Flow

- All information travels in a common "time-like" direction along characteristic surfaces
- Viscous effects are only important near the walls of the aircraft
- Space marching is a special discretization/solution strategy which uses these features for computational

3-Step Ground Level Noise Prediction

Mach-cone Aligned Space Marching Grid

- Grid design inspired by Siclari and Darden AIAA-1990-4000
- Space marching direction aligned with freestream flow direction to guarantee valid space march as local Mach number approach unity
- Mach-cone aligned to reduce effect of artificial dissipation
- Automatically generates O(10)-O(1000)
 million grid points meshes in seconds on a workstation

Elliptic Hole Cutting Procedure

C608

- The original cylindrical hole cutting procedure has been replaced with an elliptic hole cutting procedure
 - Remains geometrically simple for easy user placement*
 - Enables closer coupling to the aircraft
 - Reduces CFD meshing requirements away from aircraft body

CFD/Space Marching Coupling

- Coarse space marching grid shown to illustrate procedure
 - Grid is automatically generated to user specified radial extent
 - Elliptic hole cut is performed
 - Fringe points are marked and CFD solution interpolated
 - Space marching is performed

LAVA Framework Structured Unstructured Structured Cartesian AMR **Arbitrary Polyhedral** Curvilinear Navier-Lattice Navier-Stokes Navier-Stokes Stokes Boltzmann Space-Marching Post-Processing **LAVA Tools Propagation Object Oriented Framework** C++ / Fortran with MPI Parallel Other Solvers Far Field **Acoustic Solver** & Frameworks Domain Connectivity/ Shared Data Multi-Physics: Multi-Phase Conjugate Structural 6 DOF **Actuator Disk** Combustion **Heat Transfer Dynamics Body Motion** Models Chemistry **Electro-Magnetics Other Development Efforts** Higher order and low dissipation Curvilinear grid generation Developing Existing Connected Wall modeling LES/DES/ILES Turbulence Not Yet Connected **Future** Framework HEC (optimizations, accelerators, etc)

Numerical Discretization

- Governing equations are the steady-state 3D Euler equations transformed to a general curvilinear coordinate system in strong conservation law form
- Second-order BDF2 is used in the space marching direction (BDF1 and BDF3 options are available)
- High-order Hybrid Weighted Compact Nonlinear Scheme (HWCNS) is used in the two non-space marching coordinate directions
 - Interface (half-point) fluxes are evaluated with Roe-like scheme
 - Left/right interface states use 3rd or 5th order WENO interpolation
 - 4th order centered finite difference using a combination of fluxes at the grid points and the half-points used for flux derivatives
- Identical finite-difference operators (BDF2 and HWCNS) are used in metric term evaluation for free-stream preservation
- 2D nonlinear system is solved at each space marching station using an alternating line Jacobi relaxation procedure

Computational Results

- CFD Domain Reduction
 - Domain of dependence
 - Comparison of 2-step and 3-step (space marching) procedures
- Unstructured Solver Coupling
 - Example of USM3D + LAVA space marching
- CFD Accuracy Enhancement
 - HALO3D coarse mesh improvement demonstration
- Local Error Analysis
 - Application to JAXA Wing Body (JWB)

CFD Domain of Dependence

- Intersecting two Mach cones which encapsulate the aircraft provides an approximate domain of dependence
- Sensitivity to radial domain extent is assessed using CFD

CFD Domain of Dependence

- On-track: $r/L_{body} = 0.25$ $0.04 \\ 0.02 \\ -0.02 \\ -0.04 \\ -0.06$ $R/L_{body} = 7 \\ R/L_{body} = 4 \\ R/L_{body} = 0.53$ 0.5 1 1.5
- Contour plots of pressure on cylindrical surface at r/L_{body} = ¼ using CFD radial domain lengths of 4 and 0.53
- No sensitivity is observed near the CFD/space marching coupling location

Comparison of 2-step and 3-step procedures

Comparison of 2-step and 3-step procedures

- Comparison of ground level noise between 2-step and 3-step procedures
 - Perceived loudness levels within 0.2 dB of each other at both interface locations to the far-field acoustic propagation code
 - Minor discrepancy in recovery portion between 120-130 ms

Grid	Δs/L _{body}	N (million)	Time (s)
Coarse	0.006	18.9	44
Medium	0.003	72.3	139
Fine	0.0015	285.4	440

Computational Benefits

- 1) CFD domain size reduction factor of 13.2
- Number of CFD grid points cut in half
- 3) Computational resources also half
- 4) SM-Medium 2 minutes 19 seconds

Unstructured Solver Coupling

Unstructured Solver Coupling

- On-track comparison of pressure at $r/L_{body} = 3$ between USM3D and LAVA space marching coupled with USM3D using two different numerical flux options
- Both numerical schemes match USM3D very well over most of the signature
- \circ Minor discrepancy at x/L_{body} = 3.85 reduced with higher-order scheme
- Space marching time of 138.3 and 144 seconds respectively (72 M grid points)

Accuracy Enhancement

- HALO3D solutions on the coarse, medium, and fine committee mixed-element unstructured grids were provided by the ANSYS Canada team
- A space marching mesh sensitivity study was performed using the coarse HALO3D solution

Medium space marching grid is observed to be sufficient (72 M grid points)

Accuracy Enhancement

Medium grid spacing space marching improves coarse grid HALO3D solution to fine grid level (cost 2 minutes 37 seconds)

Accuracy Enhancement

- HALO3D shows spurious reflection at exterior radial boundary, not observed in space marching solution
- O Space marching coupled with coarse grid HALO3D solution is as accurate as fine grid HALO3D solution at $r/L_{body} = 2$ and 3
- \circ LAVA-SM shows improved resolution over fine grid HALO3D at r/L_{body} = 4 and 5
- Mesh size difference between coarse and fine mixed-element grids is factor of 3
- Cost of space marching coupled to coarse grid HALO3D solution is 2 minutes 37 seconds (negligible compared to CFD cost)

Local Error Analysis: JAXA Wing Body

Top View

JAXA Wing Body (JWB)

- Reference length: $L_{ref} = 38.7 \text{ m}$
- Mach = 1.6, Re/m = 5.7 million, and α = 2.3°

Local Error Analysis: JAXA Wing Body

		Top View	
JAXA Wing Body (JWB)			
○ Reference length: L _{ref} = 38.7 m		$b_{span} = 9$.	.16m
Mach = 1.6, Re/m = 5.7	0:1. \"	span	
million, and $\alpha = 2.3^{\circ}$	Side View		

 $L_{ref} = 38.7 m$

Mesh	Number of grid points (millions)	Time (seconds)
Coarse	22.7	53.1
Medium	87.4	189.1
Fine	342.7	752.3
Reference	1,356.6	3366*

²³

Local Error Analysis: JAXA Wing Body

Local error analysis procedure developed in Anderson, Aftosmis, and Nemec (J. Aircraft 2019)

Summary

- Algorithmic improvements to the high-order space marching method in LAVA have been presented
 - Alignment of space marching coordinate direction to the freestream direction
 - An elliptic hole cutting procedure to reduce near-field CFD accuracy requirements
 - Extension of overset interpolation routines for coupling with other (non-LAVA) solvers
- Demonstration of success of 3-step method on powered C608 configuration
 - Reduction of CFD radial domain based on domain of dependence
 - Reduction in computational cost compared to 2-step procedure
 - Equivalent results to ground level noise predictions to 2-step method
- Examples of coupling to unstructured grid solutions
 - Successful coupling with USM3D
 - Accuracy enhancement of HALO3D solutions
- Evaluation of space marching grid resolution uncertainty using a local error analysis procedure

Acknowledgements

- Work partially supported by NASA's Aeronautics Research Mission Directorate (ARMD) Commercial Supersonic Technology (CST) project and Transformational Tools and Technologies (TTT) project.
- We would like to thank the members of the AIAA Sonic Boom Prediction Workshop organizing committee, workshop participants who provided CFD grids and solutions
- We would also like to thank Marian Nemec from the Cart3D team as well as the members of the LAVA team from NASA Ames Research Center for valuable discussions
- Computer time has been provided by NASA's Advanced
 Supercomputing (NAS) at NASA Ames Research Center